KIWI Project

openSUSE - KIWI Image System
Cookbook

Project, Design and Implementation
by Marcus Schaefer (ms@suse.de)

*

-
&S DNSifor:
ardas

Author: Marcus Schaefer
Date: March 30, 2009
Version: 3.01

*SUSE LINUX Products GmbH, Maxfeldstrasse 5, D-90409 Nuremberg

Contents

Introduction

Basic workflow

2.1 Bootprocess.
2.2 Boot parameters
2.3 Common and Distribution specific code

KIWI image description
3.1 configxml

Creating Appliances with KIWI
4.1 History.
4.2 TheKIWImodel

Maintenance of Operating System Images

System to image migration

6.1 Create a migration report first
6.2 Migrate my system...
6.3 Turn my system into an image...

Installation Source
7.1 Adapt the example’s config.xml
7.2 Create a local installation source . . .

ISO image - Live Systems

8.1 Building the suse-live-iso example . . .
8.2 Usingtheimage.
83 Flavours

USB image - Live-Stick System

9.1 Building the suse-live-stick example . .
9.2 Usingtheimage.
9.3 Flavours

10 VMX image - Virtual Disks

10.1 Building the suse-vm-guest example .
10.2 Using theimage
103 Flavours

..............

..............

..............

11
13

29
29
29

33

35
35
36
36

39
39
39

41
41
41
42

45
45
46
47

Contents

11 PXE image - Thin Clients
11.1 Setting up the required services
11.2 Building the suse-pxe-client example . .
11.3 Using theimage
114 Flavours

12 OEM image - Preload Systems
12.1 Building the suse-oem-preload example
12.2 Using theimage
123 Flavours

13 XEN image - Paravirtual Systems
13.1 Building the suse-xen-guest example . .
13.2 Using theimage
13.3Flavours

14 EC2 image - Amazon Elastic Compute Cloud
14.1 Building the suse-ec2-guest example . .
14.2 Using theimage

15 KIWI testsuite
15.1 testsuite packages
15.2 Creatingatest

Index

.............

.............

.............

53
53
54
55
56

65
65
66
66

69
69
70
70

71
71
72

75
75
75

77

1 Introduction

The openSUSE KIWI Image System provides a complete operating system im-
age solution for Linux supported hardware platforms as well as for virtualisa-
tion systems like Xen, VMWare, etc. The KIWI architecture was designed as a
two level system. The first stage, based on a valid software package source,
creates a so called physical extend according to the provided image descrip-
tion. The second stage creates from a required physical extend an operating
system image. The result of the second stage is called a logical extend or
short an image.

Software package

Source

image description tree > -

Physical Extend

encapsulated system reachable via chroot

Logical Extend

encapsulated system reachable via loop mour

Serve it...

Figure 1.1: Image Serving Architecture

Because this document contains conceptual information about an image sys-
tem, it is important to understand what an operating system image is all about.
A normal installation process is starting from a given installation source and
installs single pieces of software until the system is complete. During this pro-
cess there may be manual user intervention required. However an operating
system image represents an already completed installation encapsulated as a
file and optionally includes the configuration for a specific task. Such an oper-
ating system starts working as soon as the image has been brought to a system
storage device no matter if this is a volatile or non volatile storage. The pro-
cess of creating an image takes place without user interaction. This means all
requirements of the encapsulated system has to be fulfilled before the image
is created. All of this information is stored in the image description.

1 Introduction

2 Basic workflow

Contents
2.1 BOOtPrOCESS . . v v v v v v v vt et et e et e e e 9
2.2 Bootparametersttt e 9
2.3 Common and Distribution specificcode. 10

The creation of an image with KIWI is always divided into two basic steps.
These are the prepare and the create step. the create step requires the pre-
pare step to be exited successfully. Within this first prepare step kiwi builds
of a new root tree or, in kiwi-speak, a new physical extend. The building of a
new root tree consists of the creation of the directory specified to hold it and
the installation of the selected packages on it. The installation of software
packages is driven by a packagemanager. KIWI supports the smart and zypper
package managers. The prepare step executes the following major stages:

¢ Root directory creation
To prevent accidental deletion of an existing root tree, kiwi will stop
with an error message if this folder already exists, unless the option —
force-new-root is used in which case the existing root will be deleted.

e Package installation

First the selected package manager (smart by default) is instructed to
use the repositories specified in the image description file. Then the
packages specified in the ’bootstrap’ section are installed. These pack-
ages are installed externally to the target root system (i.e. not chroot’ed)
and establish the initial environment so the rest of the process may run
chroot’ed. Essential packages in this section are filesystem and glibc-
locale. In practice you only need to specify those two, since the rest of
the packages will be pulled because of the dependency system. To save
space in your image you could schedule a set of packages for deletion
after the package installation phase is over by listing them in the ’delete’
section.

e User defined script config.sh
At the end of the preperation stage the optional script named config.sh is
called. This script should be used to configure the system which means
for example the activation of services. For a detailed description what
functions are already available to configure the system please refer to
the KIWTI::config.sh manual page

e Managing the new root tree
At this point you can make changes on your physical extend so it fits your

7

2 Basic workflow

purpose better. Bear in mind that changes at this point will be discarded
and not repeated automatically if you rerun the ’prepare’ phase unless
you include them in your original config.xml file and/or config.sh script.
Please also note that the image description has been copied into the new
root below the directory <new-root>/image. Any subsequent create
step will read the image description information from the new root tree
and not from the original image description location. According to this
if you need to change the image description data after the prepare call
has finished you need to change it inside the new root tree as well as in
your original description directory to prevent loosing the change when
your root tree will be removed later for some reason.

After the prepare step has finished successfully a subsequent building of an
image file or, in kiwi-speak, a new logical extend follows. The building of an
image requires a successfully prepared new root tree in the first place. Using
this tree multiple image types can be created. So to speak it’s possible to
create a VMware image and a XEN image from the same prepared root tree.
The create step executes the following major stages:

e User defined script images.sh

At the beginning of the creation stage the optional script named im-
ages.sh is called. This script has no distinctive use case like config.sh
but is most often used to remove packages which were pulled in by a
dependency but are not really required for the later use of the operating
system. For a detailed description what functions are already available
to images.sh please refer to the KIWI::images.sh manual page

Create the requested image type

What image type(s) a kiwi image supports depends on what types has
been setup in the main image description file config.xml. At least one
type must be setup. The following picture shows what image types are
currently supported by kiwi:

Live CD, DVD, USB Stick
deploy to media with kiwi and start

Virtual Disk
s —— full virtual systems can be played in eg VMwa
config.xml guest configuration can be created

\ Xen Paravirtual Image for hypervisor
\ guest configuration can be created
OEM virtual Disk
preload system or installation CD,DVD,USB Stick
Network boot via PXE

KIWI proivides boot environment
dependent services needs to be configured

Figure 2.1: Image Types

Detailed information including a step by step guidance how to call kiwi and
how to make use of the result image can be found in the image type specific

8

2.1 Boot process

sections later in this document.

2.1 Boot process

Todays linux systems are using a special boot image to control the boot pro-
cess. This boot image is called initrd. The linux kernel loads this initial
ramdisk which is a compressed cpio archive into RAM and calls init or if
present the program named linuxrc. The KIWI image system also takes care
for the creation of this boot image. Each image type has it’s own special boot
code and shares the common parts in a set of module functions. The image
descriptions for the boot images are provided by KIWI and thus the user has
in almost all cases no need to take care for the boot image.

Boot Image

(initrd / kernel)
Descriptions are provided by kiwi
use is recommended but not required
A description needs to be created

SyStem Image or a template can be used

|

Figure 2.2: Boot process

Furthermore KIWI automatically creates this boot image along with the re-
quested image type. It does that by calling itself in a prepare and create
call. There is no difference in terms of the description of such a boot image
compared to the system image description. The system image description is
the one the user creates and this image represents the later operating sys-
tem whereas the boot image only lives temporarly in RAM as long as the
system image will be activated. The boot image descriptions are stores in
/usr/share/kiwi/image/*boot and can be build in the same way as the system
image. The boot image without a corresponding system image doesn’t make
sense though.

2.2 Boot parameters

When booting an image created by kiwi using one of the provided boot im-
ages there are some useful kernel parameters mainly meant for debugging

9

2 Basic workflow

purposes. Please note the following parameters are only useful if the kiwi
initrd is used. In case of any other initrd code written by yourself or sim-
ply because kiwi replaced itself with the distribution specfic mkinitrd tool the
parameters might not have any effect.

e kiwidebug=1
If the boot process encounters a fatal error the system normally reacts
with a reboot after 120 secconds. This so called exception can be influ-
enced by the kiwidebug parameter. If set to 1 the system will stop and
provide the user with a shell prompt instead of a reboot. Within that
shell some basic standard commands are available which could help to
find the cause of the problem

o kiwistderr=/dev/...
While the system boots kiwi writes messages to ttyl and tty3. The ttyl
messages are highlevel information whereas the tty3 messages repre-
sents the shell debug output and any error messages from the com-
mands called. With the kiwistderr parameter one can combine both
message sets and specify where to write them to. It’s very common to
set /dev/console as possible alternative to the default logging behaviour

2.3 Common and Distribution specific code

KIWTI has been developed to be usable for any Linux distribution. By design of
a Linux distribution there are differences between each of them. With KIWI
we provide on one hand the code which is common to all Linux distributions
according to standards and on the other hand there is also code where we
have to distinguish between the distribution type.

In case of such specific tasks which are almost all in the area of booting, KIWI
provides a set of functions which all have to come with a distribution prefix.
As this project uses SUSE Linux as base distribution all required distribution
specific tasks has been implemented for SUSE and could be missing for other
distributions. The existing implementation for SUSE turns out to be adapted
to other distributions very easily though.

A look into the code therefore will show you functions which are prefixed
by ”suse” as well as scripts whose names starts with “suse-”. At any time
you see such a script or function you can be assured that this is something
distribution specific and needs to be adapted if you plan to use KIWI with
another distribution than SUSE. For example the boot workflow is controlled
by a program called linuxrc which is in KIWI a script represented by suse-
linuxrc. Another example would be the function called suseStripKernel which
is able to remove everything but a specified list of kernel drivers from the
SUSE kernel.

The prefixed implementation allows us to integrate all the distribution specific
tasks into one project but this of course requires the help and knowledge of
the people who are familar with their preferred linux distribution.

10

3 KIWI image description

Contents
3.1 configxml.00t 13

In order to be able to create an image with kiwi a so called image description
must be created. The image description is represented by a directory which
has to contain at least one file named config.xml or alternatively *.kiwi. A
good start for such a description can be found in the examples provided in
/usr/share/doc/packages/kiwi/examples.

configxml |

optional

images.sh

config.sh

root/
config-yast—firstboot.xml
config-yast—autoyast.xml
config—cdroot.tgz
config—cdroot.sh

config/

Figure 3.1: Image description directory

The following additional information is optional for the process of building an
image but most often mandatory for the functionality of the later operating
system.

e images.sh
Optional configuration script while creating the logical extend. This
script is called at the beginning of the image creation process. It is de-
signed to clean-up the image system. Affected are all the programs and
files only needed while the physical extend exists.

e config.sh
Optional configuration script while creating the physical extend. This
script is called at the end of the installation but before the package
scripts have run. It is designed to configure the image system, such as
the activation or deactivation of certain services (insserv). The call is not
made until after the switch to the image has been made with chroot.

e root/
Subdirectory that contains special files, directories, and scripts for adapt-

11

3 KIWI image description

ing the image environment after the installation of all the image pack-
ages. The entire directory is copied into the root of the image tree using
cp -a.

config-yast-firstboot.xml

Configuration file for the control of the yast2 firstboot service. Similar
to the autoyast approach yast also provides a boot time service called
firstboot. Unfortunately there is no GUI available to setup the firstboot
but a good documentation in /usr/share/doc/packages/yast2-firstboot.
Once you have created such a firstboot file in your image description
directory KIWI will process on the file and setup your image as follows:

1. KIWI enables the firstboot service
2. While booting the image YaST is started in firstboot mode

3. The firstboot service handles the instructions listed in the config-
yast-firstboot.xml

4. If the process finished successfully the environment is cleaned and
firstboot won’t be called at next reboot.

config-yast-autoyast.xml
Configuration file which has been created by autoyast. To be able to
create such an autoyast profile you should first call:

yast2 autoyast I

Once you have saved the information from the autoyast Ul as config-
yast-autoyast.xml file in your image description directory KIWI will pro-
cess on the file and setup your image as follows:

1. While booting the image YaST is started in autoyast mode automat-
ically

2. The autoyast description is parsed and the instructions are handled
by YaST. In other words the system configuration is performed

3. If the process finished successfully the environment is cleaned and
autoyast won'’t be called at next reboot.

config-cdroot.tgz

Archive which is used for ISO images only. The data in the archive is
uncompressed and stored in the CD/DVD root directory. This archive can
be used, for example, to integrate a license file or readme information
directly readable from the CD or DVD.

config-cdroot.sh
Along with the config-cdroot.tgz one can provide a script which allows
to manipulate the extracted data.

config/
Optional Subdirectory that contains Bash scripts that are called after the

12

3.1 config.xml

installation of all the image packages, primarily in order to remove the
parts of a package that are not needed for the operating system. The
name of the Bash script must resemble the package name listed in the
config.xml

3.1 config.xml

The mandatory image definition file is divided into different sections which
describes information like the image name and type as well as the packages
and patterns the image should consist of. The following information explains
the basic structure of the XML document. When KIWI is called the XML struc-
ture is validated by a RelaxNG based schema. For details on attributes and val-
ues please refer to the schema documentation file at /usr/share/doc/packages/
kiwi/kiwi.rng.html.

<image schemeversion="2.0" name="iname"
displayname="text"
inherit="path" kiwirevision="number"
id="10 digit number">

</image>

The image definition starts with an image tag and requires the schema format
at version 2.0. The attribute name specifies the name of the image which is
also used for the file names created by KIWI.

e The optional attribute displayname allows setup of the boot menu title
for isolinux and grub. So you can have suse-SLED-foo as the image name
but something like my cool Image as the boot display name.

e The optional attribute inherit allows to inherit the packages information
from another image description.

e The optional attribute kiwirevision allows to specify a kiwi SVN revision
number which is known to build a working image from this description.
If the kiwi SVN revision is less than the specified value the process will
exit. The currently used SVN revision can be queried by calling kiwi
——version

e The optional attribute id allows to set an identification number which
appears as file /etc/ImagelD within the image.

Inside the image section the following mandatory and optional subelements
exists. The simplest image description must define the elements description,
preferences, repository and packages (at least one of type="bootstrap”).

13

3 KIWI image description

<description type="image">
<author>an author</author>
<contact>mail</contact>
<specification>short info</specification >
</description>

The mandatory description section contains information about the creator of
this image description. The attribute type could be either of the value "image”
which indicates this is a system image description or at value "boot” for boot
image descriptions.

<profiles>
<profile name="name" description="text"/>

</profiles>

The optional profiles section lets you maintain one image description while
allowing for variation of the sections packages and drivers that are included.
A separate profile element must be specified for each variation. The profile
child element, which has name and description attributes, specifies an alias
name used to mark sections as belonging to a profile, and a short description
explaining what this profile does.

To mark a set of packages/drivers as belonging to a profile, simply annotate
them with the profiles attribute. It is also possible to mark sections as be-
longing to multiple profiles by separating the names in the profiles attribute
with a comma. If a packages/drivers tag does not have a profiles attribute, it
is assumed to be present for all profiles.

<preferences profiles="name">
<version>1.1.2</version>
<packagemanager>smart</packagemanager>
<type .../>

</preferences>

The mandatory preferences section contains information about the supported
image type(s), the used packagemanager, the version of this image and op-
tional attributes. The image version must be a three-part version number of
the format: Major.Minor.Release. In case of changes to the image description
the following rules should apply:

e For smaller image modifications that do not add or remove any new

14

3.1 config.xml

packages, only the release number is incremented. The config.xml file
remains unchanged.

e For image changes that involve the addition or removal of packages the
minor number is incremented and the release number is reset.

e For image changes that change the size of the image file the major num-
ber is incremented.

By default kiwi use the smart packagemanager but it is also possible to use
the SUSE packagemanager called zypper.

Normally one preferences section is enough but it’s possible to share data
between different namespaces, so called profiles. According to this it’s possible
to have for example two preferences sections whereas one contains specific
oem options and the other doesn’t. This allows to add specific type based
information while building the image.

At least one type must be set to be able to build an image from this description.
Multiple type lines are allowed whereas you can specify with the boolean
attribute named primary which should be the primary image if no type is
requested on creation. The following list describes the possible types and
their attributes:

e usb
Use this type to create a USB stick system along with the attributes
filesystem and boot="usbboot/suse-*”

e VX

Use this type to create a virtual disk system along with the attributes
filesystem, boot="vmxboot/suse-*” and optionally format. The for-

mat attribute spcifies one of the gemu supported virtualisation formats,

for example vindk or qcow?2. The optional attribute vga can be specified

to configure the kernel framebuffer mode. Detailed information about

the possible values can be found in /usr/src/linux/Documentation/fb/vesafb.txt.
The vga attribute also works for the image types usb and oem.

e Ooem
Use this type to create a preload virtual disk system along with the at-
tributes filesystem, boot="o0emboot/suse-*” and optionally format. If
the format attribute is set to ”iso” or "usb” KIWI will additionally create
an installation media suitable for a CD/DVD or an USB stick. This instal-
lation media takes over the task of deploying the preload system onto
the storage devices which it detects at boot time.

® pxe
Use this type to create a network boot image along with the attributes
filesystem and boot="netboot/suse-*”

e iso
Use this type to create a live system on CD or DVD along with the at-
tributes boot="isoboot/suse-*” and optionally flags. If no flags are
specified the filesystem will not be compressed and no union filesystem
is used. Allowed flags are:

15

3 KIWI image description

- unified: Compress filesystem with squashfs and mount the system
read-write with an aufs based overlay mount

- compressed: Compress filesystem with squashfs and use a link list
to mount the system read-write. An additional split section controls
the read-write information

- unified-cromfs: Same as unified but uses cromfs
- compressed-cromfs: Same as compressed but uses cromfs

If no flags or the flags "compressed” or "compressed-cromfs” are set an
additional split section is required.

e xen
Use this type to create a Xen enabled para-virtual gues image along with
the attributes filesystem and boot="xenboot/suse-*”

e split

Use this type if you want to use one of the types usb,vmx,oem or pxe
but as a split image. The split image support allows to create the im-
age as split files wheras one part represents the read-write data and the
other part represents the read-only data. Different filesystems can be
assigned to each portion. According to this use this type together with
the attributes fsreadwrite, fsreadonly and

boot="usb|vmx|oem |netboot/suse-*”

e cpio
Use this type if your image is a boot image (intrd). Additionally the
attribute bootprofile="default” can be specified. In a boot image it
makes sense to have the different kernels/drivers grouped in a names-
pace. Within a system image one can select the group by also specifying
a bootprofile attribute. If there are profiles defined in a boot image there
must be at least one namespace called the default namespace.

All of the mentioned types can specify the boot attribute which tells kiwi to
call itself to build the requested boot image (initrd). It is possible to tell
kiwi to check for an already built boot image which is a so called prebuilt
boot image. To activate searching for an appropriate prebuilt boot image
the type section also provides the attribute checkprebuilt="true |false”. If
specified kiwi will search for a prebuilt boot image in a directory named
/usr/share/kiwi/image/*boot/*-prebuilt. Example: If the boot attribute was
set to isoboot/suse-10.3 and checkprebuilt is set to true kiwi will search the
prebuilt boot image in /usr/share/kiwi/image/isoboot/suse-10.3-prebuilt. The
directory kiwi searches for the prebuilt boot images can also be specified at
the commandline with the ——prebuiltbootimage parameter.

Within the preferences section there are the following optional attributes:

e size
Specifies the size of the image with a numerical value in Megabytes or
Gigabytes. Use the "unit” attribute to assign the unit M for Megabytes or
G for Gigabytes. KIWI extends the image size automatically if the speci-
fied value is too small. If the actual size is more than 100MB larger than

16

3.1 config.xml

the specified size, KIWI aborts with an error message. KIWI does not
automatically reduce the image size if the specified value is too large,
because the extra space might be needed to, for example, run custom
scripts. If no size is specified, KIWI uses the required size plus approx-
imately 30% free space. The optional ”additive” attribute can be set to
tell kiwi to use the required size for the image plus the given size as ad-
ditional free space. The ”additive” attribute is a bool attribute and can
be set to either true or false.

compressed
Specifies whether the image file should be compressed or not. This is
not the filesystem compression just the image file compression

rpm-check-signatures
Specifies whether RPM should check the package signature or not

rpm-excludedocs
Specifies whether RPM should skip installing package documentation

rpm-force
Specifies whether RPM should be called with —force

keytable

Specifies the name of the console keymap to use. The value corresponds
to a map file in /usr/share/kbd/keymaps. The KEYTABLE variable in
/etc/sysconfig/keyboard file is set according to the keyboard mapping.

timezone

Specifies the time zone. Available time zones are located in the /usr/share/zoneinfo
directory. Specify the attribute value relative to /usr/share/zoneinfo.

For example, specify Europe/Berlin for /usr/share/zoneinfo/Europe/Berlin.

KIWTI uses this value to configure the timezone in /etc/localtime for the

image

locale
Specifies the name of the locale to use, which defines the contents of the
RC_LANG system environment variable in /etc/sysconfig/language

defaultdestination
Used if the —destdir option is not specified when calling KIWI

defaultroot
Used if the option —root is not specified when calling KIWI

defaultbaseroot

Used if the option —base-root is not specified when calling KIWI. It’s
possible to prepare and create an image using a predefined non empty
root directory as base information. This could speedup the build process
a lot if the base root path already contains most of the image data.

17

3 KIWI image description

<users group="users" id="number">
<user pwd="..." home="dir"
name="user" id="number"/ >

</users> ...

The optional users element specifies the users to be added to the image. The
group attribute specifies the group the users belong to. If this group does not
exist, it is created. A user element must be specified for each group. The user
child element specifies the users belonging to that group, and the name, pwd
and home attributes specifies the username, crypted password, and path to the
home directory. The password can be created by the kiwi ——createpassword
tool.

<drivers type="type" profiles="name">
<file name="filename"/>

</drivers>

The optional drivers element is only useful for boot images (initrd). As a
boot image doesn’t need to contain the complete kernel one can save a lot of
space if only the required drivers are part of the image. Therefore the drivers
section exists. If present only the drivers which matches the file names or glob
patterns will be included into the boot image. The type attribute specifies one
of the following driver types:

e drivers
Each file is specified relative to the /lib/modules/ <Version>/kernel di-
rectory.

e netdrivers
Each file is specified relative to the /lib/modules/ <Version>/kernel/drivers
directory.

e scsidrivers
Each file is specified relative to the /lib/modules/ <Version>/kernel/drivers

e usbdrivers
Each file is specified relative to the /lib/modules/ <Version>/kernel/drivers
directory.

According to the driver type the specified files are searched in the correspond-
ing directory. The information about the drivernames is provided as environ-
ment variable named like the value of the type attribute and is processed by
the function suseStripKernel. According to this along with a boot image de-
scription a script called images.sh must exist which calls this function in order

18

3.1 config.xml

to allow the driver information to have any effect.

<repository type="type"
status="replaceable"
alias="name"

priority="number">
<source path="URL"/>
</repository>

The mandatory repository section specifies the source URL and type used by
the package manager. The type attribute specifies the repository type which
must be supported by the package manager. At the moment KIWI supports
the package managers smart and zypper whereas smart has support for more
repository types compared to zypper. Therefore the possible values for the
type attribute has beend copied from smart. The following table shows the
possible repo types:

type smart zypper
apt-deb yes no
apt-rpm yes no
deb-dir yes no
Mirrors yes no
red-carpet yes yes
rpm-dir yes yes
rpm-md yes yes
slack-site yes no
up2date-mirrors yes no
urpmi yes no
yast2 yes yes

Within the repository section there are the following optional attributes:

e status="replaceable”

This attribute makes only sense for boot image descriptions. It indicates
that the repository is allowed to become replaced by the repositories
defined in the system image descriptions. Because kiwi automatically
builds the boot image if required it should create that image from the
same repositories which are used to build the system image to make
sure both fit together. Therefore it is required to allow the repository to
become overwritten which is indicated by the status attribute.

e alias="name”
Specifies an alternative name used to identify the source channel. If
not set the source attribute value is used and builds the alias name by
replacing each ”/” with a ”_”. An alias name should be set if the source

19

3 KIWI image description

argument doesn’t really explain what this repository contains

e priority="number”
Specifies the channel priority assigned to all packages available in this
channel (0 if not set). If the exact same package is available in more
than one channel, the highest priority is used. At the moment this only
works for the smart package manager.

The source child element contains the path attribute, which specifies the loca-
tion (URL) of the repository. The path specification can be any of the follow-
ing, and can include the %arch macro which is expanded to the architecture
of the image building host.

e this://<path>
A relative path name, which is relative to the image description directory
being referenced.

e iso://<path/to/isofile
A path to a local .iso file which is then loopback mounted and used as
a local path based repository. Alternatively one can do the loop mount
himself and point a standard local path to the mounted directory

e http://<url>
A http protocol based network location

e https://<url>
A https protocol based network location

o ftp://<url>
A ftp protocol based network location

e opensuse://<Project-Name>
A special http based network location which is created from the given
openSUSE buildservice project name. The result is pointing to an rpm-
md repository on the openSUSE buildservice. For example:
path="opensuse://openSUSE:10.3/standard”

e file:///local/path
A local path which should be an absolute path description. The file://
prefix is optional and could also be omitted.

e obs://$dirl/$dir2
A special buildservice path whereas $dirl and $dir2 represents the build-
service project location. If this type is used as part of a boot attribute
kiwi evaluates it to this://images/$dirl/$dir2 and if used as part of a
repository source path attribute it evaluates to this://repos/$dirl/$dir2

Multiple repository sections are allowed and combined by the used package
manager. By default the package manager will always use the latest packages
available.

20

3.1 config.xml

<packages type="type" profiles="name"
patternType="type"
patternPackageType="type"
<package name="name" arch="arch"/>
<package .../>
<opensusePattern name="name"/>
<opensusePattern .../>
<opensuseProduct name="name"/>
<opensuseProduct .../>
<ignore name="name"/>
<ignore .../>
</packages>

The mandatory packages element specifies the list of packages and pattern
names to be used with the image. There are five different types of package
sets or patterns, specified with the type attribute:
e image
Image packages, list of packages used to finish the image installation.
All packages which make up the image are listed here

e bootstrap
Bootstrap packages, list of packages used to start creating a new oper-
ating system root tree. Basic components which are required to chroot
into that system, such as glibc, are listed here.

e delete

Delete packages, list of packages stored for later deletion. The package
names are available in the $delete environment variable of the /.profile
file created by KIWI. The baseGetPackagesForDeletion() function returns
the contents of this environment variable, and can be used to delete the
packages while ignoring requirements or dependencies. According to
this a config.sh or images.sh script needs to be provided such as the
following code snippet shows:

rpm -e --nodeps --noscripts \
$(rpm -q ‘baseGetPackagesForDeletion | grep -v "is not installed")
e Xen

Xen required packages, list of packages used when the image needs sup-
port for Xen-based virtualization.

e vmware
VMware required packages, list of packages used when the image needs
support for VMware- or generic based full virtualization.

Using a pattern name enhances the package list with a number of additional
packages belonging to this pattern. Support for patterns is SUSE-specific, and

21

3 KIWI image description

available with openSUSE 10.1 or later. The optional patternType and pattern-
PackageType attributes specify which pattern references or packages should
be used in a given pattern. The values of these attributes are only evaluated if
the KIWI pattern solver is used. If the new (up to SUSE 11.0) satsolver pattern
solver is used these values are ignored because the satsolver can’t handle that
at the moment. Allowed values for the pattern* attributes are:

e onlyRequired
Incorporates only patterns and packages that are required by the given
pattern

e plusSuggested
Incorporates patterns and packages that are required and suggested by
the given pattern

e plusRecommended
Incorporates patterns and packages that are required and recommended
by the given pattern.

By default, only required patterns and packages are used. The result list of
packages is solved into a clean conflict free list of packages by the package
manager. This for example means that including a suggested package may
include required and recommended packages as well according to the depen-
dencies. If a pattern contains unwanted packages, you can use the ignore
element to specify an ignore list, with the name attribute containing the pack-
age name. Please note that you can’t ignore a package if it is required by a
package dependency of another package in your list. The packagemanager
will automatically pull in the package even if you have ignored it. To restrict
a package to a specific architecture, use the arch attribute to specify a comma
separated list of allowed architectures.

<vmwareconfig arch="arch" memory="MB"
HWversion="number"
guestOS="suse | sles"
usb="yes|no"/>
<vmwarenic driver="name"
interface="number" mode="mode"/>
<vmwaredisk controller="ide | scsi"
id="number"/ >
<vmwarecdrom controller="ide|scsi"
id="number"/>
</vmwareconfig>

The optional vmwareconfig section is used if the image description includes
a packages section of type vmware. In this case kiwi is able to create the
guest configuration file required to run the image within VMware. The guest

22

3.1 config.xml

configuration file can also be created by the VMware toolKkit itself but with the
pre-created guest configuration created by kiwi it is possible to provide an all
in one bundle ready to run in VMware. The following general information can
be provided to create the VMware (.vmx) configuration file:

e arch
The virtualized architecture. Can be one of ix86 or x86_64 Bydefault
ix86 is used.

e memory
The mandatory memory attribute specified how much memory in MB
should be allocated for the virtual machine

e HWversion
The VMware hardware version number. By default version 3 is used

e guestOS
The guestOS identifier. By default suse is used on ix86 and suse-64
for x86_64. At the moment only the suse and sles guestOS types are
supported

e usb
The bool value usb specifies whether the guest machine should provide
a virtual USB controller or not.

The following information can be provided to setup the VMware virtual main
storage device and CD/DVD drive connection.

e controller
The mandatory controller attribute can be either ide or scsi disk

o id
The mandatory id attribute specifies the disk id. If only one disk is set
the id value should be set to O

The following information can be provided to setup the VMware virtual net-
work interface

e driver
The mandatory driver to use for the virtual network card. Possible values
are vlance, e1000 or vmxnet. vmxnet requires the vmware tools to be
part of the image

e interface
The mandatory network interface number. If only one interface is set
the value should be set to 0

e mode
The network mode used to communicate outside the VM. In many cases
the bridged mode is used.

23

3 KIWI image description

<xenconfig memory="MB"
<xendisk device="/dev/..."/>
<xenbridge name="eth0" mac="addr"/>
</vmwareconfig>

The optional xenconfig section is used if the image description includes a pack-
ages section of type xen. In this case kiwi is able to create the guest configu-
ration file required to run the image within Xen. According to this it’s possible
to provide an all in one bundle ready to run in Xen. The following general
information can be provided to create the Xen (.xenconfig) configuration file:

e memory
The mandatory memory attribute specified how much memory in MB
should be allocated for the para virtual machine

The following information can be provided to setup the Xen para virtual main
storage device as part of a xendisk section

e device
The mandatory device which should appear in the para virtual instance

The default Xen configuration uses bridging within domain 0 to allow all do-
mains to appear on the network as individual hosts. In order to create the
bridge which can be used by the Xen virtual network interface(s) the script
”/etc/xen/scripts/network-bridge start” can be called to create a bridge as
shown in the following picture:

Computer — Xen
domO dom1
" etho
a
xenbr0 & o
vif0.0
vif1.0 ethO
P petho — —
LT vif1. 1 = eth

Figure 3.2: Illustration on network-bridge and vif-bridge

Additional information on how to setup networking with Xen can be found
here: http://wiki.xensource.com/xenwiki/XenNetworking The following
information can be provided to setup the Xen network bridge as part of one
ore more xenbridge section(s).

e nName
The name of the network interface which is the bridge between the phys-
ical device (peth) and the virtual device(s) (vif).

24

http://wiki.xensource.com/xenwiki/XenNetworking

3.1 config.xml

e mac
The optional mac address value for the virtual interface inside the DOM(x).

<deploy server="IP" blocksize="4096">
<timeout>seconds</timeout>
<commandline>kernel-options</commandline >
<kernel>kernel-file</kernel >
<initrd >initrd-file</initrd >
<partitions device="/dev/sda">
<partition type="swap" number="1" size="MB"/>
<partition type="L" number="2" size="MB"
mountpoint="/" target="true"/>
<partition type="fd" number="3"/>
</partitions>
<union ro="dev" rw="dev" type="aufs|unionfs"/>
<configuration source="/KIWI/../file" dest="/../file"
arch="..."/>
<configuration .../>
</deploy>

The optional deploy section is only useful if you build the pxe image type.
For this type an additional network boot infrastructure needs to be set up.
To ease the process of setting up such a boot server kiwi provides a package
called kiwi-pxeboot. This package sets up the basic pxe boot environment like
kiwi expects it. The package will setup a directory structure in /srv/tftpboot.
The result files of the kiwi image build process needs to be copied to that
location. A detailed explanation of what file needs to be copied and where is
provided in the PXE Image chapter later in this document. Among the image
files itself it is required to provide an information how KIWI should handle the
machine it should be install with the created image. Information like which
image should be used or how to partition the machine needs to be provided in
a file called config. <MAC-Address> below the directory /srv/tftpboot/KIWI.
The reason for the deploy section is to allow KIWI to create that file according
to the information provided in the image description.

e The server and blocksize attributes specify the TFTP server which con-
trols the download of image files. KIWI also supports other protocols
than tftp but in order to do that the variables kiwiserver and kiwis-
ervertype must be set as kernel parameter when the client boots.

e The optional timeout section specifies the grub timeout in seconds which
is used when the KIWT initrd configures and installs the grub boot loader
on the machine after the first deployment to allow standalone boot.

25

3 KIWI image description

e The optional commandline section specifies the kernel options which

should be passed to the kernel by the grub bootloader. the KIWI initrd
includes this kernel options when installing the grub for standalone boot

The optional kernel and initrd sections specifies the KIWI kernel and ini-
trd files on the boot server. In case of a special boot method which is not
supported by the distribution standard mkinitrd the KIWI initrd needs to
stay on the system and needs to be used for local boot as well. So if your
system image makes use of the split type or your deploy section includes
any union information the kernel and initrd sections must be provided.

The partitions section is required if you want to install the system im-
age on a disk or any other permanent storage device. Each partition
is specified by one partition subtag which defines the type (see sfdisk
-list-type), partition number, size, optional mountpoint, and optional in-
formation on if this partition is the system image target partition. With
the KIWI netboot boot image, the first partition is always the swap parti-
tion, while the second partition is used, by default, for the system image.
With the optional target flag, you can specify a partition other than the
second partition to install the system image on. If size is set to ”im-
age”, KIWI calculates the required size for this partition in order to have
enough space for the later image.

The optional union section is used if the system image is based on a
read-only filesystem such as squashfs and should be mounted read-write
by using an overlay filesystem like aufs or unionfs. In this case, KIWI
creates an additional write partition, then combines both partitions with
the given overlay filesystem. Currently, there are two such filesystems:
unionfs and aufs (aufs is the preferred file system). The partition that
holds the read-only system image must be set as the ro attribute value,
and the partition that serves as the write partition must be set the rw
attribute value.

The optional configuration section can be used to integrate a network
client’s configuration files which are stored remotely on the server. The
source attribute specifies the path on the server used by a TFTP client
program to download the file, and the dest attribute specifies the target
relative to the root (/) of the network client. Each file is specified by one
configuration section and can be bound to a specific set of architectures
separated by comma.

26

3.1 config.xml

<split>
<temporary>
<!-read/write access to: —>
<file name="/var"/>
<file name="/var/*"/>
<!- but not on this file: —>
<except name="/etc/shadow"/>
</temporary>
<persistent>
<!- persistent read/write access to: —>
<file name="/etc"/>
<file name="/etc/*"/>
<!-but not on this file: —>
<except name="/etc/passwd"/>
</persistent>
</split>

The optional split section is used if your image type is split or iso combined
with the attributes compressed or compressed-cromfs. The split section con-
trols which files of your splitted image should be writable and whether they
are persistantly writable or only temporarly. In case of an iso image all data
specified can only be temporarly writable by design of the live system image
type.

The split section distinguishes between directory and files. The information of
”/etc” would make /etc a writable directory however none of the files *within*
/etc are affected. They remain symbolic links to the real files in the read-only
area. The main advantage to putting just a directory in the read-write area
is that any new files created there are stored on the disk instead of tmpfs. If
all the files in /etc should also be part of the read-write area and according
to this put a complete directory including all its files into the read-write area
two lines are required as shown above.

27

3 KIWI image description

28

4 Creating Appliances with KIWI

Contents
4.1 HiStOry . . . v v v vt i i et i e e e e e e 29
4.2 TheKIWImodel eeeee.. 29

4.1 History

Traditionally, many computing functions were written as software applica-
tions running on top of a general-purpose operating system. The consumer
(whether home computer user or the IT department of a company) bought
a computer, installed the operating system or configured a pre-installed op-
erating system, and then installed one or more applications on top of the
operating system. An e-mail server was just an e-mail application running on
top of Linux, Unix, Microsoft Windows, or some other operating system, on a
computer that was not designed specifically for that application.

4.2 The KIWI model

With KIWI we started to use a different model. Instead of installing firewall
software on top of a general purpose computer/operating system, the design-
ers/engineers built images that are designed specifically for the task. These
are so called appliances. When building appliances with KIWI the following
proceeding has proven to work reliably. Nevertheless the following is just a
recommendation and can be adapted to special needs and environments.

1. First you should choose an appropriate image description template from
the provided kiwi examples and add/adapt repository and/or package
names according to the distribution you want to build an image for

2. Allow the image to create an in-place git repository to allow tracking
of non binary changes. This is done by adding the following into your
config.sh script

baseSetupPlainTextGITRepository I

29

4 Creating Appliances with KIWI

3. Prepare the preliminary version of your new appliance by calling kiwi

—prepare Refer to chapter 9 (USB image - Live-Stick System) for
details.

. Decide for a testing environment. In my opinion a real hardware based

test machine which allows to boot from USB is a good and fast approach.
According to this make sure you have a usb type in your config.xml

<type filesystem="ext3"
boot="usbboot/suse-...">usb</type>

. Create the preliminary live stick image of your new appliance by calling

kiwi —create After successful creation of the image files find an USB
stick which is able to store your appliance and plug it into a free USB
port on your image build machine. Use the kiwi —bootstick ... call to
deploy the image on the stick. Refer to chapter 9 (USB image - Live-Stick
System) for details.

. Plug in the stick on your test machine and boot it

. After your test system has successfully booted from stick login into your

appliance and start to tweak the system according to your needs. This
includes all actions required to make the appliance work as you wish.
Before you start take care for the following:

e Create an initial package list. This can be done by calling:

rpm -qa | sort > /tmp/deployPackages I

e Check the output of the command git status and include everything
which is unknown to git and surely will not be changed by you and
will not become part of the image description overlay files to the
/.gitignore files

After the initial package list exists and the git repository is clean you can
start to configure the system. You never should install additional soft-
ware just by installing an unmanaged archive or build and install from
source. It’s very hard to find out what binary files had been installed
and it’s also not architecture safe. If there is really no other way for
the software to become part of the image you should address this issue
directly in your image description and the config.sh script but not after
the initial deployment has happened.

. As soon as your system works as expected your new appliance is ready

to enter the final stage. At this point you have done several changes to
the system but they are all tracked and should now become part of your
image description. To include the changes into your image description
the following process should be used:

30

4.2 The KIWI model

e Check the differences between the currently installed packages and
the initial deployment list. This can be done by calling:

rpm -qa | sort > /tmp/appliancePackages
diff -u /tmp/deployPackages /tmp/appliancePackages

Add those packages which are labeled with (+) to the <packages
type="image"> section of your config.xml file and remove those
packages which has been removed (-) appropriately. If there are
packages which has been removed against the will of the package
manager make sure you address the uninstallation of these pack-
ages in your config.sh script. If you have installed packages from
repositories which are not part of your config.xml file you should
also add these repositories in order to allow kiwi to install the pack-
ages

e Check the differences made in the configuration files. This can be
easily done by calling:

git diff > /tmp/appliancePatch I

The created patch should become part of your image description
and you should make sure the patch is applied when preparing the
image. According to this the command:

patch -p0O < appliancePatch I

needs to be added as part of your config.sh script

e Check for new non binary files added. This can be done by calling:

git status I

All files not under version control so far will be listed by the com-
mand above. Check the contents of this list make sure to add all
files which are not created automatically to become part of your
image description. To do this simply clone (copy) these files with
respect to the filesystem structure as overlay files in your image
description root/ directory

9. All your valuable work is now stored in one image description and can
be re-used in all KIWI supported image types. Congratulation ! To make
sure the appliance works as expected prepare a new image tree and
create an image from the new tree. If you like you can deactivate the

31

4 Creating Appliances with KIWI

creation of the git repository which will save you some space on the
filesystem. If this appliance is a server I recommend to leave the reposi-
tory because it allows you to keep track of changes during the live time

of this appliance.

32

5 Maintenance of Operating
System Images

Creating an image often results in an appliance solution for a customer and
gives you the freedom of a working solution at that time. But software de-
velops and you don’t want your solution to become outdated. Because of this
together with an image people always should think of image-maintenance.
The following paragraph just reflects ideas how to maintain images created
by kiwi:

Software package

Image Description as part of a
versioning system like SVN to
track down changes and organize
OS-Images in product branches

kiwi ——prepare ..

Physical extend for example /tmp/myOSIimage

Scenario A)
Software package Source changes
kiwi ——upgrade ——add-repo ... ——add-repotype

Cannot handle description changes

Faster because already prepared
requires free space to store prepared extend

Scenario B)

Software package Source changes and/or
Image Description changes

kiwi ——prepare ...

Covers all possible changes
Doesn't require fixed storage for prepared extend
Slower because pysical extend must be recreated

kiwi ——create ... I

Figure 5.1: Image maintenance scenarios

The picture above shows two possible scenarios which requires an image to
become updated. The first reason for updating an image are changes to the
software, for example a new kernel should be used. If this change doesn’t
require additional software or changes in the configuration the update can

33

5 Maintenance of Operating System Images

be done by kiwi itself using its upgrade option. In combination with up-
grade kiwi allows to add an additional repository which may be needed if the
updated software is not part of the original repository. An important thing
to know is that this additional repository is not stored into the original con-
fig.xml file of the image description.

Another reason for updating an image beside software updates are configura-
tion changes or enhancements, for example an image should have replaced its
browser with another better browser or a new service like apache should be
enabled. In principal it’s possible to do all those changes manually within the
physical extend but concerning maintenance this would be a nightmare. Why,
because it will leave the system in an unversioned condition. Nobody knows
what has changed since the very first preparation of this image. So in short
dont’t modify physical extends manually. Changes to the image configu-
ration should be done within the image description. The image description
itself should be part of a versioning system like subversion. All changes can
be tracked down then and maybe more important can be assigned to product
tags and branches. As a consequence an image must be prepared from scratch
and the old physical extend could be removed.

34

6 System to image migration

Contents
6.1 Create a migration reportfirst 35
6.2 Migrate my SySt€m... . . v v v v v v b vt et e e e e e 36
6.3 Turn my system into animage... 36

KIWI provides an experimental module which allows you to turn your run-
ning system into an image description. This migration allows you to clone
your currently running system into an image. The process has the following
limitations at the moment:

e Works for SUSE systems only

e You can’t rely on the result to be a 100% ready to use copy of your
system. This means some manual postprocessing might be necessary

When calling KIWI’s migrate mode it will try to find the base version of your
operating system and assigns a predefined repository to recreate the data
which exists in terms of packages. The code inspect your system and creates
a list of packages and patterns which represents your system so far. Of course
there are normally some data which doesn’t belong to any package. These are
your configurations your user data and all other stuff. KIWI collects all this
information and would copy it as overlay files as part of the image description.
The process will skip all remote mounted filesystems and concentrate only on
local filesystems.

6.1 Create a migration report first

When running the migration for the first time I recommend to create a report
first:

kiwi --migrate mySys --destdir /tmp/migrated \
--report

After that call you should walk through the following check list

e check the contents of the config.sh script. The migration added at least
the services your system runs and adds them to the configuration script.
Check this service list

35

6 System to image migration

e check the report file contents. All data which doesn’t belong to a package
are listed there. You should make sure whether you need them all or if
you could exclude some of them. As a recommendation, you should
have as little as possible overlay files.

e check the created config.xml image description file. You should at least
make sure if the repository is correct and if you need more repositories
for packages which are not part of the base repository for example

e check the kiwi output on the console. Each package which it can’t find
in the base repository of the distribution is skipped and not added as
package in your package list. So for example if you use the nvidia binary
driver package from an extra repo you need to add the repo and the
package later in your config.xml file

6.2 Migrate my system...

After the check list you will have a first impression of your system. What data
is there what’s not part of packages what doesn’t need to be part of the image
description and so on. You can exclude the directories which you don’t need
according to the report file with the --exclude parameter. Now you can call
migrate again and let it copy the overlay files too:

rm -rf /tmp/migrated

kiwi --migrate mySys --destdir /tmp/migrated \
--exclude directory --exclude ... \
--add-repo URI --add-repotype type

6.3 Turn my system into an image...

After the process has finished you should check the size of the image descrip-
tion. The description itself shouldn’t be that big. The size of a migrated image
description mainly depends on how many overlay files exists in the root/ di-
rectory. You should really make sure whether you need them all or not. Now
let’s try to create a clone image from the description. The most appropriate
image type to do this is the virtual disk image (vmx)

kiwi -p /tmp/migrated --root /tmp/mySys
kiwi --create /tmp/mySys -d /tmp/myResult \

--type vmx

36

6.3 Turn my system into an image...

If everything worked well you can test the created virtual disk image in any
full virtual operating system environment like QEMU or VMware. Once cre-
ated the image description can serve for all image types kiwi supports.

37

6 System to image migration

38

7 Installation Source

Contents
7.1 Adapt the example’s config.xml 39
7.2 Create a local installation source 39

Before you start to use any of the examples provided in the following chapters
your build system has to have a valid installation source for the distribution
you are about to create an image for. By default all examples will connect
to the network to find the installation source. It depends on your network
bandwidth how fast an image creation process is and in almost all cases it is
better to prepare a local installation source first.

7.1 Adapt the example’s config.xml

If you can make sure you have a local installation source it’s important to
change the path attribute inside of the <repository> element of the appro-
priate example to point to your local source directory. A typically default
repository element looks like the following:

<repository type='"yast2">
<!--<source path="/image/CDs/full-11.0-i386"/>-->
<source path="opensuse://openSUSE:11.0/standard/"/>
</repository>

7.2 Create a local installation source

The following describes how to create a local SUSE installation source which
is stored below the path: /images/CDs If you are using the local path as de-
scribed in this docuement you only need to flip the given path information
inside of the example config.xml file.

1. find your SUSE standard installation CDs or the DVD and make them
available to the build system. Most linux systems auto-mount a pre-
viosly inserted media automatically. If this is the case you simply can
change the directory to the auto mounted path below /media. If your
system doesn’t mount the device automatically you can do this with the
following command:

39

7 Installation Source

mount -o loop /dev/<drive-device-name> /mnt I

2. You don’t have a DVD but a CD set ? No problem all you need to do is

copy the contents of all CDs into one directory. It’s absolutly important
that you first start with the last CD and copy the first CD at last. In case
of CDs you should have a bundly of 4 CDs. Copy them in the order 4 3
21

. Once you have access to the media copy the contents of the CDs / DVD

to your hard drive. You need at least 4GB free space available. The
following is intended to create a SUSE 11.0 installation source:

mkdir -p /image/CDs/full-11.0-1386/
cp -a /mnt/* /image/CDs/full-11.0-1386/

Remember if you have a CD set start with number 4 first and after that
unplugg the CD and insert the next one to repeat the copy command
until all CDs are copied into to /image

40

8 ISO image - Live Systems

Contents

8.1 Building the suse-live-isoexample

8.2 Usingtheimage

8.3 Flavours v v ittt e e e e e e e e e e e e e e e e
83.1 Splitmode

A live system image is an operating System on CD or DVD. In principal one can
treat the CD/DVD as the hard disk of the system with the restriction that you
can’t write data on it. So as soon as the media is plugged into the computer
the machine is able to boot from that media. After some time one can login
to the system and work with it like on any other system. All write actions
takes place in RAM space and therefore all changes will be lost as soon as the

computer shuts down.

8.1 Building the suse-live-iso example

The latest example provided with kiwi is based on openSUSE 11.0 and in-

cludes the base + kde patterns.

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.0

kiwi --prepare ./suse-live-iso \
--root /tmp/myiso --add-profile KDE

kiwi --create /tmp/myiso \
--type iso -d /tmp/myiso-result

8.2 Using the image

There are two ways to use the generated ISO image:

8 ISO image - Live Systems

e Burn the .iso file on a CD or DVD with your preferred burn program.
Plug in the CD or DVD into a test computer and (re)boot the machine.
Make sure the computer boot from the CD drive as first boot device.

e Use a virtualisation system to test the image directly. Testing an iso can
be done with any full virtual system for example:

cd /tmp/myiso-result
gemu -cdrom \
./suse-11.0-1ive-is0.1686-2.5.1.is0 -m 256

8.3 Flavours

KIWI supports different filesystems and boot methods along with the ISO im-
age type. The provided example by default uses a squashfs compressed root
filesystem. By design of this filesystem it is not possible to write data on it. To
be able to write on the filesysetem another filesystem called aufs is used. aufs
is an overlay filesystem which allows to combine two different filesystems into
one. In case of a live system aufs is used to combine the squashfs compressed
read only root tree with a tmpfs RAM filesystem. The result is a full writable
root tree whereas all written data lives in RAM and is therefore not persistent.
squashfs and/or aufs does not exist on all versions of SUSE and therefore the
flags attribute in config.xml exists to be able to have the following alternative
solutions:

e flags="unified”
Compressed and unified root tree as explained above

e flags="unified-cromfs”
Same as unified but uses the cromfs filesystem instead of the squashfs
filesystem. cromfs provides better compression but takes longer to be-
come created

e flags="compressed”
Does filesystem compression with squashfs but don’t use an overlay
filesystem for write support. A symbolic link list is used instead and
thus a split element is required in config.xml. See the Split mode section
below for details.

e flags="compressed-cromfs”
Same as compressed but uses the cromfs filesystem instead of the squashfs
filesystem.

¢ flags not set
If no flags attribute is set no compressed filesystem and no overlay
filesystem will be used. The root tree will be directly part of the ISO

42

8.3 Flavours

filesystem and the paths: /bin, /boot, /lib, /1ib64, /opt, /sbin and /usr
will be read-only.

8.3.1 Split mode

If no overlay filesystem is in use but the image filesystem is based on a com-
pressed filesystem KIWTI allows to setup which files and directories should be
writable in a so called split section. In order to allow to login into the system at
least the /var directory should be writable because the PAM authentification
requires to be able to report any login attempt to /var/log/messages which
therefore needs to be writable. The following split section can be used if the
flags compressed or compressed-cromfs are used:

<split>
<temporary>
<!-- allow read/write access to: -->

<file name="/var"/>
<file name="/var/*"/>
</temporary>
</split>

43

8 ISO image - Live Systems

44

9 USB image - Live-Stick System

Contents
9.1 Building the suse-live-stick example 45
9.2 Usingtheimage 46
93 Flavours i e e e e e 47
9.3.1 Splitstick L. 47

A live USB stick image is a system on USB stick which allows you to boot and
run from this device without using any other storage device of the computer.
It is urgently required that the BIOS of the system which you plug the stick in
supports booting from USB stick. Almost all new BIOS systems support that.
The USB stick serves as OS system disk in this case and you can read and write
data onto it.

9.1 Building the suse-live-stick example

The latest example provided with kiwi is based on openSUSE 11.0 and makes
use of the default plus x11 pattern. The operating system is stored on a stan-
dard ext3 filesystem.

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.0

kiwi --prepare ./suse-live-stick \
--root /tmp/mystick

There are two possible image types which allows you to drive the stick. Both
are added into the config.xml of this example image description. If you al-
ready have access to the stick you want to run the image on the first approach
should be preferred over the second one.

e The first image type named "usb” creates all required images for booting
the OS but requires you to plug in the stick and let kiwi deploy the data
onto this stick.

45

9 USB image - Live-Stick System

kiwi --create /tmp/mystick --type usb \
-d /tmp/mystick-result

e The second image type named "oem” allows you to create a virtual disk
which represents a virtual disk geometry including all partitions and
boot information in one file. You simply can ”dd” this file on the stick.

kiwi --create /tmp/mystick --type oem \
-d /tmp/mystick-result

9.2 Using the image

To make use of the created images they need to be deployed on the USB stick.
For the first image type (usb) you need kiwi itself to be able to deploy the
image on the stick. The reason for this is that the usb image type has created
the boot and the system image but there is no disk geometry or partition table
available. kiwi creates a new partition table on the stick and imports the
created images as follows:

kiwi --bootstick \

/tmp/mystick-result/\
initrd-usbboot-suse-11.0.1i686-2.1.1.splash.gz \
--bootstick-system \

/tmp/mystick-result/\
suse-11.0-1ive-stick.i686-1.1.2

In case of the second image type (oem) you only need a tool which allows you
to dump data onto a device. On Linux the most popular tool to do this is the dd
command. The oem image is represented by the file with the .raw extension.
As said this is a virtual disk which already includes partition information. But
this partition information does not match the real USB stick geometry which
means the kiwi boot image (oemboot) has to adapt the disk geometry on first
boot. To deploy the image on the stick call:

46

9.3 Flavours

dd if=/tmp/mystick-result/\
suse-11.0-1ive-stick.i686-1.1.2.raw \

of=/dev/<stick-device> bs=32k

Testing of the live stick can be done with a test machine which boots from
USB or with a virtualisation system. If you test with a virtualisation system
for example gemu you should be aware that the USB stick looks like a normal
disk to the system. The kiwi boot process searches for the USB stick to be
able to mount the correct storage device but in a virtual environment the disk
doesn’t appear as a USB stick. So if your virtualisation solution doesn’t provide
a virtual BIOS which allows booting from USB stick you should test the stick
on real hardware

9.3 Flavours

USB sticks weren’t designed to serve as storage devices for operating systems.
By design of these nice little gadgets their storage capacity is limited to only
a few G-bytes. According to this KIWI supports compressed filesystems with
USB sticks too:

o filesystem="squashfs”
This will compress the image using the squashfs filesystem. The boot
process will automatically use aufs as overlay filesystem to mount the
complete tree read-write. For the write part an additional ext2 partition
will be created on the stick. The support for this compression layer
requires squashfs and aufs to be present in the distribution KIWI has
used to build the image

o filesystem="cromfs”
The same as with squashfs but cromfs is used for compression

9.3.1 Split stick

If there is no overlay filesystem available it is also possible to define a split
section in config.xml and use the split support to split the image into a com-
pressed read-only and a read-write portion. To create a split stick the types
needs to be adapted as follows:

e type setup for split usb type:

<type fsreadwrite="ext3" fsreadonly="squashfs"
boot="usbboot/suse-11.0">split</type>

47

9 USB image - Live-Stick System

e type setup for split oem type:

<type fsreadwrite="ext3" fsreadonly="squashfs"
boot="oemboot/suse-11.0">split</type>

For both types a split section is required which defines the read-write data. A
good starting point is to set /var, /home and /etc as writable data.

<split>
<persistent>
<!-- allow read/write access to: -->

<file name="/var"/>
<file name="/var/*"/>
<file name="/etc"/>
<file name="/etc/x"/>
<file name="/home"/>
<file name="/home/*"/>
</persistent>
</split>

48

10 VMX image - Virtual Disks

Contents
10.1 Building the suse-vm-guest example. 49
10.2 Using theimage 49
103Flavours . . . v v v v vttt e e e e e e e e e e e e e 50
10.3.1 VMware Support ot vt oo .. 50

A VMX image is a virtual disk image for use in full virtualisation systems like
QEMU or VMware. The image represents a file which includes partition data
and bootloader information. The size of this virtual disk can be influenced
by either the <size> element in your config.xml file or by the parameter
——bootvm-disksize

10.1 Building the suse-vm-guest example

The latest example provided with kiwi is based on openSUSE 11.0 and makes
use of the base pattern. The operating system is stored on a standard ext3
filesystem.

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.0
kiwi --prepare ./suse-vm-guest \

--root /tmp/myvm

kiwi --create /tmp/myvm \
--type vmx -d /tmp/myvm-result

10.2 Using the image

The generated virtual disk image serves as the harddisk of the selected virtu-
alisation system. The setup of the virtual hard disk differes from the variety

49

10 VMX image - Virtual Disks

of the virtualisation systems. A very simply to use system is the QEMU virtu-
alisation software. To run your image in gemu call:

cd /tmp/myvm-result
gemu suse-11.0-vm-guest.i686-1.1.2.raw -m 256

10.3 Flavours

Because there are many virtualisation systems available there are also many
virtual disk formats. The .raw format KIWI always creates has the same struc-
ture as you can find on a real hard disk. For virtualisation software it makes
sense to have specific formats to increase the I/0 performance when reading
or writing data onto the disk from within the virtual system. If you want to
tell KIWI to create an additional disk format just extend the type information
of the config.xml file by a format attribute.

<type ... format=’’name’’>vmx</type> I

The following table shows a list of supported virtual disk formats

Name Description

vvfat Disk format DOS FAT32

vpc Virtual PC read only disk

bochs Disk format for Bochs emulator
dmg Disk format for Mac OS X
cloop Compressed loop

vmdk Disk format for VMware

ovf Open Virtual Format requires VMwares ovftool
qcow?2 QEMU virtual disk format
qcow QEMU virtual disk format

cow QEMU virtual disk format

10.3.1 VMware support

VMware is a very popular and fast virtualisation platform which is the reason
why KIWI has special support for it. VMware requires a so called guest config-
uration which includes information about what hardware should make up the
guest and how much ressources should be provided to the guest. With KIWI
you can provide the information required to create a guest configuration as
part of the config.xml file. Additionally you can group special packages which
you may only need in this virtual environment.

50

10.3 Flavours

<packages type="vmware'">

<!-- packages you need in VMware only -->
</packages>
<vmwareconfig memory="512">

<vmwaredisk controller="ide" id="0"/>

</vmwareconfig>

If this information is present KIWI will create a VMware guest configuration
with 512 MB of RAM and an IDE disk controller interface. Additional in-
formation to setup the VMware guest machine properties are explained in
the vmwareconfig section. The written guest configuration file can be easily
loaded and changed by the native graphics user provided with VMware. The
KIWI VMware guest configuration is stored in the file:

/tmp/myvm-result/suse-11.0-vm-guest.i686-1.1.2.vmx I

Together with the format="vmdk” attribute KIWI creates a VMware based
image (.vimdk file) and the required VMware guest configuration (.vmx)

You can also create an image for the Xen virtualization framework. To do
this, you simply need to specify the 'xen’ boot profile in your config.xml. Like
VMware, Xen has a configuration file as well. Refer to chapter 13 (Xen image)
for details.

51

10 VMX image - Virtual Disks

52

11 PXE image - Thin Clients

Contents
11.1 Setting up the required services 53
11.1.1 atftpserver i i 53
11.1.2 DHCP server, 54
11.2 Building the suse-pxe-client example 54
11.3 Using theimage 55
114FIavours . . . v v v v v v it e e e e e e e e e e e e 56
11.4.1 The pxe client Control File 56
11.4.2 The pxe client Configuration File 56
11.4.3 User another than tftp as download protocol 61
11.4.4 RAMonlyimage 61
11.4.5 unionimageo 62
11.4.6 splitimage 62
11.4.7 roottreeover NFS 63
11.4.8 roottreeover NBD 63
11.49 roottreeover AOE 64

A pxe image consists of a boot image and a system image like all other image
types too. But with a pxe image the image files are available seperately and
needs to be copied at specific locations of a network boot server. PXE is a
boot protocol implemented in most BIOS implementations which makes it so
interesting. The protocol sends DHCP requests to assign an IP address and

after that it uses tftp to download kernel and boot instructions.

11.1 Setting up the required services

Before you start to build pxe images with kiwi you should have setup the boot

server. The boot server requires the services atftp and DHCP to run

11.1.1 atftp server

In order to setup the atftp server the following steps are required

1. install the packages atftp and kiwi-pxeboot

53

11 PXE image - Thin Clients

2. edit the file /etc/sysconfig/atftpd and set/modify the following vari-
ables:

e ATFTPD OPTIONS="——daemon ——no-multicast”
e ATFTPD DIRECTORY="/srv/tftpboot”

3. run atftpd by calling the command: rcatftpd start

11.1.2 DHCP server

In contrast to the atftp server setup the following DHCP server setup can only
serve as an example. Please note that according to your network structure
the IP addresses, ranges and domain settings needs to be adapted in order to
allow the DHCP server to work within your network. If you already have a
DHCP server running in your network you should make sure that the filename
and next-server information is provided by your server. The following steps
describe how to setup a new DHCP server instance:

1. install the package dhcp-server

2. create the file /etc/dhcpd.conf and include the following statements:

option domain-name "example.org";

option domain-name-servers 192.168.100.2;
option broadcast-address 192.168.100.255;
option routers 192.168.100.2;

option subnet-mask 255.255.255.0;
default-lease-time 600;

max-lease-time 7200;

ddns-update-style none; ddns-updates off;
log-facility local7;

subnet 192.168.100.0 netmask 255.255.255.0 {
filename "pxelinux.0";
next-server 192.168.100.2;
range dynamic-bootp 192.168.100.5 192.168.100.20;
+

3. edit the file /etc/sysconfig/dhcpd and setup the network interface the
server should listen on:

e DHCPD INTERFACE="eth0”
4. run the dhcp server by calling: redhepd start

11.2 Building the suse-pxe-client example

The latest example provided with kiwi is based on openSUSE 11.0 and creates
an image for a Wyse VX0 terminal with a 128MB flash card and 512MB of

54

11.3 Using the image

RAM. The image makes use of the squashfs compressed filesystem and its root
tree is deployed as unified (aufs) based system.

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.0
kiwi --prepare ./suse-pxe-client \

--root /tmp/mypxe

kiwi --create /tmp/mypxe --type pxe \
-d /tmp/mypxe-result

11.3 Using the image

In order to make use of the image all related image parts needs to be copied
onto the boot server. According to the example the following steps needs to
be performed:

1.

Change working directory
cd /tmp/mypxe-result
Copy of the boot and kernel image

cp initrd-netboot-suse-11.0.i686-2.1.1.splash.gz \
/srv/tftpboot/boot/initrd

cp initrd-netboot-suse-11.0.i686-2.1.1.kernel \
/srv/tftpboot/boot/linux

Copy of the system image and md5 sum

cp suse-11.0-pxe-client.i686-1.2.8 \
/srv/tftpboot/image

cp suse-11.0-pxe-client.i686-1.2.8.md5 \
/srv/tftpboot/image

Copy of the image boot configuration

Normally the boot configuration applies to one client which means it is
required to obtain the MAC address of this client. If the boot configu-
ration should be used globaly the KIWI generated file can be copied as
config.default

cp suse-11.0-pxe-client.i686-1.2.8.config \
/srv/tftpboot/KIWI/config.<MAC>

Check the PXE configuration file
The PXE configuration controls which kernel and initrd are loaded and

55

11 PXE image - Thin Clients

which kernel parameters are set. When installing the kiwi-pxeboot pack-
age a default configuration is added. To make sure the configuration is
valid according to this example the file /srv/tftpboot/pxelinux.cfg/default
should provide the following information:

DEFAULT KIWI-Boot

LABEL KIWI-Boot
kernel boot/linux
append initrd=boot/initrd vga=0x314
IPAPPEND 1

LABEL Local-Boot
localboot O

6. connect the client to the network and boot

11.4 Flavours

All the different PXE boot based deployment methods are controlled by the
config. <MAC> (or config.default) file. When a new client boots up and there
is no client configuration file the new client is registered by uploading a con-
trol file to the tftp server. The following sections informs about the control
and the configuration file.

11.4.1 The pxe client Control File

This section describes the netboot client control file:

hwtype.<MAC Address> I

The control file is primarily used to set up new netboot clients. In this case,
there is no configuration file corresponding to the client MAC address avail-
able. Using the MAC address information, the control file is created, which is
uploaded to the TFTP servers upload directory /var/lib/tftpboot/upload.

11.4.2 The pxe client Configuration File

This section describes the netboot client configuration file:

config.<MAC Address> I

The configuration file contains data about image, configuration, synchroniza-

56

11.4 Flavours

tion, or partition parameters. The configuration file is loaded from the TFTP
server directory /var/lib/tftpboot/KIWI via TFTP for previously installed net-
boot clients. New netboot clients are immediately registered and a new con-
figuration file with the corresponding MAC address is created. The standard
case for the deployment of a pxe image is one image file based on a read-write
filesystem which is stored onto a local storage device of the client. Below, find
an example to cover this case.

DISK=/dev/sda
PART=5;S;x,x;L;/
IMAGE=/dev/sda2;suse-11.0-pxe-client.i686;1.2.8;192.168.100.2;4096

The following format is used:

IMAGE=device;name;version;srvip;bsize;compressed,...,
CONF=src;dest;srvip;bsize,..., src;dest;srvip;bsize
PART =size;id;Mount,...,size;id;Mount

DISK=device

e IMAGE

Specifies which image (name) should be loaded with which version (ver-
sion) and to which storage device (device) it should be linked, e.g.,
/dev/raml or /dev/hda2. The netboot client partition (device) hda2
defines the root file system "/" and hda1 is used for the swap partition.
The numbering of the hard disk device should not be confused with the
RAM disk device, where /dev/ram0 is used for the initial RAM disk and
can not be used as storage device for the second stage system image.
SUSE recommends to use the device /dev/rami for the RAM disk. If the
hard drive is used, a corresponding partitioning must be performed.

- srvip
Specifies the server IP address for the TFTP download. Must always
be indicated, except in PART.

— bsize
Specifies the block size for the TFTP download. Must always be
indicated, except in PART. If the block size is too small according
to the maximum number of data packages (32768), linuxrc will
automatically calculate a new blocksize for the download.

- compressed
Specifies if the image file on the TFTP server is compressed and
handles it accordingly. To specify a compressed image download
only the keyword ""compressed"” needs to be added. If compressed
is not specified the standard download workflow is used. Note: The
download will fail if you specify "compressed"” and the image isn’t
compressed. It will also fail if you don’t specify ""compressed" but

57

11 PXE image - Thin Clients

the image is compressed. The name of the compressed image has
to contain the suffix .gz and needs to be compressed with the gzip
tool. Using a compressed image will automatically deactivate the
multicast download option of atftp.

CONF

Specifies a comma-separated list of source:target configuration files. The
source (src) corresponds to the path on the TFTP server and is loaded via
TFTP. The download is made to the file on the netboot client indicated
by the target (dest).

PART

Specifies the partitioning data. The comma-separated list must contain
the size (size), the type number (id), and the mount point (Mount). The
size is measured in MB by default. Additionally all size specifications
supported by the sfdisk program are allowed as well. The type number
specifies the ID of the partition. Valid ID’s are listed via the sfdisk —
list-types command. The mount specifies the directory the partition is
mounted to.

— The first element of the list must define the swap partition.
— The second element of the list must define the root partition.

— The swap partition must not contain a mount point. A lowercase
letter x must be set instead.

— If a partition should take all the space left on a disk one can set a
lower x letter as size specification.

DISK
Specifies the hard disk. Used only with PART and defines the device via
which the hard disk can be addressed, e.g., /dev/hda.

RELOAD_IMAGE

If set to a non-empty string, forces the configured image to be loaded
from the server even if the image on the disk is up-to-date. Used mainly
for debugging purposes, this option only makes sense on diskful systems.

RELOAD_CONFIG

If set to an non-empty string, forces all config files to be loaded from
the server. Used mainly for debugging purposes, this option only makes
sense on diskful systems.

COMBINED_IMAGE

If set to an non-empty string, indicates that the both image specified
needs to be combined into one bootable image, whereas the first image
defines the read-write part and the second image defines the read-only
part.

KIWI_INITRD

Specifies the kiwi initrd to be used for local boot of the system. The
variables value must be set to the name of the initrd file which is used
via PXE network boot. If the standard tftp setup suggested with the kiwi-
pxeboot package is used all initrd files resides in the boot/ directory

58

11.4 Flavours

below the tftp server path /var/lib/tftpboot. Because the tftpserver do
a chroot into the tftp server path you need to specify the initrd file as
the following example shows: KIWI_INITRD=/boot/<name-of-initrd-
file>

UNIONFS_CONFIG

For netboot and usbboot images there is the possibility to use unionfs or
aufs as container filesystem in combination with a compressed system
image. The recommended compressed filesystem type for the system im-
age is squashfs. In case of a usb-stick system the usbboot image will au-
tomatically setup the unionfs/aufs filesystem. In case of a PXE network
image the netboot image requires a config. <MAC> setup like the follow-
ing example shows: UNIONFS_ CONFIG=/dev/sda2,/dev/sda3,aufs.
In this example the first device /dev/sda2 represents the read/write
filesystem and the second device /dev/sda3 represents the compressed
system image filesystem. The container filesystem aufs is then used to
cover the read/write layer with the read-only device to one read/write
filesystem. If a file on the read-only device is going to be written the
changes inodes are part of the read/write filesystem. Please note the
device specifications in UNIONFS CONFIG must correspond with the
IMAGE and PART information. The following example should explain
the interconnections:

IMAGE=/dev/sda3;image/myImage;1.1.1;192.168.1.1;4096
PART=200;S;x,300;L;/,x;L;x
UNIONFS_CONFIG=/dev/sda2,/dev/sda3,aufs
DISK=/dev/sda

As the second element of the PART list must define the root partition

it’s absolutely important that the first device in UNIONFS CONFIG refer-

ences this device as read/write device. The second device of UNIONFS CONFIG
has to reference the given IMAGE device name.

KIWI_KERNEL OPTIONS

Specifies additional command line options to be passed to the kernel
when booting from disk. For instance, to enable a splash screen, you
might use 'vga=0x317 splash=silent’.

KIWI_BOOT_TIMEOUT
Specifies the number of seconds to wait at the grub boot screen when
doing a local boot. The default is 10.

NBDROOT

Mount the system image root filesystem remotely via NBD (Network
Block Device). This means there is a server which exports the root di-
rectory of the system image via a specified port. The kernel provides
the block layer, together with a remote port that uses the nbd-server
program. For more information on how to set up the server, see the
nbd-server man pages. The kernel on the remote client can set up a

59

11 PXE image - Thin Clients

special network block device named /dev/nb0 using the nbd-client com-
mand. After this device exists, the mount program is used to mount the
root filesystem. To allow the KIWI boot image to use that, the following
information must be provided:

NBDROOT=NBD.Server.IP.address;\
NBD-Port-Number;/dev/NBD-Device;\
NBD-Swap-Port-Number ;/dev/NBD-Swap-Device

The NBD-Device, NBD-Swap-Port-Number, and NBD-Swap-Device vari-
ables are optional. If they are not set, the default values are used
(/dev/nb0 for the NBD-Device, port number 9210 for the NBD-Swap-
Port-Number, and /dev/nb1 for the NBD-Swap-Device). The swap space
over the network using a network block device is only established if the
client has less than 48 MB of RAM.

AOEROOT

Mount the system image root filesystem remotely via AoE (ATA over
Ethernet). This means there is a server which exports a block device
representing the the root directory of the system image via the AoE sub-
system. The block device could be a partition of a real or a virtual disk.
In order to use the AoE subsystem I recommend to install the aoetools
and vblade packages from here first:
http://download.opensuse.org/repositories/system:/aoetools
Once installed the following example shows how to export the local
/dev/sdb1 partition via AoE:

vbladed 0 1 ethO /dev/sdbl

Some explanation about this command, each AoE device is identified by
a couple Major/Minor, with major between 0-65535 and minor between
0-255. AoE is based just over Ethernet on the OSI models so we need
to indicate which ethernet card we’ll use. In this example we export
/dev/sdb1 with a major value of 0 and minor of 1 on the ethO interface.
We are ready to use our partition on the network! To be able to use the
device kiwi needs the information which AoE device contains the root
filesystem. In our example this is the device /dev/etherd/e0.1. According
to this the AOEROOT variable must be set as follows:

AOEROO0T=/dev/etherd/e0.1

kiwi is now able to mount and use the specified AoE device as the remote
root filesystem.

NFSROOT

Mount the system image root filesystem remotely via NFS (Network File
System). This means there is a server which exports the root filesys-
tem of the network client in such a way that the client can mount it
read/write. In order to do that, the boot image must know the server IP
address and the path name where the root directory exists on this server.
The information must be provided as in the following example:

NFSROOT=NFS.Server.IP.address;/path/to/root/tree

60

http://download.opensuse.org/repositories/system:/aoetools

11.4 Flavours

e KIWI_INITRD
Specifies the KIWI initrd to be used for a local boot of the system. The
value must be set to the name of the initrd file which is used via PXE net-
work boot. If the standard TFTP setup suggested with the kiwi-pxeboot
package is used, all initrd files reside in the /srv/tftpboot/boot/ direc-
tory. Because the TFTP server does a chroot into the TFTP server path,
you must specify the initrd file as follows:

KIWI_INITRD=/boot/name-of-initrd-file

e KIWI_KERNEL
Specifies the kernel to be used for a local boot of the system The same
path rules as described for KIWI_INITRD applies for the kernel setup:

KIWI_KERNEL=/boot/name-of-kernel-file

e ERROR _INTERRUPT
Specifies a message which is displayed during first deployment. Along
with the message a shell is provided. This functionality should be used
to send the user a message if it’s clear the boot process will fail because
the boot environment or something else influences the pxe boot process
in a bad way.

11.4.3 User another than tftp as download protocol

By default all downloads controlled by the kiwi linuxrc code are performed
by an atftp call and therefore uses the tftp protocol. With PXE the download
protocol is fixed and thus you can’t change the way how the kernel and the
boot image (initrd) is downloaded. As soon as linux takes over control the
following download protocols http, https and ftp are supported too. KIWI
makes use of the curl program to support the additional protocols.

In order to select one of the additional download protocols the following ker-
nel parameters needs to be setup:

e kiwiserver
Name or IP address of the server who implements the protocol

¢ kiwiservertype
Name of the download protocol which could be one of http, https or ftp

To setup this parameters edit the file /srv/tftpboot/pxelinux.cfg/default on
your PXE boot server and change the append line accordingly. Please note
all downloads except for kernel and initrd are now controlled by the given
server and protocol. You need to make sure that this server provides the same
directory and file structure as initially provided by the kiwi-pxeboot package.

11.4.4 RAM only image

If there is no local storage and no remote root mount setup the image can be
stored into the main memory of the client. Please be aware that there should

61

11 PXE image - Thin Clients

be still enough RAM space available for the operating system after the image
has been deployed into RAM. Below, find an example:

e use a read-write filesystem in config.xml, for example
filesystem="ext3”

e sample config. <MAC>

IMAGE=/dev/raml;suse-11.0-pxe-client.i686;\
1.2.8;192.168.100.2;4096

11.4.5 union image

As used in the suse-pxe-client example it is possible to make use of the aufs
or unionfs overlay filesystems to combine two filesystems into one. In case of
thin clients there is often the need for a compressed filesystem due to space
limitations. Unfortunately all common compressed filesystems provides only
read-only access. Combining a read-only filesystem with a read-write filesys-
tem is a solution for this problem. Below, find an example:

DISK=/dev/sda

PART=5;S;x,62;L;/,x;L;x,

IMAGE=/dev/sda2;suse-11.0-pxe-client.i386;\
1.2.8;192.168.100.2;4096

UNIONFS_CONFIG=/dev/sda3,/dev/sda2,aufs

KIWI_INITRD=/boot/initrd

11.4.6 split image

As an alternative to the UNIONFS_CONFIG method it is also possible to cre-
ate a split image and combine the two portions with the COMBINED IMAGE
method. This allows to use different filesystems without the need for an over-
lay filesystem to combine them together. Below find an example:

e add a split type in config.xml, for example
<type fsreadonly="squashfs” fsreadwrite="ext3” boot="netboot/suse-

11.0”>split</type>

e add a split section to describe the writable portion, for example:

<split>
<persistent>
<!-- allow read/write access to: -->

62

11.4 Flavours

<file name="/var"/>
<file name="/var/x"/>
<file name="/etc"/>
<file name="/etc/*"/>
<file name="/home"/>
<file name="/home/*"/>
</persistent>
</split>

e sample config. <MAC>

IMAGE=/dev/sda2;suse-11.0-pxe-client.i686;\
1.2.8;192.168.100.2;4096, \
/dev/sda3;suse-11.0-pxe-client-read-write.i686;\
1.2.8;192.168.100.2;4096

PART=200;S;x,500;L;/,x;L;

DISK=/dev/sda

COMBINED_IMAGE=yes

KIWI_INITRD=/boot/initrd

11.4.7 root tree over NFS

Instead of installing the image onto a local storage device of the client it is
also possible to let the client mount the root tree via an NFS remote mount.
Below find an example:

e Export the kiwi prepared tree via NFS
e sample config. <MAC>

NFSR0O0T=192.168.100.7; /tmp/kiwi.nfsroot I

11.4.8 root tree over NBD

As an alternative for root over NFS it is also possible to let the client mount
the root tree via a special network block device. Below find an example:
e Use nbd-server to export the kiwi prepared tree

e sample config. <MAC>

NBDR0O0OT=192.168.100.7;2000; /dev/nbd0 I

63

11 PXE image - Thin Clients

11.4.9 root tree over AoE

As an alternative for root over NBD it is also possible to let the client mount
the root device via a special ATA over Ethernet network block device. Below
find an example:

e Use the vbladed command to bind a block device to an ethernet inter-
face. The block device can be a disk partition or a loop device (losetup)
but not a directory like with NBD

e sample config. <MAC>

AOERO0T=/dev/etherd/e0.1 I

This would require the command ”vbladed 0 1 ethO blockdevice” to be
called first

64

12 OEM image - Preload Systems

Contents
12.1 Building the suse-oem-preload example 65
12.2 Using theimage 66
123Flavours . . . v v v v v vt e e e e e e e e e e e e e e e 66
12.3.1 Influencing the oem partitioning 67

An oem image is a virtual disk image representing all partitions and boot-
loader information like it exists on a real disk. The image format is the same
compared to the VMX image type. All flavours explained in the VMX chapter
also applies to the OEM type.

The original idea of an oem image is to provide this virtual disk data to OEM
vendors which now are able to deploy the system independently onto their
storage media. The deployment can happen from any OS including Windows
if a tool to dump data on a disk device exists. The oem image type is also used
to deploy images on USB sticks because in principal it is the same workflow.

12.1 Building the suse-oem-preload example

The latest example provided with kiwi is based on openSUSE 11.0 and in-
cludes the patterns default plus x11. The image type is a split type whereas
the read-write filesystem is ext3 and the read-only filesystem is squashfs. The
additional format attribute also creates an installable ISO image for deploying
the image from CD.

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.0
kiwi --prepare ./suse-oem-preload \

--root /tmp/myoem

kiwi --create /tmp/myoem --type split \
-d /tmp/myoem-result

65

12 OEM image - Preload Systems

12.2 Using the image

Testing the oem virtual disk can be done with a virtualisation software like
QEMU or VMware. The virtual disk is represented by the .raw extension
whereas the .iso extension represents the installation disk for this oem im-
age. The installation disk should be tested on a bare test system For the .raw
test just call:

cd /tmp/myoem-result

gemu suse-11.0-oem-preload.i686-1.1.2.raw \
-m 512

or dump the image on a test hard disk and select it as boot device in the BIOS:

cd /tmp/myoem-result
dd if=suse-11.0-oem-preload.i686-1.1.2.raw \
of=/dev/<device> bs=32k

Please note if you test an oem image the virtual disk geometry of the image
is the same as the disk geometry inside the host system. According to this the
oem boot workflow will skip the re-partitioning which is performed if there
would be a real disk

12.3 Flavours

An interesting part of an oem image is that it can be turned into an installation
image too. This means it is possible to create an installation CD / DVD or USB
stick which deploysthe oem based image onto the selected storage device.
The installation process is a simply dd of the image onto the selected device
so don’t expect any user interaction or GUI here to pop up. KIWI supports two
types of installation media:

e <type ... format="is0”>...</type>
Creates a .iso file which can be burned in CD or DVD. This represents an
installation CD

e <type ... format="usb”>...</type>
Creates a .raw.install file which can be dumped (dd) on a USB stick. This
represents an installation Stick

66

12.3 Flavours

12.3.1 Influencing the oem partitioning

By default the oemboot process will create/modify a swap, /home and / par-
tition. It is possible to influence the behavior by the following oem-* ele-
ments which can be optionally specified within the preferences section of
your system image XML description. KIWI uses this to create the file /con-
fig.oempartition as part of the automatically created oemboot boot image.
The format of the file is a simple key=value format and created by the KI-
WIConfig.sh function named baseSetupOEMPartition. Following oem-* ele-
ments can be specified:

e <oem-reboot>yes|no</oem-reboot>
This allows to reboot the oem system after initial deployment. This value
is represented by the variable OEM_REBOOT in config.oempartition

e <oem-swapsize>number in MB</oem-swapsize>
Set the size of the swap partition. This value is represented by variable
OEM_SWAPSIZE in config.oempartition

e <oem-systemsize>number in MB</oem-systemsize>
Set the size of the / partition. This value is represented by the variable
OEM_SYSTEMSIZE in config.oempartition

e <oem-home>yes|no</oem-home>
Specify if a home partition should be create. This value is represented
by the variable OEM_WITHOUTHOME in config.oempartition.

e <oem-swap>yes|no</oem-swap>
Specify if a spaw partition should be create. This value is represented by
the variable OEM_WITHOUTSWAP in config.oempartition.

e <oem-boot-title>text</oem-boot-title>
By default the string OEM will be appended to the boot manager menu
when KIWI creates the grub configuration during first deployment. The
oem-boot-title value allows to set a custom name which is used instead
of OEM. This value is represented by the variable OEM_BOOT TITLE in
config.oempartition.

e <oem-recovery>yes|no</oem-recovery>

If this element is set to yes KIWI will create a recovery archive from the
prepared root tree. The archive will appear as /recovery.tar.bz2 within
the initial image file. During first boot of the image a single recovery
partition will be created and the recovery archive will be moved into that
partition. An additional boot menu entry will be created which allows
to restore the original root tree information. The user information on
the /home partition or in the /home directory are not affected by that
recovery process

e <oem-kiwi-initrd>yes|no</oem-kiwi-initrd >
If this element is set to yes the initial oemboot boot image (initrd) will
not be replaced by the system (mkinitrd) created initrd. This option
makes sense if the target storage device for the image is not a fixed disk

67

12 OEM image - Preload Systems

but for example an USB stick. In that case it might be required to re-
detect the storage location on first boot which is done as part of the
oemboot boot image

68

13 XEN image - Paravirtual
Systems

Contents
13.1 Building the suse-xen-guest example 69
13.2 Using theimage 70
133Flavours o v i e e e e e 70

Xen is a free software virtual machine monitor. It allows several guest op-
erating systems to be executed on the same computer hardware at the same
time.

A Xen system is structured with the Xen hypervisor as the lowest and most
privileged layer.[1] Above this layer are one or more guest operating systems,
which the hypervisor schedules across the physical CPUs. The first guest op-
erating system, called in Xen terminology "domain 0" (domO), is booted auto-
matically when the hypervisor boots and given special management privileges
and direct access to the physical hardware. The system administrator logs into
domO in order to start any further guest operating systems, called "domain U"
(domU) in Xen terminology.

A xen image is a filesystem based image file which requires the Xen domO
running or the project called Xenner which emulates the capabilities of the
domain 0. The image created with kiwi can only be used together with the
xen tools.

13.1 Building the suse-xen-guest example

The latest example provided with kiwi is based on openSUSE 11.0 and in-
cludes the base pattern.

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.0

kiwi --prepare ./suse-xen-guest \

--root /tmp/myxen

69

13 XEN image - Paravirtual Systems

kiwi --create /tmp/myxen \
--type xen -d /tmp/myxen-result

13.2 Using the image

In order to run a domain U the Xen tool xm needs to be called in conjunction
with the KIWI genereated domain U configuration file

xm create -c \
/tmp/myxen-result/\
suse-11.0-xen-guest.i1686-1.1.2.xenconfig

13.3 Flavours

With KIWI you can provide the information required to create a guest con-
figuration as part of the config.xml file. Additionally you can group special
packages which you may only need in this para virtual environment.

<packages type="xen'>
<!-- packages you need in Xen only -->
<package name="kernel-xen'"/>

<package name="xen"/>
</packages>
<xenconfig memory="512" domain="domU">
<xendisk device="/dev/sda"/>
</xenconfig>

If this information is present KIWI will create a Xen domain U (or domain 0)
configuration with 512 MB of RAM and expects the disk at /dev/sda. Addi-
tional information to setup the Xen guest machine properties are explained in

the xenconfig section. The KIWI Xen domain U configuration is stored in the
file:

/tmp/myxen-result/\
suse-11.0-xen-guest.i1686-1.1.2.xenconfig

70

14 EC2 image - Amazon Elastic
Compute Cloud

Contents
14.1 Building the suse-ec2-guest example 71
14.2 Usingtheimage 72

The Amazon Elastic Compute Cloud (Amazon EC2) web service provides you
with the ability to execute arbitrary applications in our computing environ-
ment. To use Amazon EC2 you simply:

1. Create an Amazon Machine Image (AMI) containing all your software,
including your operating system and associated configuration settings,
applications, libraries, etc. Such an AMI can be created by the kiwi ec2
image type. In order to do that kiwi makes use of the tools provided
by Amazon. Your build system should have these tools installed. Due to
license issues we are not allowed to distribute the tools which means you
need to download, install and setup them from here: http://docs.amazonwebservices.com/

2. Upload this AMI to the Amazon S3 (Amazon Simple Storage Service)
service. This gives us reliable, secure access to your AMI.

3. Register your AMI with Amazon EC2. This allows us to verify that your
AMI has been uploaded correctly and to allocate a unique identifier for
it.

4. Use this AMI ID and the Amazon EC2 web service APIs to run, monitor,
and terminate as many instances of this AMI as required. Currently,

Amazon provides command line tools and Java libraries but you may
also directly access the SOAP-based API.

Please note while instances are running, you are billed for the computing and
network resources that they consume. You should start creating an ec2 with
kiwi after you can make sure your system is prepared for ec2 which means if
you call the command ec2-describe-images -a you will get a valid output.

14.1 Building the suse-ec2-guest example

The latest example provided with kiwi is based on openSUSE 11.0 and in-
cludes the base pattern plus the vim editor.

71

http://docs.amazonwebservices.com/AmazonEC2/gsg/2006-06-26

14 EC2 image - Amazon Elastic Compute Cloud

Before you run kiwi you need to include some of your ec2 account information
into the image description config.xml file. The box below shows the values you
need to adapt:

<type primary="true"
ec2accountnr="12345678911"

ec2privatekeyfile="Path to EC2 private key file"
ec2certfile="Path to EC2 public certificate file"
>ec2</type>

After that call kiwi as follows:

cd /usr/share/doc/packages/kiwi/examples
cd suse-11.0

kiwi --prepare ./suse-ec2-guest \
--root /tmp/myec?2

kiwi --create /tmp/myec2 \
--type ec2 -d /tmp/myec2-result

14.2 Using the image

The generated image needs to be transfered over to Amazon which is done by
the ec2-upload-bundle tool. You can do this by calling:

ec2-upload-bundle -b myImages \
-a <AWS Key ID> -s <AWS secret Key ID> \
-m /tmp/myec2/\
suse-11.0-ec2-guest.1686-1.1.2.ami.manifest.xml

After this is done the image needs to be registered in order to receive a so
called AMI id which starts with ami- followed by a random key sequence. To
register call:

72

14.2 Using the image

ec2-register myImages/\
suse-11.0-ec2-guest.i686-1.1.2.ami.manifest.xml

The result is the AMI id which you need to run an instance from your image.
The command ec2-describe-images allows you to review your registered im-
ages. Since you will be running an instance of a public AMI, you will need
to use a public/private keypair to ensure that only you will have access. One
half of this keypair will be embedded into your instance, allowing you to login
securely without a password using the other half of the keypair. Every key-
pair you generate requires a name. Be sure to choose a name that is easy to
remember, perhaps one that describes the image’s content. For our example
we’ll use the name gsg-keypair.

ec2-add-keypair gsg-keypair I

The private key returned needs to be saved in a local file so that you can use it
later. Using your favorite text editor, create a file named id_rsa-gsg-keypair
and paste everything between (and including) the —BEGIN RSA PRIVATE
KEY— and —END RSA PRIVATE KEY— lines into it. To review your keypairs
call:

ec2-describe-keypairs I

We are almost done now but to be able to run an instances you also need to
specifiy which kernel and boot image (initrd) should be used to run the in-
stance. Kernels are registered as aki-... images and initrd’s are registered as
ari-... images at Amazon. You will need to select a aki/ari image that matches
your ami. The following table shows which Distributions are supported at the
moment:

Distro ARI id AKI id Arch
SUSE 11.0 | ari-49db3f20 | aki-4adb3f23 | ix86
SUSE 11.0 | ari-48db3f21 aki-4ddb3f24 x86 64

For this example we need the id’s provided for openSUSE 11.0. According to
this call the following command to fire up your new ec2 instance:

ec2-run-instances ami-... \
--kernel aki-4adb3f23 --ramdisk ari-49db3f20 \
-k gsg-keypair

To check the state of your instance(s) call the following command:

73

14 EC2 image - Amazon Elastic Compute Cloud

ec2-describe-instances I

If you see your instance at the status: running you can login into it. If you
can’t make sure you have allowed port 22 to be available

ec2-authorize default -p 22 I

Congratulations ! You made it and can now use Amazons storage and com-
puting power.

74

15 KIWI testsuite

Contents
15.1 testsuite packages oo 75
15.2Creatingatestottt 75

The KIWT test suite is useful to perform basic quality checks on the image root
directory. The test cases are stored in subdirectories below /usr/share/kiwi/tests.
To run the testsuite call kiwi as follows:

kiwi ——testsuite <image-root> \
[——test name ——test name ... |

If not test names are set the default tests rpm and ldd run. The name of a test
corresponds with the name of the directory the test is implemented in.

15.1 testsuite packages

If a test requires special software to be installed but this software is not an
essential part of the image itself it can be specified as testsuite packages in the
system image config.xml as follows:

<packages type="testsuite">
<package name="..."/>
</packages>

The testsuite packages are installed when calling kiwi with the testsuite option
and are removed after the tests has finished.

15.2 Creating a test

The test itself is defined by a xml description "test-case.xml” and its template
definition file /usr/share/kiwi/modules/KIWISchemeTest.rnc The following
example shows the basic structure of the rpm test:

75

15 KIWI testsuite

<test_case
name="rpm"
summary="check rpm database and verify all rpms"
description="check if rpm db is present, run rpm‘s build-in Verify method"

<requirements>
<req type="directory">/var/lib/rpm</req>
<req type="file">/var/lib/rpm/__db.000</req>
<req type="file">/var/lib/rpm/Packages</req>
</requirements>

<test type="binary" place="extern">
<file>rpm.sh</file>
<params>CHRO0T</params>
</test>
</test_case>

There are basically two sections called "equirements” and “test”. In require-
ments you define what files/directories or packages has to be present in your
image to run the test. For example if you need to check the rpm database, the
database has to be present within the image. All requirements are checked,
and if any of them fail the test won’t be executed and an error message is
printed. There are three types of requirements:

o file
Existence of a file

e directory
Existence of a directory

e rpm-package
Existence of a package

The test section defines the test script. It could be a binary, shell script or any
other kind of executable. Scripts are expected to be in the same directory as
where the xml definition for the test resides. There are two types of scripts,
extern and intern.

e external scripts are executed outside of the image and are preferred.
Their first parameter should be CHROOT. This parameter is changed to
the real path of the image chroot directory.

e internal scripts are executed inside image using the ”"chroot” command.
Files are copied into the image and deleted after execution.

A test script always has to return O in case of a test to pass, or 1 if any error oc-
cur. All messages printed to standard and error output are stored and printed
out of the test has failed.

76

Index

configuration files
config. <MAC Address>, 56
hwtype.<MAC Address>, 56

KIWI images
appliance, 27
description, 10
ec2, 70
iso, 40
maintenance, 32
migration, 34
oem, 64
pxe, 51
testing, 74
usb, 43
vmx, 48
workflow, 5
xen, 68

KIWTI installation source
instsource, 37

	1 Introduction
	2 Basic workflow
	2.1 Boot process
	2.2 Boot parameters
	2.3 Common and Distribution specific code

	3 KIWI image description
	3.1 config.xml

	4 Creating Appliances with KIWI
	4.1 History
	4.2 The KIWI model

	5 Maintenance of Operating System Images
	6 System to image migration
	6.1 Create a migration report first
	6.2 Migrate my system...
	6.3 Turn my system into an image...

	7 Installation Source
	7.1 Adapt the example's config.xml
	7.2 Create a local installation source

	8 ISO image - Live Systems
	8.1 Building the suse-live-iso example
	8.2 Using the image
	8.3 Flavours

	9 USB image - Live-Stick System
	9.1 Building the suse-live-stick example
	9.2 Using the image
	9.3 Flavours

	10 VMX image - Virtual Disks
	10.1 Building the suse-vm-guest example
	10.2 Using the image
	10.3 Flavours

	11 PXE image - Thin Clients
	11.1 Setting up the required services
	11.2 Building the suse-pxe-client example
	11.3 Using the image
	11.4 Flavours

	12 OEM image - Preload Systems
	12.1 Building the suse-oem-preload example
	12.2 Using the image
	12.3 Flavours

	13 XEN image - Paravirtual Systems
	13.1 Building the suse-xen-guest example
	13.2 Using the image
	13.3 Flavours

	14 EC2 image - Amazon Elastic Compute Cloud
	14.1 Building the suse-ec2-guest example
	14.2 Using the image

	15 KIWI testsuite
	15.1 testsuite packages
	15.2 Creating a test

	Index

