Ixml

2010-03-02

Contents

Contents

I Ixml

1 Ixml
Introduction L e e e e
Documentation
Download e
Mailing list o e e e e e
Bug tracker e e e e
License
Old Versions e

2 Why Ixml?
Motto . . . o e

3 Installing Ixml
Requirements o e
Installation e e
Installation in ActivePython
Building Ixml from sources e e e
MS Windows o o e
MacOS-X . . o e

4 What’s new in lxml 2.07
Changes in etree and objectify
Incompatible changes
Enhancements
Deprecation oL e e e
New modules L e
Ixml.usedoctest e e e
IxmLhtml e e
Ixml.cssselect

5 Benchmarks and Speed
General notes L e
How to read the timings e
Parsing and Serialising e
The ElementTree APT o L
Child access« v v v i e
Element creation
Merging different sources L Lo

14

15
15
15
16
17
17
17
17

20
20
20

22
22
22
23
23
23
23

25
25
25
26
27
28
28
28
28

CONTENTS CONTENTS

dEEPCODY + « v v o e e e 35

Tree traversal Lo e 35
XPath . . o e e 36
Alonger exampleo e 37
Ixmlobjectify 38
ObjectPath e 39
Caching Elements 39
Further optimisations L 40
ElementTree compatibility of Ixml.etree 41
Ixml FAQ - Frequently Asked Questions 44
General Questions L e 44
Is there a tutorial? Lo 44
Where can I find more documentation about Ixml? 44
What standards does Ixml implement? 45
Who uses Ixml? 45
What is the difference between Ixml.etree and Ixml.objectify? 46
How can I make my application run faster? 46
What about that trailing text on serialised Elements? 46
How can I find out if an Element is a comment or PI? 47

How can I map an XML tree into a dict of dicts? 47
Installation e e e 48
Which version of libxml2 and libxslt should I use or require? 48
Where are the binary builds? 48
Why do I get errors about missing UCS4 symbols when installing lxml? 48
Contributing e e 49
Why is Ixml not written in Python? L o oL 49
How can I contribute? 49
Bugs . . . e 50
My application crashes! L 50

My application crashes on MacOS-X!. 50

I think I have found a bug in Ixml. What should Ido? 50
How do I know a bug is really in Ixml and not in libxml2? 51
Threading L e o1
Can I use threads to concurrently access the Ixml API? 51
Does my program run faster if I use threads? 52
Would my single-threaded program run faster if I turned off threading? 52
Why can’t I reuse XSLT stylesheets in other threads? 52

My program crashes when run with mod python/Pyro/Zope/Plone/... 52
Parsing and Serialisation oo 53
Why doesn’t the pretty print option reformat my XML output? 53
Why can’t Ixml parse my XML from unicode strings? 54
What is the difference between str(xslt(doc)) and xslt(doc).write() 7 54
Why can’t T just delete parents or clear the root node in iterparse()? 55
How do I output null characters in XML text? 55
XPath and Document Traversal L L 55
What are the findall() and xpath() methods on Element(Tree)? 55
Why doesn’t findall() support full XPath expressions? 55
How can I find out which namespace prefixes are used in a document? 55
How can I specify a default namespace for XPath expressions? 56

IT Developing with 1xml 57
8 The lxml.etree Tutorial 58

CONTENTS CONTENTS
The Element class e 59
Elements are lists Lo 59
Elements carry attributes 61
Elements contain text oL Lo 61
Using XPath to find text 62

Tree iteration L L L e 63
Serialisation oL e 64

The ElementTree class oL o e e 66
Parsing from strings and files Lo 66
The fromstring() function 67

The XML() function 67

The parse() function L 67
Parser objects oL e 68
Incremental parsing e e 68
Event-driven parsing 69
Namespaces o Lo e e e e e e 71
The E-factory o e 72
ElementPath 0 e 73
9 APIs specific to lxml.etree 75
Ixmlietree oL e e 75
Other Element APIs o 75
Trees and Documents L L e 76
Tteration L L e e e 77
Error handling on exceptions L L 78
Error logging e 79
Serialisation L e 79
CDATA 80
XlInclude and ElementInclude o o 81
write cl4n on ElementTreeo 81
10 Parsing XML and HTML with Ixml 82
Parsers . . . e 82
Parser options L 83
Errorlog. . . . o L 83
Parsing HTML 0L 0o e e 84
Doctype information L 85

The target parser interface L Lo 85
The feed parser interface 86
iterparse and iterwalko 87
Selective tag events L e 89
Comments and PIs L o 89
Modifying the tree L 90
iterwalk e e e 90
Python unicode strings L 91
Serialising to Unicode strings Lo e 91

11 Validation with Ixml 93
Validation at parse time L 93
DTD . . o e e 94
RelaxNG . . o o o 94
XMLSchema e e e e 96
Schematron e e e e 97
12 XPath and XSLT with Ixml 99
XPath e 99

CONTENTS CONTENTS

The xpath() method 99
Namespaces and prefixes 100
XPath return values Lo 101
Generating XPath expressions L oL o 102

The XPath class e 102

The XPathEvaluator classes 103
ETXPath oo e 103
Error handling oL 104
XSLT . . e e 104
XSLT result objects L 105
Stylesheet parameters L L 106

The xslt() tree method L L 106
Dealing with stylesheet complexity 0oL 107
Profiling e 107

13 Ixml.objectify 108
The Ixml.objectify APL 108
Creating objectify trees L 108
Element access through object attributes. 0L 109

Tree generation with the E-factory o oo 111
Namespace handling e 112
Asserting a Schemao 113
ObjectPath e 114
Python data types 117
Recursive tree dumpo 118
Recursive string representation of elements L Lo 119

How data types are matched L 120
Type annotations L e e 121
XML Schema datatype annotation L oL o 121

The DataElement factory 123
Defining additional data classes L L o 125
Advanced element class lookup oL 127
What is different from Ixml.etree? oo 127
14 Ixml.html 129
Parsing HTML 0o e e 129
Parsing HTML fragments o s 129
Really broken pages 129
HTML Element Methods e 130
Running HTML doctests o . o e 130
Creating HTML with the E-factory o o 131
Viewing your HTML 000 e 132
Working with linkso 132
Functions L 132
Forms e 133
Form Filling Example o 134
Form Submission L 134
Cleaning up HTML e 135
autolink L 137
WOLAWTAD .+« v v v ot et e e e e e 137
HTML Diff . . . o e 137
Examples o e e 138
Microformat Example L 138

15 Ixml.cssselect 140
The CSSSelector class o . o 140

CONTENTS CONTENTS

CSS Selectors o e 140
Namespaces v v v v i e e e e e e e 141
Limitations e 141

16 BeautifulSoup Parser 142
Parsing with the soupparser e 142
Entity handling e 143
Using soupparser as a fallback 144
Using only the encoding detection 144

17 html5lib Parser 145
Differences to regular HTML parsing o e 145
Function Reference e 145
IIT Extending lxml 147
18 Document loading and URL resolving 148
URI Resolvers o o o e e e e 148
Document loading in context L 149
I/O access control in XSLTo L e 151
19 Python extensions for XPath and XSLT 152
XPath Extension functionso 152
The FunctionNamespace o . o 152

Global prefix assignment 153

The XPath context o e 153
Evaluators and XSLT e 154
Evaluator-local extensions 155

What to return from a function Lo 156

XSLT extension elementso e 158
Declaring extension elements Lo L Lo 158
Applying XSL templates L 159
Working with read-only elements Lo o 159

20 Using custom Element classes in Ixml 161
Background on Element proxies oL Lo 161
Element initialization L 161
Setting up a class lookup scheme Lo 162
Default class lookup Lo 163
Namespace class lookup oL L L 164
Attribute based lookup 164

Custom element class lookup L 164

Tree based element class lookup in Python 165
Generating XML with custom classes L 165
Implementing namespaces Lo s e e e 166

21 Sax support 168
Building a tree from SAX events 168
Producing SAX events from an ElementTree or Element 168
Interfacing with pulldom/minidom L 169

22 The public C-API of Ixml.etree 170
Writing external modules in Cython 170
Writing external modules in C oL 171

CONTENTS CONTENTS
IV Developing lxml 172
23 How to build Ixml from source 173
Cython o o e 173
Subversion e e e e 173
Setuptools e 174
Running the tests and reporting errorso Lo e 174
Building an egg L e e 175
Building Ixml on MacOS-X oL 175
Static linking on Windows Lo 176
Building Debian packages from SVN sources L oo 177
24 How to read the source of 1xml 178
What is Cython? o e 178
Where to start? oL e 178
Concepts . . o . o 179

The documentation e e e 179
Ixml.etree L e e e e 180
Python modules e 181
Ixmlobjectify 181
Ixmlhtml o e 181
25 Credits 182
Main contributors L e e e 182
Special thanks goes t0: L e 183
Changes 184
2.2.6 (2010-03-02) oL 184
Bugs fixed oL 184
2.2.5 (2010-02-28) L e 184
Features added L 184
Bugs fixed e 184
224 (2009-11-11) .« « oo o o 185
Bugs fixed e e 185
2.2.3 (2009-10-30) .« « oo e 185
Features added e 185
Bugs fixed oL 185
Other changes e 186
2.2.2 (2009-06-21)o 186
Features added 186
Bugs fixed oL 186
Other changes L e 186
2.2.1 (2009-06-02)o 186
Features added L 186
Bugs fixed oL e 186
Other changes e e 186

2.2 (2009-03-21) L. 186
Features added L 186
Bugs fixed oL e 187
2.2betad (2009-02-27) e 187
Features added e e 187
Bugs fixed 187
Other changes L e 187
2.2beta3 (2009-02-17) o . 187
Features added L 187
Bugs fixed oL 187

CONTENTS CONTENTS

Other changes e 188
2.2beta2 (2009-01-25) 188
Bugs fixed e e 188
2.1.5 (2009-01-06) .« « .« v v 188
Bugs fixed oL 188
2.2betal (2008-12-12) 188
Features added e 188
Bugs fixed oL 188
Other changes o e e 189
2.1.4 (2008-12-12) . . . o o o 189
Bugs fixed oL 189
2.0.11 (2008-12-12) o o o 189
Bugs fixed oL 189
2.2alphal (2008-11-23) e 189
Features added 189
Bugs fixed 189
Other changes L e 190
2.1.3 (2008-11-17) .« o o o o o 190
Features added L 190
Bugs fixed oL 190
Other changes e 190
2.0.10 (2008-11-17) . . o o o o o 190
Bugs fixed e 190
2.1.2 (2008-09-05) o oo 190
Features added 190
Bugs fixed oL 190
Other changes e 191
2.0.9 (2008-09-05) oo 191
Bugs fixed oL 191
2.1.1 (2008-07-24) . .« o v o e e 191
Features added e 191
Bugs fixed 191
Other changes L e 191
2.0.8 (2008-07-24) o 191
Features added L 191
Bugs fixed oL e 191
Other changes e 192
2.1 (2008-07-09) 192
Features added L 192
Bugs fixed oL 192
Other changes e e 192
2.0.7 (2008-06-20) . . « . . e e e 192
Features added L 192
Bugs fixed e 192
Other changes e 192
2.1beta3d (2008-06-19) o 193
Features added 193
Bugs fixed 193
Other changes o L e 193
2.0.6 (2008-05-31) .« . o o oo 194
Features added L 194
Bugs fixed oL e 194
Other changes e e 194
2.1beta2 (2008-05-02) 194
Features added L 194
Bugs fixed oL 194

CONTENTS CONTENTS

Other changes e 194
2.0.5 (2008-05-01) . . . o o o o 195
Features added L 195
Bugs fixed oL 195
Other changes e 195
2.1betal (2008-04-15) o o 195
Features added e 195
Bugs fixed oL 195
Other changes o e e 195
2.0.4 (2008-04-13) o o 196
Features added L 196
Bugs fixed 196
Other changes e 196
2.1alphal (2008-03-27) e 196
Features added 196
Bugs fixed 196
Other changes L e 196
2.0.3 (2008-03-26)o 197
Features added L 197
Bugs fixed oL 197
Other changes e 197
2.0.2 (2008-02-22) 198
Features added L 198
Bugs fixed oL 198
Other changes e e 198
2.0.1 (2008-02-13) .« . o o oo 198
Features added L 198
Bugs fixed e 198
Other changes 198
2.0 (2008-02-01) .+« v v v e 199
Features added e 199
Bugs fixed 201
Other changes L e 202
1.3.6 (2007-10-29) o o 203
Bugs fixed oL 203
Other changes e e 203
1.3.5 (2007-10-22) . . o o o o 203
Features added L 203
Bugs fixed e 203
1.3.4 (2007-08-30) o o 203
Features added L 203
Bugs fixed oL 203
Other changes e 204
1.3.3 (2007-07-26) . . . o o v o 204
Features added L 204
Bugs fixed e e 204
1.3.2 (2007-07-03) . . o o o o 204
Features added L 204
Bugs fixed e 204
1.3.1 (2007-07-02) . . o o o v o 205
Features added L 205
Bugs fixed oL e 205
1.3 (2007-06-24) o o 205
Features added L 205
Bugs fixed e 206
Other changes e e 206

CONTENTS CONTENTS

1.2.1 (2007-02-27) . . o o o o 206
Bugs fixed oL 206

1.2 (2007-02-20) oo 206
Features added 206
Bugs fixed oL 207
Other changes e 207

1.1.2 (2006-10-30) . . . o o 207
Features added e 207
Bugs fixed oL e 207

1.1.1 (2006-09-21) . . o o o 208
Features added 208
Bugs fixed 208

1.1 (2006-09-13) . . . o o o 208
Features added 208
Bugs fixed oL 209
1.0.4 (2006-09-09) o 210
Features added 210
Bugs fixed oL 210
1.0.3 (2006-08-08) . . .« o v i 210
Features added 210
Bugs fixed oL 210
1.0.2 (2006-06-27) . . . o o o 211
Features added 211
Bugs fixed e e 211

1.0.1 (2006—06—09) .. 211
Features added 211
Bugs fixed oL 211

1.0 (2006-06-01) o o o 212
Features added e 212
Bugs fixed e 213
0.9.2 (2006—05—10) .. 214
Features added L 214
Bugs fixed 214
0.9.1 (2006-03-30)o 214
Features added e 214
Bugs fixed oL e 214

0.9 (2006-03-20) 215
Features added 215
Bugs fixed e 215

0.8 (2005-11-03) . . .« o o o o 215
Features added e 215
Bugs fixed oL 216

0.7 (2005-06-15) . .« o o 0 ot 216
Features added 216
Bugs fixed oL e 217

0.6 (2005-05-14) . .« « o o v e 217
Features added 217
Bugs fixed 217
0.5.1 (2005-04-09) L 217
0.5 (2005-04-08) o L 218
B Generated API documentation 219
B.1 Package Ixml e 220
B.1.1 Modules e 220
B.1.2 Variables e e 220

B.2 Module Ixml.ElementInclude 221

CONTENTS CONTENTS

B.3

B.4

B.5

B.6

B.2.1 Functions e 221
B.2.2 Variables 221
B.2.3 Class FatallncludeError e 221
Module Ixml.builder e 223
B.3.1 Functions e e e e 223
B.3.2 Variables 223
B.3.3 Class ElementMaker e 223
Module Ixml.cssselect L e 226
B.4.1 Class SelectorSyntaxError Lo 226
B.4.2 Class ExpressionError 227
B.4.3 Class CSSSelector e e e 228
Module Ixml.doctestcompareo 230
B.5.1 Functions e 230
B.5.2 Variables e e 231
B.5.3 Class LXMLOutputChecker 231
B.5.4 Class LHTMLOutputChecker 232
Module Ixml.etree L e 234
B.6.1 Functions e 234
B.6.2 Variables e 242
B.6.3 Class Ancestorslterator e 243
B.6.4 Class AttributeBasedElementClassLookup 244
B.6.5 Class Cl4NError e 245
B.6.6 Class CDATA e 246
B.6.7 Class CommentBase e 247
B.6.8 Class CustomElementClassLookup 248
B.6.9 Class DTD e e 249
B.6.10 Class DTDError e 250
B.6.11 Class DTDParseError e 251
B.6.12 Class DTDValidateError 252
B.6.13 Class DocInfo e 253
B.6.14 Class DocumentInvalid 254
B.6.15 Class ETCompatXMLParser 255
B.6.16 Class ETXPath e 257
B.6.17 Class ElementBase e 258
B.6.18 Class ElementChildIterator 259
B.6.19 Class ElementClassLookup 260
B.6.20 Class ElementDefaultClassLookup 261
B.6.21 Class ElementDepthFirstIterator 262
B.6.22 Class ElementNamespaceClassLookup 263
B.6.23 Class ElementTextIterator 264
B.6.24 Class EntityBase e 266
B.6.25 Class Error 267
B.6.26 Class ErrorDomains 0 v it i e e e e e e 268
B.6.27 Class ErrorLevels e 269
B.6.28 Class ErrorTypes o o e 269
B.6.29 Class FallbackElementClassLookup 299
B.6.30 Class HTMLParser e 300
B.6.31 Class LxmlError 302
B.6.32 Class LxmlRegistryError L L o 303
B.6.33 Class LxmlSyntaxError 304
B.6.34 Class NamespaceRegistryError o L oL 305
B.6.35 Class PIBase 306
B.6.36 Class ParseError 308
B.6.37 Class ParserBasedElementClassLookup 309
B.6.38 Class ParserError e 310
B.6.39 Class PyErrorLog 311

CONTENTS CONTENTS

B.6.40 Class PythonElementClassLookup 313
B.6.41 Class QName e e 314
B.6.42 Class RelaxNG e e 316
B.6.43 Class RelaxNGError oo 317
B.6.44 Class RelaxNGErrorTypes 0 oo 318
B.6.45 Class RelaxNGParseError 320
B.6.46 Class RelaxNGValidateError 321
B.6.47 Class Resolver e e e 322
B.6.48 Class Schematron o 324
B.6.49 Class SchematronError 326
B.6.50 Class SchematronParseError 327
B.6.51 Class SchematronValidateError 328
B.6.52 Class SerialisationError 329
B.6.53 Class Siblingslterator 330
B.6.54 Class TreeBuilder o 331
B.6.55 Class XInclude 332
B.6.56 Class XIncludeError o 333
B.6.57 Class XMLParser 0 e e e e 334
B.6.58 Class XMLSchema e 336
B.6.59 Class XMLSchemaError 337
B.6.60 Class XMLSchemaParseError 338
B.6.61 Class XMLSchemaValidateError 339
B.6.62 Class XMLSyntaxError 340
B.6.63 Class XPath e 341
B.6.64 Class XPathDocumentEvaluator 343
B.6.65 Class XPathElementEvaluator 344
B.6.66 Class XPathError 346
B.6.67 Class XPathEvalError 347
B.6.68 Class XPathFunctionError 348
B.6.69 Class XPathResultError 349
B.6.70 Class XPathSyntaxError o 350
B.6.71 Class XSLT e 351
B.6.72 Class XSLTAccessControl i i e 353
B.6.73 Class XSLTApplyError 355
B.6.74 Class XSLTError e e e e e e 356
B.6.75 Class XSLTExtension i i 357
B.6.76 Class XSLTExtensionError 358
B.6.77 Class XSLTParseErroro 359
B.6.78 Class XSLTSaveError e 360
B.6.79 Class iterparse i e e 361
B.6.80 Class iterwalk 363
B.7 Package Ixmlhtmlo 365
B.7.1 Modules 365
B.7.2 Functions e 365
B.7.3 Variables e 369
B.8 Module Ixml.html.ElementSoup 370
B.8.1 Functions e e e e e 370
B.9 Module Ixml.html.builder 371
B.9.1 Functions 371
B.9.2 Variables 371
B.10 Module Ixml.html.clean 374
B.10.1 Functions e e e e e e 374
B.10.2 Variables 375
B.10.3 Class Cleaner e 375
B.11 Module Ixml.html.defs 378
B.11.1 Variables e 378

CONTENTS CONTENTS

B.12 Module Ixml.html.diff 379
B.12.1 Functions e 379
B.13 Module IxmlLhtml.formfill e 380
B.13.1 Functions e e e e e e 380
B.13.2 Class FormNotFound 380
B.13.3 Class DefaultErrorCreator ... 381
B.14 Module Ixml.html.htmlbparser L 382
B.14.1 Functions e e 382
B.14.2 Variables e e e e 383
B.14.3 Class HTMLParser e 383
B.14.4 Class XHTMLParser o i i e e e e d e 384
B.15 Module Ixml.html.soupparser L 386
B.15.1 Functions e 386
B.16 Module Ixml.html.usedoctest 387
B.17 Module Ixml.objectify 388
B.17.1 Functions e e e e e e 388
B.17.2 Variables 392
B.17.3 Class BoolElement e e 393
B.17.4 Class ElementMaker e 395
B.17.5 Class FloatElement 397
B.17.6 Class IntElement 398
B.17.7 Class LongElement 400
B.17.8 Class NoneElement e 401
B.17.9 Class NumberElement e 403
B.17.10Class ObjectPath 408
B.17.11Class ObjectifiedDataElement o Lo, 409
B.17.12Class ObjectifiedElement L o o 411
B.17.13Class ObjectifyElementClassLookup 414
B.17.14Class PyType o o o o e 415
B.17.15Class StringElement 417
B.18 Module Ixml.pyclasslookup 421
B.18.1 Variables 421
B.19 Module Ixml.sax 422
B.19.1 Functions e 422
B.19.2 Variables e e 422
B.19.3 Class SaxError o 422
B.19.4 Class ElementTreeContentHandler 423
B.19.5 Class ElementTreeProducer 427
B.20 Module Ixml.usedoctest 429

13

Part 1

Ixml

14

Chapter 1

Ixml

» Ixml takes all the pain out of XML. «
Stephan Richter

Ixml is the most feature-rich and easy-to-use library for working with XML and HTML in the Python
language.

Introduction

Ixml is a Pythonic binding for the libxml2 and libxslt libraries. It is unique in that it combines the
speed and feature completeness of these libraries with the simplicity of a native Python API, mostly
compatible but superior to the well-known ElementTree API. See the introduction for more information
about background and goals. Some common questions are answered in the FAQ.

Documentation

The complete Ixml documentation is available for download as PDF documentation. The HTML docu-
mentation from this web site is part of the normal source download.

e ElementTree:
— ElementTree API
— compatibility and differences of Ixml.etree
— benchmark results

e Ixml.etree:

the Ixml.etree Tutorial

— Ixml.etree specific API documentation

the generated API documentation as a reference

— parsing and validating XML

15

http://thread.gmane.org/gmane.comp.python.lxml.devel/3252/focus=3258
http://xmlsoft.org
http://xmlsoft.org/XSLT
http://effbot.org/zone/element-index.htm
http://codespeak.net/lxml/lxmldoc-2.2.6.pdf
http://effbot.org/zone/element-index.htm#documentation
file:api/index.html

CHAPTER 1. LXML

— XPath and XSLT support
— Python extension functions for XPath and XSLT
— custom element classes for custom XML APIs (see EuroPython 2008 talk)
— a SAX compliant API for interfacing with other XML tools
— a C-level API for interfacing with external C/Pyrex modules
e Ixml.objectify:
— Ixml.objectify API documentation
— a brief comparison of objectify and etree

Ixml.etree follows the ElementTree API as much as possible, building it on top of the native libxml2
tree. If you are new to ElementTree, start with the Ixml.etree Tutorial. See also the ElementTree
compatibility overview and the benchmark results comparing lxml to the original ElementTree and
cElementTree implementations.

Right after the lxml.etree Tutorial and the ElementTree documentation, the most important place to
look is the Ixml.etree specific API documentation. It describes how lxml extends the ElementTree API
to expose libxml2 and libxslt specific functionality, such as XPath, Relax NG, XML Schema, XSLT,
and cl4n. Python code can be called from XPath expressions and XSLT stylesheets through the use of
extension functions. Ixml also offers a SAX compliant API, that works with the SAX support in the
standard library.

There is a separate module Ixml.objectify that implements a data-binding API on top of Ixml.etree. See
the objectify and etree FAQ entry for a comparison.

In addition to the ElementTree API, Ixml also features a sophisticated API for custom element classes.
This is a simple way to write arbitrary XML driven APIs on top of Ixml. As of version 1.1, Ixml.etree
has a new C-level API that can be used to efficiently extend lxml.etree in external C modules, including
custom element class support.

Download

The best way to download Ixml is to visit Ixml at the Python Package Index (PyPI). It has the source
that compiles on various platforms. The source distribution is signed with this key. Binary builds for
MS Windows usually become available through PyPI a few days after a source release. If you can’t wait,
consider trying a less recent release version first.

The latest version is Ixml 2.2.6, released 2010-03-02 (changes for 2.2.6). Older versions are listed below.
Please take a look at the installation instructions!

This complete web site (including the generated API documentation) is part of the source distribution,
so if you want to download the documentation for offline use, take the source archive and copy the
doc/html directory out of the source tree.

It’s also possible to check out the latest development version of Ixml from svn directly, using a command
like this:

svn co http://codespeak.net/svn/lxml/trunk lxml

You can also browse the Subversion repository through the web, or take a look at the Subversion history.
Please read how to build Ixml from source first. The latest CHANGES of the developer version are

16

file:s5/lxml-ep2008.html
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/celementtree.htm
http://effbot.org/zone/element-index.htm
http://www.w3.org/TR/xpath
http://www.relaxng.org/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xml-c14n
http://pypi.python.org/pypi/lxml/
http://codespeak.net/lxml/pubkey.asc
http://codespeak.net/lxml/lxml-2.2.6.tgz
http://codespeak.net/svn/lxml/
https://codespeak.net/viewvc/lxml/
http://codespeak.net/svn/lxml/trunk/CHANGES.txt

CHAPTER 1. LXML

also accessible. You can check there if a bug you found has been fixed or a feature you want has been
implemented in the latest trunk version.

Mailing list

Questions? Suggestions? Code to contribute? We have a mailing list.

You can search the archive with Gmane or Google.

Bug tracker

Ixml uses the launchpad bug tracker. If you are sure you found a bug in Ixml, please file a bug report
there. If you are not sure whether some unexpected behaviour of Ixml is a bug or not, please ask on the
mailing list first. Do not forget to search the archive (e.g. with Gmane)!

License

The Ixml library is shipped under a BSD license. libxml2 and libxslt2 itself are shipped under the MIT
license. There should therefore be no obstacle to using Ixml in your codebase.

Old Versions

See the web sites of Ixml 1.3, 2.0, 2.1 and the current in-development version.
e Ixml 2.2.5, released 2010-02-28 (changes for 2.2.5)
e Ixml 2.2.4, released 2009-11-11 (changes for 2.2.4)
e Ixml 2.2.3, released 2009-10-30 (changes for 2.2.3)
o Ixml 2.2.2, released 2009-06-21 (changes for 2.2.2)
e Ixml 2.2.1, released 2009-06-02 (changes for 2.2.1)
o Ixml 2.2, released 2009-03-21 (changes for 2.2)
e Ixml 2.2betad, released 2009-02-27 (changes for 2.2betad)
e Ixml 2.2beta3, released 2009-02-17 (changes for 2.2beta3)
e Ixml 2.2beta2, released 2009-01-25 (changes for 2.2beta2)
e Ixml 2.2betal, released 2008-12-12 (changes for 2.2betal)
e Ixml 2.2alphal, released 2008-11-23 (changes for 2.2alphal)
e Ixml 2.1.5, released 2009-01-06 (changes for 2.1.5)
e Ixml 2.1.4, released 2008-12-12 (changes for 2.1.4)

e Ixml 2.1.3, released 2008-11-17 (changes for 2.1.3)

17

http://codespeak.net/mailman/listinfo/lxml-dev
http://blog.gmane.org/gmane.comp.python.lxml.devel
http://www.google.com/webhp?q=site:codespeak.net%2Fmailman%2Flistinfo%2Flxml-dev+
https://launchpad.net/lxml/
http://codespeak.net/mailman/listinfo/lxml-dev
http://blog.gmane.org/gmane.comp.python.lxml.devel
http://codespeak.net/svn/lxml/trunk/doc/licenses/BSD.txt
http://www.opensource.org/licenses/mit-license.html
http://www.opensource.org/licenses/mit-license.html
http://codespeak.net/lxml/1.3/
http://codespeak.net/lxml/2.0/
http://codespeak.net/lxml/2.1/
http://codespeak.net/lxml/dev/
http://codespeak.net/lxml/lxml-2.2.5.tgz
http://codespeak.net/lxml/lxml-2.2.4.tgz
http://codespeak.net/lxml/lxml-2.2.3.tgz
http://codespeak.net/lxml/lxml-2.2.2.tgz
http://codespeak.net/lxml/lxml-2.2.1.tgz
http://codespeak.net/lxml/lxml-2.2.tgz
http://codespeak.net/lxml/lxml-2.2beta4.tgz
http://codespeak.net/lxml/lxml-2.2beta3.tgz
http://codespeak.net/lxml/lxml-2.2beta2.tgz
http://codespeak.net/lxml/lxml-2.2beta1.tgz
http://codespeak.net/lxml/lxml-2.2alpha1.tgz
http://codespeak.net/lxml/lxml-2.1.5.tgz
http://codespeak.net/lxml/lxml-2.1.4.tgz
http://codespeak.net/lxml/lxml-2.1.3.tgz

CHAPTER 1. LXML

Ixml 2.1.2, released 2008-09-05 (changes for 2.1.2)
Ixml 2.1.1, released 2008-07-24 (changes for 2.1.1)
Ixml 2.1, released 2008-07-09 (changes for 2.1)

Ixml 2.0.11, released 2008-12-12 (changes for 2.0.11)
Ixml 2.0.10, released 2008-11-17 (changes for 2.0.10)
Ixml 2.0.9, released 2008-09-05 (changes for 2.0.9)
Ixml 2.0.8, released 2008-07-24 (changes for 2.0.8)

Ixml 2.0.7, released 2008-06-20 (changes for 2.0.7)

(

(

(

Ixml 2.0.6, released 2008-05-31 (changes for 2.0.6)

Ixml 2.0.5, released 2008-05-01 (changes for 2.0.5)

Ixml 2.0.4, released 2008-04-14 (changes for 2.0.4

Ixml 2.0.3, released 2008-03-26 (changes for 2.0.3
(

)
)
Ixml 2.0.2, released 2008-02-22 (changes for 2.0.2)
Ixml 2.0.1, released 2008-02-13 (changes for 2.0.1)
Ixml 2.0, released 2008-02-01 (changes for 2.0)

Ixml 1.3.6, released 2007-10-29 (changes for 1.3.6

Ixml 1.3.5, released 2007-10-22 (changes for 1.3.5

()
()
Ixml 1.3.4, released 2007-08-30 (changes for 1.3.4)
Ixml 1.3.3, released 2007-07-26 (changes for 1.3.3)
Ixml 1.3.2, released 2007-07-03 (changes for 1.3.2)
Ixml 1.3.1, released 2007-07-02 (changes for 1.3.1)
Ixml 1.3, released 2007-06-24 (changes for 1.3)

Ixml 1.2.1, released 2007-02-27 (changes for 1.2.1)
Ixml 1.2, released 2007-02-20 (changes for 1.2)

Ixml 1.1.2, released 2006-10-30 (changes for 1.1.2)
Ixml 1.1.1, released 2006-09-21 (changes for 1.1.1)
Ixml 1.1, released 2006-09-13 (changes for 1.1)

Ixml 1.0.4, released 2006-09-09 (changes for 1.0.4)
Ixml 1.0.3, released 2006-08-08 (changes for 1.0.3)
Ixml 1.0.2, released 2006-06-27 (changes for 1.0.2)
Ixml 1.0.1, released 2006-06-09 (changes for 1.0.1)
Ixml 1.0, released 2006-06-01 (changes for 1.0)

Ixml 0.9.2, released 2006-05-10 (changes for 0.9.2)

18

http://codespeak.net/lxml/lxml-2.1.2.tgz
http://codespeak.net/lxml/lxml-2.1.1.tgz
http://codespeak.net/lxml/lxml-2.1.tgz
http://codespeak.net/lxml/lxml-2.0.11.tgz
http://codespeak.net/lxml/lxml-2.0.10.tgz
http://codespeak.net/lxml/lxml-2.0.9.tgz
http://codespeak.net/lxml/lxml-2.0.8.tgz
http://codespeak.net/lxml/lxml-2.0.7.tgz
http://codespeak.net/lxml/lxml-2.0.6.tgz
http://codespeak.net/lxml/lxml-2.0.5.tgz
http://codespeak.net/lxml/lxml-2.0.4.tgz
http://codespeak.net/lxml/lxml-2.0.3.tgz
http://codespeak.net/lxml/lxml-2.0.2.tgz
http://codespeak.net/lxml/lxml-2.0.1.tgz
http://codespeak.net/lxml/lxml-2.0.tgz
http://codespeak.net/lxml/lxml-1.3.6.tgz
http://codespeak.net/lxml/lxml-1.3.5.tgz
http://codespeak.net/lxml/lxml-1.3.4.tgz
http://codespeak.net/lxml/lxml-1.3.3.tgz
http://codespeak.net/lxml/lxml-1.3.2.tgz
http://codespeak.net/lxml/lxml-1.3.tgz
http://codespeak.net/lxml/lxml-1.2.1.tgz
http://codespeak.net/lxml/lxml-1.2.tgz
http://codespeak.net/lxml/lxml-1.1.2.tgz
http://codespeak.net/lxml/lxml-1.1.1.tgz
http://codespeak.net/lxml/lxml-1.1.tgz
http://codespeak.net/lxml/lxml-1.0.4.tgz
http://codespeak.net/lxml/lxml-1.0.3.tgz
http://codespeak.net/lxml/lxml-1.0.2.tgz
http://codespeak.net/lxml/lxml-1.0.1.tgz
http://codespeak.net/lxml/lxml-1.0.tgz
http://codespeak.net/lxml/lxml-0.9.2.tgz

CHAPTER 1. LXML

Ixml 0.9.1, released 2006-03-30 (changes for 0.9.1)
Ixml 0.9, released 2006-03-20 (changes for 0.9

)
Ixml 0.8, released 2005-11-03 (changes for 0.8)
)
)

(

(

Ixml 0.7, released 2005-06-15 (changes for 0.7

Ixml 0.6, released 2005-05-14 (changes for 0.6
9

Ixml 0.5.1, released 2005-04-09 (changes for 0.5.1)

Ixml 0.5, released 2005-04-08

19

http://codespeak.net/lxml/lxml-0.9.1.tgz
http://codespeak.net/lxml/lxml-0.9.tgz
http://codespeak.net/lxml/lxml-0.8.tgz
http://codespeak.net/lxml/lxml-0.7.tgz
http://codespeak.net/lxml/lxml-0.6.tgz
http://codespeak.net/lxml/lxml-0.5.1.tgz
http://codespeak.net/lxml/lxml-0.5.tgz

Chapter 2

Why Ixml?

Motto

“the thrills without the strangeness”
To explain the motto:

“Programming with libxml2 is like the thrilling embrace of an exotic stranger. It seems to have the
potential to fulfill your wildest dreams, but there’s a nagging voice somewhere in your head warning you
that you’re about to get screwed in the worst way.” (a quote by Mark Pilgrim)

Mark Pilgrim was describing in particular the experience a Python programmer has when dealing with
libxml2. The default Python bindings of libxml2 are fast, thrilling, powerful, and your code might fail
in some horrible way that you really shouldn’t have to worry about when writing Python code. Ilxml
combines the power of libxml2 with the ease of use of Python.

Aims

The C libraries libxml2 and libxslt have huge benefits:
e Standards-compliant XML support.
e Support for (broken) HTML.

Full-featured.

Actively maintained by XML experts.

fast. fast! FAST!

These libraries already ship with Python bindings, but these Python bindings mimic the C-level interface.
This yields a number of problems:

e very low level and C-ish (not Pythonic).
e underdocumented and huge, you get lost in them.
e UTF-8 in API, instead of Python unicode strings.

e Can easily cause segfaults from Python.

20

http://diveintomark.org/archives/2004/02/18/libxml2
http://www.xmlsoft.org
http://xmlsoft.org/XSLT

CHAPTER 2. WHY LXML?

e Require manual memory management!

Ixml is a new Python binding for libxml2 and libxslt, completely independent from these existing Python
bindings. Its aims:

e Pythonic APL

e Documented.

e Use Python unicode strings in API.
e Safe (no segfaults).

e No manual memory management!

Ixml aims to provide a Pythonic API by following as much as possible the ElementTree API. We're
trying to avoid inventing too many new APIs, or you having to learn new things -- XML is complicated
enough.

21

http://effbot.org/zone/element-index.htm

Chapter 3

Installing Ixml

For special installation instructions regarding MS Windows and MacOS-X, see below.

Requirements

You need Python 2.3 or later.

Unless you are using a static binary distribution (e.g. a Windows binary egg from PyPI), you need to
install libxml2 and libxslt, in particular:

e libxml 2.6.21 or later. It can be found here: http://xmlsoft.org/downloads.html
If you want to use XPath, do not use libxml2 2.6.27. We recommend libxml2 2.7.2 or later.
e libxslt 1.1.15 or later. It can be found here: http://xmlsoft.org/XSLT /downloads.html

Newer versions generally contain less bugs and are therefore recommended. XML Schema support is also
still worked on in libxml2, so newer versions will give you better complience with the W3C spec.

Installation

Get the easy install tool and run the following as super-user (or administrator):
easy_install 1xml

e On MS Windows, the above will install the binary builds that we provide. If there is no binary
build of the latest release yet, please search PyPI for the last release that has them and pass that
version to easy_install like this:

easy_install 1xml==2.2.2

e On Linux (and most other well-behaved operating systems), easy_install will manage to build
the source distribution as long as libxml2 and libxslt are properly installed, including development
packages, i.e. header files, etc. Use your package management tool to look for packages like
libxml2-dev or libxslt-devel if the build fails, and make sure they are installed.

e On MacOS-X, use the following to build the source distribution, and make sure you have a working
Internet connection, as this will download libxml2 and libxslt in order to build them:

22

http://xmlsoft.org/downloads.html
http://xmlsoft.org/XSLT/downloads.html
http://peak.telecommunity.com/DevCenter/EasyInstall
http://cheeseshop.python.org/pypi/lxml

CHAPTER 3. INSTALLING LXML

STATIC_DEPS=true easy_install 1lxml

Installation in ActivePython

ActiveState provides ready-made lxml builds for different platforms in its package repository for the
PyPM package manager. PyPM is similar to apt-get in that there is a repository of automaticaly pre-
built packages for Windows, Mac and Linux.

To install Ixml in ActivePython, type the following on one of these operating systems:
$ pypm install lxml

To test the installation, try:
$ python -c "import lxml; print lxml.__file__"

This should show you the directory where the package was installed.

Building Ixml from sources

If you want to build lxml from SVN you should read how to build lxml from source (or the file
doc/build.txt in the source tree). Building from Subversion sources or from modified distribution
sources requires Cython to translate the Ixml sources into C code. The source distribution ships with
pre-generated C source files, so you do not need Cython installed to build from release sources.

If you have read these instructions and still cannot manage to install Ixml, you can check the archives of
the mailing list to see if your problem is known or otherwise send a mail to the list.

MS Windows

For MS Windows, the binary egg distribution of lxml is statically built against the libraries, i.e. it
already includes them. There is no need to install the external libraries if you use an official Ixml build
from PyPI.

Unless you know what you are doing, this means: do not install libzxml2 or libxslt if you use a binary
build of lxml. Just use easy_install by following the installation instructions above.

Only if you want to upgrade the libraries and/or compile Ixml from sources, you should install a binary
distribution of libxml2 and libxslt. You need both libxml2 and libxslt, as well as iconv and zlib.

MacOS-X

A macport of Ixml is available. Try port install py25-1xml.

If you want to use a more recent Ixml release, you may have to build it yourself. Apple doesn’t help
here, as the system libraries of libxml2 and libxslt installed under MacOS-X are horribly outdated, and
updating them is everything but easy. In any case, you cannot run lxml 2.x with the system provided
libraries, so you have to use newer libraries.

23

http://www.activestate.com/
http://pypm.activestate.com/
http://docs.activestate.com/activepython/2.6/pypm.html
http://www.cython.org
http://codespeak.net/mailman/listinfo/lxml-dev
http://cheeseshop.python.org/pypi/lxml
http://www.zlatkovic.com/libxml.en.html
http://www.zlatkovic.com/libxml.en.html

CHAPTER 3. INSTALLING LXML

Luckily, Ixml’s setup.py script has built-in support for building and integrating these libraries statically
during the build. Please read the MacOS-X build instructions.

A number of users also reported success with updated libraries (e.g. using fink or macports), but
needed to set the runtime environment variable DYLD_LIBRARY_PATH to the directory where fink keeps
the libraries. In any case, this method is easy to get wrong and everything but safe. Unless you know
what you are doing, follow the static build instructions above.

24

http://finkproject.org/

Chapter 4

What’s new in Ixml 2.07?

During the development of the Ixml 1.x series, a couple of quirks were discovered in the design that made
the API less obvious and its future extensions harder than necessary. lxml 2.0 is a soft evolution of Ixml
1.x towards a simpler, more consistent and more powerful API - with some major extensions. Wherever
possible, Ixml 1.3 comes close to the semantics of Ixml 2.0, so that migrating should be easier for code
that currently runs with 1.3.

One of the important internal changes was the switch from the Pyrex compiler to Cython, which provides
better optimisation and improved support for newer Python language features. This allows the code of
Ixml to become more Python-like again, while the performance improves as Cython continues its own
development. The code simplification, which will continue throughout the 2.x series, will hopefully make
it even easier for users to contribute.

Changes in etree and objectify

A graduation towards a more consistent API cannot go without a certain amount of incompatible changes.
The following is a list of those differences that applications need to take into account when migrating
from Ixml 1.x to Ixml 2.0.

Incompatible changes

e Ixml 0.9 introduced a feature called namespace implementation. The global Namespace factory was
added to register custom element classes and have Ixml.etree look them up automatically. However,
the later development of further class lookup mechanisms made it appear less and less adequate
to register this mapping at a global level, so Ixml 1.1 first removed the namespace based lookup
from the default setup and lxml 2.0 finally removes the global namespace registry completely. As
all other lookup mechanisms, the namespace lookup is now local to a parser, including the registry
itself. Applications that use a module-level parser can easily map its get_namespace () method to
a global Namespace function to mimic the old behaviour.

e Some API functions now require passing options as keyword arguments, as opposed to positional
arguments. This restriction was introduced to make the API usage independent of future extensions
such as the addition of new positional arguments. Users should not rely on the position of an
optional argument in function signatures and instead pass it explicitly named. This also improves
code readability - it is common good practice to pass options in a consistent way independent of
their position, so many people may not even notice the change in their code. Another important
reason is compatibility with cElementTree, which also enforces keyword-only arguments in a couple

25

http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://www.cython.org/

CHAPTER 4. WHAT’S NEW IN LXML 2.07

of places.

e XML tag names are validated when creating an Element. This does not apply to HTML tags,
where only HTML special characters are forbidden. The distinction is made by the SubElement ()
factory, which tests if the tree it works on is an HTML tree, and by the .makeelement () methods
of parsers, which behave differently for the XMLParser () and the HTMLParser ().

e XPath now raises exceptions specific to the part of the execution that failed: XPathSyntaxError
for parser errors and XPathEvalError for errors that occurred during the evaluation. Note that
the distinction only works for the XPath() class. The other two evaluators only have a single
evaluation call that includes the parsing step, and will therefore only raise an XPathEvalError.
Applications can catch both exceptions through the common base class XPathError (which also
exists in earlier Ixml versions).

e Network access in parsers is now disabled by default, i.e. the no_network option defaults to True.
Due to a somewhat ’interesting’ implementation in libxml2, this does not affect the first document
(i.e. the URL that is parsed), but only subsequent documents, such as a DTD when parsing with
validation. This means that you will have to check the URL you pass, instead of relying on lxml
to prevent any access to external resources. As this can be helpful in some use cases, Ixml does
not work around it.

e The type annotations in lxml.objectify (the pytype attribute) now use NoneType for the None
value as this is the correct Python type name. Previously, Ixml 1.x used a lower case none.

e Another change in objectify regards the way it deals with ambiguous types. Previously, setting a
value like the string "3" through normal attribute access would let it come back as an integer when
reading the object attribute. lxml 2.0 prevents this by always setting the pytype attribute to the
type the user passed in, so "3" will come back as a string, while the number 3 will come back as a
number. To remove the type annotation on serialisation, you can use the deannotate () function.

e The C-API function find0rBuildNodeNs () was replaced by the more generic findOrBuildNodeNsPrefix ()
that accepts an additional default prefix.

Enhancements

Most of the enhancements of lxml 2.0 were made under the hood. Most people won’t even notice them,
but they make the maintenance of Ixml easier and thus facilitate further enhancements and an improved
integration between Ixml’s features.

e Ixml.objectify now has its own implementation of the E factory. It uses the built-in type lookup
mechanism of Ixml.objectify, thus removing the need for an additional type registry mechanism (as
previously available through the typemap parameter).

e XML entities are supported through the Entity() factory, an Entity element class and a parser
option resolve_entities that allows to keep entities in the element tree when set to False. Also,
the parser will now report undefined entities as errors if it needs to resolve them (which is still the
default, as in Ixml 1.x).

e A major part of the XPath code was rewritten and can now benefit from a bigger overlap with the
XSLT code. The main benefits are improved thread safety in the XPath evaluators and Python
RegExp support in standard XPath.

e The string results of an XPath evaluation have become ’smart’ string subclasses. Formerly, there
was no easy way to find out where a string originated from. In Ixml 2.0, you can call its getparent ()
method to find the Element that carries it. This works for attributes (//@attribute) and for
text () nodes, i.e. Element text and tails. Strings that were constructed in the path expression,
e.g. by the string() function or extension functions, will return None as their parent.

26

CHAPTER 4. WHAT’S NEW IN LXML 2.07

e Setting a QName object as value of the .text property or as an attribute value will resolve its prefix
in the respective context

e Following ElementTree 1.3, the iterfind () method supports efficient iteration based on XPath-like
expressions.

The parsers also received some major enhancements:
e iterparse() can parse HTML when passing the boolean html keyword.

e Parse time XML Schema validation by passing an XMLSchema object to the schema keyword
argument of a parser.

e Support for a target object that implements ElementTree’s TreeBuilder interface.

e The encoding keyword allows overriding the document encoding.

Deprecation

The following functions and methods are now deprecated. They are still available in Ixml 2.0 and will
be removed in Ixml 2.1:

e The tounicode() function was replaced by the call tostring(encoding=unicode).

e CamelCaseNamed module functions and methods were renamed to their underscore equivalents to
follow PEP 8 in naming.

— etree.clearErrorLog(), use etree.clear_error_log()

— etree.useGlobalPythonLog(), use etree.use_global_python_log()

— etree.ElementClassLookup.setFallback(), use etree.ElementClassLookup.set_fallback()
— etree.getDefaultParser(), use etree.get_default_parser()

— etree.setDefaultParser(), use etree.set_default_parser()

— etree.setElementClassLookup(), use etree.set_element_class_lookup ()

— XMLParser.setElementClassLookup(), use .set_element_class_lookup()

— HTMLParser.setElementClassLookup(), use .set_element_class_lookup ()

Note that parser.setElementClassLookup () has not been removed yet, although parser.set_element_clas
should be used instead.

— xpath_evaluator.registerNamespace (), use xpath_evaluator.register_namespace ()
— xpath_evaluator.registerNamespaces (), use xpath_evaluator.register_namespaces()
— objectify.setPytypeAttributeTag, use objectify.set_pytype_attribute_tag

— objectify.setDefaultParser(), use objectify.set_default_parser()

o The .getiterator() method on Elements and ElementTrees was renamed to .iter() to follow
ElementTree 1.3.

27

http://effbot.org/elementtree/elementtree-treebuilder.htm
http://www.python.org/dev/peps/pep-0008/

CHAPTER 4. WHAT’S NEW IN LXML 2.07

New modules

The most visible changes in Ixml 2.0 regard the new modules that were added.

Ixml.usedoctest

A very useful module for doctests based on XML or HTML is 1xml.doctestcompare. It provides a
relaxed comparison mechanism for XML and HTML in doctests. Using it for XML comparisons is as
simple as:

>>> import lxml.usedoctest
and for HTML comparisons:

>>> import 1xml.html.usedoctest

Ixml.html

The largest new package that was added to lIxml 2.0 is Ixml.html. It contains various tools and modules
for HTML handling. The major features include support for cleaning up HTML (removing unwanted
content), a readable HTML diff and various tools for working with links.

Ixml.cssselect

The Cascading Stylesheet Language (CSS) has a very short and generic path language for pointing at
elements in XML/HTML trees (CSS selectors). The module Ixml.cssselect provides an implementation
based on XPath.

28

http://www.w3.org/Style/CSS/
http://www.w3.org/TR/CSS21/selector.html

Chapter 5

Benchmarks and Speed

Author: Stefan Behnel

Ixml.etree is a very fast XML library. Most of this is due to the speed of libxml2, e.g. the parser and
serialiser, or the XPath engine. Other areas of Ixml were specifically written for high performance in
high-level operations, such as the tree iterators.

On the other hand, the simplicity of Ixml sometimes hides internal operations that are more costly than
the API suggests. If you are not aware of these cases, Ixml may not always perform as you expect. A
common example in the Python world is the Python list type. New users often expect it to be a linked
list, while it actually is implemented as an array, which results in a completely different complexity for
common operations.

Similarly, the tree model of libxml2 is more complex than what lxml’s ElementTree API projects into
Python space, so some operations may show unexpected performance. Rest assured that most Ixml users
will not notice this in real life, as Ixml is very fast in absolute numbers. It is definitely fast enough for
most applications, so Ixml is probably somewhere between 'fast enough’ and ’the best choice’ for yours.
Read some messages from happy users to see what we mean.

This text describes where lxml.etree (abbreviated to ’Ixe’) excels, gives hints on some performance traps
and compares the overall performance to the original ElementTree (ET) and cElementTree (cET) libraries
by Fredrik Lundh. The cElementTree library is a fast C-implementation of the original ElementTree.

General notes

First thing to say: there is an overhead involved in having a DOM-like C library mimic the ElementTree
API. As opposed to ElementTree, Ixml has to generate Python representations of tree nodes on the fly
when asked for them, and the internal tree structure of libxml2 results in a higher maintenance overhead
than the simpler top-down structure of ElementTree. What this means is: the more of your code runs
in Python, the less you can benefit from the speed of Ixml and libxml2. Note, however, that this is true
for most performance critical Python applications. No one would implement fourier transformations in
pure Python when you can use NumPy.

The up side then is that lxml provides powerful tools like tree iterators, XPath and XSLT, that can
handle complex operations at the speed of C. Their pythonic API in lxml makes them so flexible that
most applications can easily benefit from them.

29

http://permalink.gmane.org/gmane.comp.python.lxml.devel/3250
http://article.gmane.org/gmane.comp.python.lxml.devel/3246
http://thread.gmane.org/gmane.comp.python.lxml.devel/3244/focus=3244
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/celementtree.htm

CHAPTER 5. BENCHMARKS AND SPEED

How to read the timings

The statements made here are backed by the (micro-)benchmark scripts bench _etree.py, bench _xpath.py
and bench _objectify.py that come with the Ixml source distribution. They are distributed under the same
BSD license as Ixml itself, and the Ixml project would like to promote them as a general benchmarking
suite for all ElementTree implementations. New benchmarks are very easy to add as tiny test methods,
so if you write a performance test for a specific part of the API yourself, please consider sending it to
the Ixml mailing list.

The timings cited below compare Ixml 2.2 (with libxml2 2.7.3) to the February 2009 SVN versions of
ElementTree (1.3alpha2) and cElementTree (1.0.6). They were run single-threaded on a 1.8GHz Intel
Core Duo machine under Ubuntu Linux 8.10 (Intrepid). The C libraries were compiled with the same
platform specific optimisation flags. The Python interpreter (2.6.1) was manually compiled for the
platform. Note that many of the following ElementTree timings are therefore better then what a normal
Python installation with the standard library (c)ElementTree modules would yield.

The scripts run a number of simple tests on the different libraries, using different XML tree configurations:
different tree sizes (T1-4), with or without attributes (-/A), with or without ASCII string or unicode
text (-/S/U), and either against a tree or its serialised XML form (T/X). In the result extracts cited
below, T1 refers to a 3-level tree with many children at the third level, T2 is swapped around to have
many children below the root element, T3 is a deep tree with few children at each level and T4 is a small
tree, slightly broader than deep. If repetition is involved, this usually means running the benchmark in
a loop over all children of the tree root, otherwise, the operation is run on the root node (C/R).

As an example, the character code (SATR T1) states that the benchmark was running for tree T1, with
plain string text (S) and attributes (A). It was run against the root element (R) in the tree structure of
the data (T).

Note that very small operations are repeated in integer loops to make them measurable. It is therefore
not always possible to compare the absolute timings of, say, a single access benchmark (which usually
loops) and a ’get all in one step’ benchmark, which already takes enough time to be measurable and is
therefore measured as is. An example is the index access to a single child, which cannot be compared
to the timings for getchildren(). Take a look at the concrete benchmarks in the scripts to understand
how the numbers compare.

Parsing and Serialising

Serialisation is an area where Ixml excels. The reason is that it executes entirely at the C level, without
any interaction with Python code. The results are rather impressive, especially for UTF-8, which is
native to libxml2. While 20 to 40 times faster than (c)ElementTree 1.2 (which is part of the standard
library since Python 2.5), Ixml is still more than 7 times as fast as the much improved ElementTree 1.3:

lxe: tostring utfl6 (SATR T1) 22.4042 msec/pass
cET: tostring utfi16 (SATR T1) 184.5090 msec/pass
ET : tostring utfl6 (SATR T1) 182.4350 msec/pass

lxe: tostring_utfl6 (UATR T1) 23.1769 msec/pass
CET: tostring_utf16 (UATR T1) 188.6780 msec/pass
ET : tostring utfi6 (UATR T1) 186.7781 msec/pass

lxe: tostring utfl6 (S-TR T2) 21.8501 msec/pass

cET: tostring_utfi16 (S-TR T2) 200.0139 msec/pass
ET : tostring utfi6 (S-TR T2) 190.8720 msec/pass

30

http://codespeak.net/svn/lxml/trunk/benchmark/bench_etree.py
http://codespeak.net/svn/lxml/trunk/benchmark/bench_xpath.py
http://codespeak.net/svn/lxml/trunk/benchmark/bench_objectify.py

CHAPTER 5. BENCHMARKS AND SPEED

lxe: tostring utf8 (S-TR T2) 17.1690 msec/pass
cET: tostring_utf8 (S-TR T2) 192.3709 msec/pass
ET : tostring utf8 (S-TR T2) 189.7140 msec/pass

lxe: tostring_utf8 (U-TR T3) 4.9832 msec/pass
cET: tostring utf8 (U-TR T3) 60.2911 msec/pass
ET : tostring utf8 (U-TR T3) 57.8101 msec/pass

The same applies to plain text serialisation. Note that cElementTree does not currently support this, as
it is a new feature in ET 1.3 and lxml.etree 2.0:

lxe: tostring_text_ascii (S-TR T1) 4.3709 msec/pass
ET : tostring_text_ascii (5-TR T1) 83.9939 msec/pass
lxe: tostring_text_ascii (8-TR T3) 1.3590 msec/pass
ET : tostring_ text_ascii (S-TR T3) 26.6340 msec/pass
lxe: tostring_text_utfl6é (S-TR T1) 6.2978 msec/pass
ET : tostring_text_utfl6 (8-TR T1) 84.7399 msec/pass
lxe: tostring_text_utfil6 (U-TR T1) 7.7510 msec/pass
ET : tostring_ text_utfl6 (U-TR T1) 79.9279 msec/pass

Unlike ElementTree, the tostring() function in lxml also supports serialisation to a Python unicode
string object:

lxe: tostring_text_unicode (S-TR T1) 4.6940 msec/pass
lxe: tostring_text_unicode (U-TR T1) 6.3069 msec/pass
lxe: tostring_text_unicode (S-TR T3) 1.3652 msec/pass
lxe: tostring_text_unicode (U-TR T3) 2.0702 msec/pass

For parsing, on the other hand, the advantage is clearly with cElementTree. The (c)ET libraries use a
very thin layer on top of the expat parser, which is known to be extremely fast:

lxe: parse_stringI0 (SAXR T1) 50.0100 msec/pass
cET: parse_stringI0 (SAXR T1) 19.3238 msec/pass
ET : parse_stringI0 (SAXR T1) 318.2330 msec/pass

1lxe: parse_stringI0 (S-XR T3) 6.1851 msec/pass
cET: parse_stringI0 (S-XR T3) 5.7080 msec/pass
ET : parse_stringI0 (S-XR T3) 83.5931 msec/pass

lxe: parse_stringI0 (UAXR T3) 34.4319 msec/pass
cET: parse_stringI0 (UAXR T3) 28.8520 msec/pass
ET : parse_stringI0 (UAXR T3) 164.5968 msec/pass

While about as fast for smaller documents, the expat parser allows cET to be up to 2 times faster than
Ixml on plain parser performance for large input documents. Similar timings can be observed for the
iterparse() function:

lxe: iterparse_stringI0 (SAXR T1) 57.8308 msec/pass
cET: iterparse_stringI0 (SAXR T1) 23.8140 msec/pass
ET : iterparse_stringI0 (SAXR T1) 349.5209 msec/pass

lxe: iterparse_stringI0 (UAXR T3) 37.2162 msec/pass

cET: iterparse_stringI0 (UAXR T3) 30.2329 msec/pass
ET : iterparse_stringI0 (UAXR T3) 171.4060 msec/pass

31

CHAPTER 5. BENCHMARKS AND SPEED

However, if you benchmark the complete round-trip of a serialise-parse cycle, the numbers will look
similar to these:

lxe: write_utf8_parse_stringI0 (S-TR T1) 60.2388 msec/pass
cET: write_utf8_parse_stringI0 (S-TR T1) 314.9750 msec/pass
ET : write_utf8_parse_stringI0 (S-TR T1) 616.4260 msec/pass

lxe: write_utf8_parse_stringI0 (UATR T2) 71.7540 msec/pass
cET: write_utf8_parse_stringI0 (UATR T2) 364.4099 msec/pass
ET : write_utf8_parse_stringI0 (UATR T2) 684.5109 msec/pass

lxe: write_utf8_parse_stringI0 (S-TR T3) 10.7441 msec/pass
cET: write_utf8_parse_stringI0 (S-TR T3) 103.3869 msec/pass
ET : write_utf8_parse_stringI0 (S-TR T3) 179.5921 msec/pass

lxe: write_utf8_parse_stringI0 (SATR T4) 1.1981 msec/pass
cET: write_utf8_parse_stringI0 (SATR T4) 7.0901 msec/pass
ET : write_utf8_parse_stringI0 (SATR T4) 10.4899 msec/pass

For applications that require a high parser throughput of large files, and that do little to no serialization,
cET is the best choice. Also for iterparse applications that extract small amounts of data or aggregate
information from large XML data sets that do not fit into memory. If it comes to round-trip performance,
however, Ixml tends to be multiple times faster in total. So, whenever the input documents are not
considerably larger than the output, Ixml is the clear winner.

Regarding HTML parsing, lan Bicking has done some benchmarking on Ixml’s HTML parser, comparing
it to a number of other famous HTML parser tools for Python. lxml wins this contest by quite a length.
To give an idea, the numbers suggest that Ixml.html can run a couple of parse-serialise cycles in the
time that other tools need for parsing alone. The comparison even shows some very favourable results
regarding memory consumption.

Liza Daly has written an article that presents a couple of tweaks to get the most out of Ixml’s parser for
very large XML documents. She quite favourably positions 1xml.etree as a tool for high-performance
XML parsing.

Finally, xml.com has a couple of publications about XML parser performance. Farwick and Hafner have
written two interesting articles that compare the parser of libxml2 to some major Java based XML parsers.
One deals with event-driven parser performance, the other one presents benchmark results comparing
DOM parsers. Both comparisons suggest that libxml2’s parser performance is largely superiour to all
commonly used Java parsers in almost all cases. Note that the C parser benchmark results are based on
xmlbench, which uses a simpler setup for libxml2 than Ixml does.

The ElementTree API

Since all three libraries implement the same API, their performance is easy to compare in this area. A
major disadvantage for Ixml’s performance is the different tree model that underlies libxml2. It allows
Ixml to provide parent pointers for elements and full XPath support, but also increases the overhead of
tree building and restructuring. This can be seen from the tree setup times of the benchmark (given in
seconds):

1xe: -- S- U- -A SA UA
T1: 0.0502 0.0572 0.0613 0.0494 0.0575 0.0615
T2: 0.0602 0.0691 0.0747 0.0651 0.0745 0.0796
T3: 0.0145 0.0157 0.0176 0.0392 0.0411 0.0415
T4: 0.0003 0.0003 0.0003 0.0008 0.0008 0.0008

32

http://blog.ianbicking.org/2008/03/30/python-html-parser-performance/
http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
http://www.xml.com/
http://www.xml.com/lpt/a/1702
http://www.xml.com/lpt/a/1703
http://www.xml.com/lpt/a/1703
http://xmlbench.sourceforge.net/

CHAPTER 5. BENCHMARKS AND SPEED

cET: -- S- U- -A SA UA
Ti: 0.0092 0.0094 0.0094 0.0094 0.0096 0.0093
T2: 0.0152 0.0151 0.0152 0.0156 0.0154 0.0154
T3: 0.0079 0.0080 0.0079 0.0106 0.0107 0.0134
T4: 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

ET : -- S- U- -A SA UA
Ti: 0.1017 0.1715 0.1962 0.1080 0.2470 0.1049
T2: 0.3130 0.3324 0.1130 0.3897 0.1158 0.4246
T3: 0.0341 0.0323 0.0338 0.0358 0.3965 0.0359
T4: 0.0006 0.0005 0.0006 0.0006 0.0007 0.0006

While Ixml is still a lot faster than ET in most cases, cET can be up to five times faster than lxml
here. One of the reasons is that Ixml must encode incoming string data and tag names into UTF-8, and
additionally discard the created Python elements after their use, when they are no longer referenced. ET
and cET represent the tree itself through these objects, which reduces the overhead in creating them.

Child access

The same reason makes operations like collecting children as in list(element) more costly in lxml.
Where ET and cET can quickly create a shallow copy of their list of children, lxml has to create a
Python object for each child and collect them in a list:

lxe: root_list_children (--TR T1) 0.0148 msec/pass
cET: root_list_children (--TR T1) 0.0050 msec/pass
ET : root_list_children (--TR T1) 0.0219 msec/pass
lxe: root_list_children (--TR T2) 0.1719 msec/pass
cET: root_list_children (--TR T2) 0.0260 msec/pass

ET : root_list_children (--TR T2) 0.3390 msec/pass

This handicap is also visible when accessing single children:

lxe: first_child (--TR T2) 0.1879 msec/pass
cET: first_child (--TR T2) 0.1760 msec/pass
ET : first_child (--TR T2) 0.8099 msec/pass
lxe: last_child (--TR T1) 0.1910 msec/pass
cET: last_child (--TR T1) 0.1872 msec/pass
ET : last_child (--TR T1) 0.8099 msec/pass

. unless you also add the time to find a child index in a bigger list. ET and cET use Python lists here,
which are based on arrays. The data structure used by libxml2 is a linked tree, and thus, a linked list of
children:

lxe: middle_child (--TR T1) 0.2189 msec/pass
cET: middle_child (--TR T1) 0.1779 msec/pass
ET : middle_child (--TR T1) 0.8030 msec/pass
lxe: middle_child (--TR T2) 2.4071 msec/pass
cET: middle_child (--TR T2) 0.1781 msec/pass

ET : middle_child (--TR T2) 0.8039 msec/pass

33

CHAPTER 5. BENCHMARKS AND SPEED

Element creation

As opposed to ET, libxml2 has a notion of documents that each element must be in. This results in a
major performance difference for creating independent Elements that end up in independently created
documents:

lxe: create_elements (--TC T2) 2.1949 msec/pass
cET: create_elements (--TC T2) 0.1941 msec/pass
ET : create_elements (--TC T2) 1.2760 msec/pass

Therefore, it is always preferable to create Elements for the document they are supposed to end up in,
either as SubElements of an Element or using the explicit Element .makeelement () call:

lxe: makeelement (--TC T2) 1.8370 msec/pass
cET: makeelement (--TC T2) 0.3200 msec/pass
ET : makeelement (--TC T2) 1.5380 msec/pass
lxe: create_subelements (--TC T2) 1.6761 msec/pass
cET: create_subelements (--TC T2) 0.2329 msec/pass
ET : create_subelements (--TC T2) 3.0999 msec/pass

So, if the main performance bottleneck of an application is creating large XML trees in memory through
calls to Element and SubElement, cET is the best choice. Note, however, that the serialisation perfor-
mance may even out this advantage, especially for smaller trees and trees with many attributes.

Merging different sources

A critical action for Ixml is moving elements between document contexts. It requires Ixml to do recursive
adaptations throughout the moved tree structure.

The following benchmark appends all root children of the second tree to the root of the first tree:

lxe: append_from_document (--TR T1,T2) 3.4299 msec/pass
cET: append_from_document (--TR T1,T2) 0.2639 msec/pass
ET : append_from_document (--TR T1,T2) 1.1489 msec/pass
lxe: append_from_document (--TR T3,T4) 0.0429 msec/pass
cET: append_from_document (--TR T3,T4) 0.0169 msec/pass
ET : append_from_document (--TR T3,T4) 0.0780 msec/pass

Although these are fairly small numbers compared to parsing, this easily shows the different performance
classes for Ixml and (c¢)ET. Where the latter do not have to care about parent pointers and tree structures,
Ixml has to deep traverse the appended tree. The performance difference therefore increases with the
size of the tree that is moved.

This difference is not always as visible, but applies to most parts of the API, like inserting newly created
elements:

lxe: insert_from_document (--TR T1,T2) 6.1119 msec/pass
cET: insert_from_document (--TR T1,T2) 0.4129 msec/pass
ET : insert_from_document (--TR T1,T2) 1.4160 msec/pass

or replacing the child slice by a newly created element:

lxe: replace_children_element (--TC T1) 0.1769 msec/pass
cET: replace_children_element (--TC T1) 0.0250 msec/pass
ET : replace_children_element (--TC T1) 0.1538 msec/pass

34

CHAPTER 5. BENCHMARKS AND SPEED

as opposed to replacing the slice with an existing element from the same document:

lxe: replace_children (--TC T1)
cET: replace_children (--TC T1)
ET : replace_children (--TC T1)

0.0169 msec/pass
0.0119 msec/pass
0.0758 msec/pass

While these numbers are too small to provide a major performance impact in practice, you should keep

this difference in mind when you merge very large trees.

deepcopy

Deep copying a tree is fast in Ixml:

lxe: deepcopy_all (--TR T1)
cET: deepcopy_all (--TR T1)
ET : deepcopy_all (--TR T1)
lxe: deepcopy_all (-ATR T2)
cET: deepcopy_all (-ATR T2)
ET : deepcopy_all (-ATR T2)
lxe: deepcopy_all (S-TR T3)
cET: deepcopy_all (S-TR T3)
ET : deepcopy_all (S-TR T3)

10
115
866

.0670
.8700
.8201

msec/pass
msec/pass
msec/pass

12.4321
130.1000
901.1638

msec/pass
msec/pass
msec/pass

2
28
218

.6951
.9950
.7109

msec/pass
msec/pass
msec/pass

So, for example, if you have a database-like scenario where you parse in a large tree and then search and
copy independent subtrees from it for further processing, Ixml is by far the best choice here.

Tree traversal

Another area where Ixml is very fast is iteration for tree traversal. If your algorithms can benefit from
step-by-step traversal of the XML tree and especially if few elements are of interest or the target element

tag name is known, lxml is a good choice:

lxe: getiterator_all (--TR T1) 4.7
cET: getiterator_all (--TR T1) 45.8
ET : getiterator_all (--TR T1) 22.9
lxe: getiterator_islice (--TR T2) 0.0
cET: getiterator_islice (--TR T2) 0.3
ET : getiterator_islice (--TR T2) 0.1
lxe: getiterator_tag (--TR T2) 0.0
cET: getiterator_tag (--TR T2) 0.8
ET : getiterator_tag (--TR T2) 0.3
lxe: getiterator_tag_all (--TR T2) 0.6
cET: getiterator_tag_all (--TR T2) 46.3
ET : getiterator_tag_all (--TR T2) 20.3

This translates directly into similar timings for Element

1xe: findall (--TR T2) 6.7
cET: findall (--TR T2) 51.2
ET : findall (--TR T2) 26.9

35

209
400
480

msec/pass
msec/pass
msec/pass

398
798
900

msec/pass
msec/pass
msec/pass

160
149
560

msec/pass
msec/pass
msec/pass

580
769
989

msec/pass
msec/pass
msec/pass

.findall(Q):

198 msec/pass
750 msec/pass
110 msec/pass

CHAPTER 5. BENCHMARKS AND SPEED

lxe: findall (--TR T3) 1.4520 msec/pass
cET: findall (--TR T3) 14.2760 msec/pass
ET : findall (--TR T3) 8.4310 msec/pass
lxe: findall_tag (--TR T2) 0.7401 msec/pass
cET: findall_tag (--TR T2) 46.5961 msec/pass
ET : findall_tag (--TR T2) 20.3760 msec/pass
lxe: findall_tag (--TR T3) 0.3331 msec/pass
cET: findall_tag (--TR T3) 11.5960 msec/pass
ET : findall_tag (--TR T3) 5.4510 msec/pass

Note that all three libraries currently use the same Python implementation for .findall(), except for
their native tree iterator (element.iter()).

XPath

The following timings are based on the benchmark script bench xpath.py.

This part of Ixml does not have an equivalent in ElementTree. However, Ixml provides more than one
way of accessing it and you should take care which part of the Ixml API you use. The most straight
forward way is to call the xpath() method on an Element or ElementTree:

lxe: xpath_method (--TC T1) 1.5750 msec/pass
lxe: xpath_method (--TC T2) 20.9570 msec/pass
lxe: xpath_method (--TC T3) 0.1199 msec/pass
lxe: xpath_method (--TC T4) 1.0121 msec/pass

This is well suited for testing and when the XPath expressions are as diverse as the trees they are called
on. However, if you have a single XPath expression that you want to apply to a larger number of different
elements, the XPath class is the most efficient way to do it:

lxe: xpath_class (--TC TD) 0.6301 msec/pass
lxe: xpath_class (--TC T2) 2.6128 msec/pass
lxe: xpath_class (--TC T3) 0.0498 msec/pass
lxe: xpath_class (--TC T4) 0.1400 msec/pass

Note that this still allows you to use variables in the expression, so you can parse it once and then adapt
it through variables at call time. In other cases, where you have a fixed Element or ElementTree and
want to run different expressions on it, you should consider the XPathEvaluator:

lxe: xpath_element (--TR T1) 0.2739 msec/pass
lxe: xpath_element (--TR T2) 10.8800 msec/pass
lxe: xpath_element (--TR T3) 0.0660 msec/pass
lxe: xpath_element (--TR T4) 0.2739 msec/pass

While it looks slightly slower, creating an XPath object for each of the expressions generates a much
higher overhead here:

lxe: xpath_class_repeat (--TC T1) 1.5399 msec/pass
lxe: xpath_class_repeat (--TC T2) 20.5159 msec/pass
lxe: xpath_class_repeat (--TC T3) 0.1178 msec/pass
lxe: xpath_class_repeat (--TC T4) 0.9880 msec/pass

36

http://codespeak.net/svn/lxml/trunk/benchmark/bench_xpath.py

CHAPTER 5. BENCHMARKS AND SPEED

A longer example

... based on Ixml 1.3.

A while ago, Uche Ogbuji posted a benchmark proposal that would read in a 3MB XML version of the
Old Testament of the Bible and look for the word begat in all verses. Apparently, it is contained in 120
out of almost 24000 verses. This is easy to implement in ElementTree using findall (). However, the
fastest and most memory friendly way to do this is obviously iterparse(), as most of the data is not
of any interest.

Now, Uche’s original proposal was more or less the following:

def bench_ET():
tree = ElementTree.parse("ot.xml")
result = []
for v in tree.findall("//v"):
text = v.text
if ’begat’ in text:
result.append(text)
return len(result)

which takes about one second on my machine today. The faster iterparse() variant looks like this:

def bench_ET_iterparse():
result = []
for event, v in ElementTree.iterparse("ot.xml"):
if v.tag == ’v’:
text = v.text
if ’begat’ in text:
result.append (text)
v.clear()
return len(result)

The improvement is about 10%. At the time I first tried (early 2006), lxml didn’t have iterparse()
support, but the findall() variant was already faster than ElementTree. This changes immediately
when you switch to cElementTree. The latter only needs 0.17 seconds to do the trick today and only
some impressive 0.10 seconds when running the iterparse version. And even back then, it was quite a
bit faster than what Ixml could achieve.

Since then, Ixml has matured a lot and has gotten much faster. The iterparse variant now runs in 0.14
seconds, and if you remove the v.clear (), it is even a little faster (which isn’t the case for cElementTree).

One of the many great tools in Ixml is XPath, a swiss army knife for finding things in XML documents.
It is possible to move the whole thing to a pure XPath implementation, which looks like this:

def bench_lxml_xpath_all():
tree = etree.parse("ot.xml")
result = tree.xpath("//v[contains(., ’begat’)]/text(")
return len(result)

This runs in about 0.13 seconds and is about the shortest possible implementation (in lines of Python
code) that I could come up with. Now, this is already a rather complex XPath expression compared to
the simple “//v” ElementPath expression we started with. Since this is also valid XPath, let’s try this
instead:

def bench_lxml_xpath():
tree = etree.parse("ot.xml")
result = []

37

http://www.onlamp.com/pub/wlg/6291
http://www.ibiblio.org/bosak/xml/eg/religion.2.00.xml.zip

CHAPTER 5. BENCHMARKS AND SPEED

for v in tree.xpath("//v"):
text = v.text
if ’begat’ in text:
result.append(text)
return len(result)

This gets us down to 0.12 seconds, thus showing that a generic XPath evaluation engine cannot always
compete with a simpler, tailored solution. However, since this is not much different from the original
findall variant, we can remove the complexity of the XPath call completely and just go with what we
had in the beginning. Under lxml, this runs in the same 0.12 seconds.

But there is one thing left to try. We can replace the simple ElementPath expression with a native tree
iterator:

def bench_lxml_getiterator():
tree = etree.parse("ot.xml")
result = []
for v in tree.getiterator("v"):
text = v.text
if ’begat’ in text:
result.append(text)
return len(result)

This implements the same thing, just without the overhead of parsing and evaluating a path expression.
And this makes it another bit faster, down to 0.11 seconds. For comparison, cElementTree runs this
version in 0.17 seconds.

So, what have we learned?

e Python code is not slow. The pure XPath solution was not even as fast as the first shot Python
implementation. In general, a few more lines in Python make things more readable, which is much
more important than the last 5% of performance.

e It’s important to know the available options - and it’s worth starting with the most simple
one. In this case, a programmer would then probably have started with getiterator("v") or
iterparse(). Either of them would already have been the most efficient, depending on which
library is used.

e It’s important to know your tool. lxml and cElementTree are both very fast libraries, but they
do not have the same performance characteristics. The fastest solution in one library can be
comparatively slow in the other. If you optimise, optimise for the specific target platform.

e It’s not always worth optimising. After all that hassle we got from 0.12 seconds for the initial
implementation to 0.11 seconds. Switching over to cElementTree and writing an iterparse()
based version would have given us 0.10 seconds - not a big difference for 3MB of XML.

e Take care what operation is really dominating in your use case. If we split up the operations, we
can see that 1xml is slightly slower than cElementTree on parse() (both about 0.06 seconds), but
more visibly slower on iterparse(): 0.07 versus 0.10 seconds. However, tree iteration in Ixml is
increadibly fast, so it can be better to parse the whole tree and then iterate over it rather than
using iterparse() to do both in one step. Or, you can just wait for the lxml developers to optimise
iterparse in one of the next releases...

Ixml.objectify

The following timings are based on the benchmark script bench objectify.py.

38

http://codespeak.net/svn/lxml/trunk/benchmark/bench_objectify.py

CHAPTER 5. BENCHMARKS AND SPEED

Objectify is a data-binding API for XML based on Ixml.etree, that was added in version 1.1. It uses
standard Python attribute access to traverse the XML tree. It also features ObjectPath, a fast path
language based on the same meme.

Just like Ixml.etree, Ixml.objectify creates Python representations of elements on the fly. To save memory,
the normal Python garbage collection mechanisms will discard them when their last reference is gone. In
cases where deeply nested elements are frequently accessed through the objectify API, the create-discard
cycles can become a bottleneck, as elements have to be instantiated over and over again.

ObjectPath

ObjectPath can be used to speed up the access to elements that are deep in the tree. It avoids step-by-step
Python element instantiations along the path, which can substantially improve the access time:

lxe: attribute (--TR T1) 6.9990 msec/pass
lxe: attribute (--TR T2) 29.2060 msec/pass
lxe: attribute (--TR T4) 6.9048 msec/pass
lxe: objectpath (--TR T1) 3.5410 msec/pass
lxe: objectpath (--TR T2) 24.9801 msec/pass
lxe: objectpath (--TR T4) 3.5069 msec/pass
lxe: attributes_deep (--TR T1) 16.9580 msec/pass
lxe: attributes_deep (--TR T2) 39.8140 msec/pass
lxe: attributes_deep (--TR T4) 16.9699 msec/pass
lxe: objectpath_deep (--TR T1) 9.4180 msec/pass
lxe: objectpath_deep (--TR T2) 31.7512 msec/pass
lxe: objectpath_deep (--TR T4) 9.4421 msec/pass

Note, however, that parsing ObjectPath expressions is not for free either, so this is most effective for
frequently accessing the same element.

Caching Elements

A way to improve the normal attribute access time is static instantiation of the Python objects, thus
trading memory for speed. Just create a cache dictionary and run:

cache[root] = list(root.iter())
after parsing and:
del cachel[root]

when you are done with the tree. This will keep the Python element representations of all elements alive
and thus avoid the overhead of repeated Python object creation. You can also consider using filters or
generator expressions to be more selective. By choosing the right trees (or even subtrees and elements)
to cache, you can trade memory usage against access speed:

lxe: attribute_cached (--TR T1) 5.1420 msec/pass
lxe: attribute_cached (--TR T2) 27.0739 msec/pass
lxe: attribute_cached (--TR T4) 5.1429 msec/pass
lxe: attributes_deep_cached (--TR T1) 7.0908 msec/pass
lxe: attributes_deep_cached (--TR T2) 29.5591 msec/pass

39

CHAPTER 5. BENCHMARKS AND SPEED

lxe: attributes_deep_cached (--TR T4) 7.1721 msec/pass
lxe: objectpath_deep_cached (--TR T1) 2.2731 msec/pass
lxe: objectpath_deep_cached (--TR T2) 23.1631 msec/pass
lxe: objectpath_deep_cached (--TR T4) 2.3179 msec/pass

Things to note: you cannot currently use weakref .WeakKeyDictionary objects for this as Ixml’s element
objects do not support weak references (which are costly in terms of memory). Also note that new element
objects that you add to these trees will not turn up in the cache automatically and will therefore still be
garbage collected when all their Python references are gone, so this is most effective for largely immutable
trees. You should consider using a set instead of a list in this case and add new elements by hand.

Further optimisations

Here are some more things to try if optimisation is required:

e A lot of time is usually spent in tree traversal to find the addressed elements in the tree. If you
often work in subtrees, do what you would also do with deep Python objects: assign the parent
of the subtree to a variable or pass it into functions instead of starting at the root. This allows
accessing its descendents more directly.

e Try assigning data values directly to attributes instead of passing them through DataElement.

e If you use custom data types that are costly to parse, try running objectify.annotate() over
read-only trees to speed up the attribute type inference on read access.

Note that none of these measures is guaranteed to speed up your application. As usual, you should
prefer readable code over premature optimisations and profile your expected use cases before bothering
to apply optimisations at random.

40

Chapter 6

ElementTree compatibility of Ixml.etree

A lot of care has been taken to ensure compatibility between etree and ElementTree. Nonetheless, some
differences and incompatibilities exist:

e Importing etree is obviously different; etree uses a lower-case package name, while ElementTree
uses a combination of upper-case and lower case in imports:

etree
from 1lxml.etree import Element

ElementTree
from elementtree.ElementTree import Element

ElementTree in the Python 2.5 standard library
from xml.etree.ElementTree import Element

When switching over code from ElementTree to Ixml.etree, and you’re using the package name
prefix "ElementTree’, you can do the following:

anstead of

from elementtree import ElementTree
use

from 1xml import etree as ElementTree

e Ixml.etree offers a lot more functionality, such as XPath, XSLT, Relax NG, and XML Schema
support, which (c¢)ElementTree does not offer.

e etree has a different idea about Python unicode strings than ElementTree. In most parts of the API,
ElementTree uses plain strings and unicode strings as what they are. This includes Element.text,
Element.tail and many other places. However, the ElementTree parsers assume by default that any
string (str or unicode) contains ASCII data. They raise an exception if strings do not match the
expected encoding.

etree has the same idea about plain strings (str) as ElementTree. For unicode strings, however,
etree assumes throughout the API that they are Python unicode encoded strings rather than byte
data. This includes the parsers. It is therefore perfectly correct to pass XML unicode data into the
etree parsers in form of Python unicode strings. It is an error, on the other hand, if unicode strings
specify an encoding in their XML declaration, as this conflicts with the characteristic encoding of
Python unicode strings.

e ElementTree allows you to place an Element in two different trees at the same time. Thus, this:

41

CHAPTER 6. ELEMENTTREE COMPATIBILITY OF LXML.ETREE

Element(’a’)
SubElement(a, ’b’)
Element(’c’)
.append (b)

0O o0 o e
I

will result in the following tree a:
<a>

and the following tree c:

<c></c>

In Ixml, this behavior is different, because lxml is built on top of a tree that maintains parent
relationships for elements (like W3C DOM). This means an element can only exist in a single tree
at the same time. Adding an element in some tree to another tree will cause this element to be
moved.

So, for tree a we will get:
<a>

and for tree ¢ we will get:
<c></c>

Unfortunately this is a rather fundamental difference in behavior, which is hard to change. It won’t
affect some applications, but if you want to port code you must unfortunately make sure that it
doesn’t affect yours.

etree allows navigation to the parent of a node by the getparent () method and to the siblings by
calling getnext () and getprevious(). This is not possible in ElementTree as the underlying tree
model does not have this information.

When trying to set a subelement using setitem _ that is in fact not an Element but some other
object, etree raises a TypeError, and ElementTree raises an AssertionError. This also applies to
some other places of the API. In general, etree tries to avoid AssertionErrors in favour of being
more specific about the reason for the exception.

When parsing fails in iterparse(), ElementTree up to version 1.2.x raises a low-level ExpatError
instead of a SyntaxError as the other parsers. Both Ixml and ElementTree 1.3 raise a ParseError
for parser errors.

The iterparse() function in Ixml is implemented based on the libxml2 parser and tree generator.
This means that modifications of the document root or the ancestors of the current element during
parsing can irritate the parser and even segfault. While this is not a problem in the Python object
structure used by ElementTree, the C tree underlying Ixml suffers from it. The golden rule for
iterparse() on lxml therefore is: do not touch anything that will have to be touched again by
the parser later on. See the Ixml parser documentation on this.

ElementTree ignores comments and processing instructions when parsing XML, while etree will
read them in and treat them as Comment or Processinglnstruction elements respectively. This is
especially visible where comments are found inside text content, which is then split by the Comment
element.

You can disable this behaviour by passing the boolean remove_comments and/or remove_pis key-
word arguments to the parser you use. For convenience and to support portable code, you can also
use the etree.ETCompatXMLParser instead of the default etree.XMLParser. It tries to provide a
default setup that is as close to the ElementTree parser as possible.

42

CHAPTER 6. ELEMENTTREE COMPATIBILITY OF LXML.ETREE

The TreeBuilder class of 1xml.etree uses a different signature for the start () method. It accepts
an additional argument nsmap to propagate the namespace declarations of an element in addition
to its own namespace. To assure compatibility with ElementTree (which does not support this
argument), Ixml checks if the method accepts 3 arguments before calling it, and otherwise drops
the namespace mapping. This should work with most existing ElementTree code, although there
may still be conflicting cases.

ElementTree 1.2 has a bug when serializing an empty Comment (no text argument given) to XML,
etree serializes this successfully.

ElementTree adds whitespace around comments on serialization, Ixml does not. This means that
a comment text “text” that ElementTree serializes as “<!-- text -->" will become “<!--text-->" in
Ixml.

When the string *’ is used as tag filter in the Element.getiterator() method, ElementTree
returns all elements in the tree, including comments and processing instructions. Ixml.etree only
returns real Elements, i.e. tree nodes that have a string tag name. Without a filter, both libraries
iterate over all nodes.

Note that currently only Ixml.etree supports passing the Element factory function as filter to select
only Elements. Both libraries support passing the Comment and ProcessingInstruction factories
to select the respective tree nodes.

ElementTree merges the target of a processing instruction into PI.text, while Ixml.etree puts it
into the .target property and leaves it out of the .text property. The pi.text in ElementTree
therefore correspondents to pi.target + " " + pi.text in Ixml.etree.

Because etree is built on top of libxml2, which is namespace prefix aware, etree preserves namespaces
declarations and prefixes while ElementTree tends to come up with its own prefixes (ns0, nsl, etc).
When no namespace prefix is given, however, etree creates ElementTree style prefixes as well.

etree has a ’prefix’ attribute (read-only) on elements giving the Element’s prefix, if this is known,
and None otherwise (in case of no namespace at all, or default namespace).

etree further allows passing an 'nsmap’ dictionary to the Element and SubElement element factories
to explicitly map namespace prefixes to namespace URIs. These will be translated into namespace
declarations on that element. This means that in the probably rare case that you need to construct
an attribute called 'nsmap’, you need to be aware that unlike in ElementTree, you cannot pass it
as a keyword argument to the Element and SubElement factories directly.

ElementTree allows QName objects as attribute values and resolves their prefix on serialisation
(e.g. an attribute value QName ("{myns}myname") becomes “p:myname” if “p” is the namespace
prefix of “myns”). lxml.etree also allows you to set attribute values from QName instances (and
also .text values), but it resolves their prefix immediately and stores the plain text value. So, if
prefixes are modified later on, e.g. by moving a subtree to a different tree (which reassigns the
prefix mappings), the text values will not be updated and you might end up with an undefined
prefix.

etree elements can be copied using copy.deepcopy() and copy.copy (), just like ElementTree’s.
However, copy.copy() does not create a shallow copy where elements are shared between trees, as
this makes no sense in the context of libxml2 trees. Note that Ixml can deep-copy trees considerably
faster than ElementTree, so a deep copy might still be fast enough to replace a shallow copy in
your case.

43

Chapter 7

Ixml FAQ - Frequently Asked Questions

Frequently asked questions on lxml. See also the notes on compatibility to ElementTree.

General Questions

Is there a tutorial?

Read the Ixml.etree Tutorial. While this is still work in progress (just as any good documentation), it
provides an overview of the most important concepts in 1xml .etree. If you want to help out, improving
the tutorial is a very good place to start.

There is also a tutorial for ElementTree which works for 1xml . etree. The documentation of the extended
etree API also contains many examples for 1xml.etree. Fredrik Lundh’s element library contains a lot
of nice recipes that show how to solve common tasks in ElementTree and lxml.etree. To learn using
1xml.objectify, read the objectify documentation.

John Shipman has written another tutorial called Python XML processing with lxml that contains lots
of examples. Liza Daly wrote a nice article about high-performance aspects when parsing large files with
Ixml.

Where can I find more documentation about lxml?

There is a lot of documentation on the web and also in the Python standard library documentation, as
Ixml implements the well-known ElementTree API and tries to follow its documentation as closely as
possible. The recipes in Fredrik Lundh’s element library are generally worth taking a look at. There
are a couple of issues where Ixml cannot keep up compatibility. They are described in the compatibility
documentation.

The Ixml specific extensions to the API are described by individual files in the doc directory of the source
distribution and on the web page.

The generated API documentation is a comprehensive API reference for the Ixml package.

44

http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element.htm
http://effbot.org/zone/element-lib.htm
http://www.nmt.edu/tcc/help/pubs/pylxml/
http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-lib.htm
http://codespeak.net/lxml/#documentation
file:api/index.html

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

What standards does Ixml implement?

The compliance to XML Standards depends on the support in libxml2 and libxslt. Here is a quote from
http://xmlsoft.org/:

In most cases libxml2 tries to implement the specifications in a relatively strictly compliant
way. As of release 2.4.16, libxml2 passed all 1800+ tests from the OASIS XML Tests Suite.

Ixml currently supports libxml2 2.6.20 or later, which has even better support for various XML standards.
The important ones are:

e XML 1.0

e HTML 4

e XML namespaces
e XML Schema 1.0
e XPath 1.0

e XInclude 1.0

e XSLT 1.0

e EXSLT

e XML catalogs

e canonical XML
e RelaxNG

e xml:id

e xml:base

Support for XML Schema is currently not 100% complete in libxml2, but is definitely very close to
compliance. Schematron is supported, although not necessarily complete. libxml2 also supports loading
documents through HTTP and FTP.

Who uses Ixml?

As an XML library, Ixml is often used under the hood of in-house server applications, such as web servers
or applications that facilitate some kind of document management. Many people who deploy Zope or
Plone use it together with lxml. Therefore, it is hard to get an idea of who uses it, and the following list
of ’users and projects we know of’ is definitely not a complete list of Ixml’s users.

Also note that the compatibility to the ElementTree library does not require projects to set a hard
dependency on Ixml - as long as they do not take advantage of Ixml’s enhanced feature set.

e cssutils, a CSS parser and toolkit, can be used with 1xml.cssselect

Deliverance, a content theming tool

Enfold Proxy 4, a web server accelerator with on-the-fly XSLT processing

Inteproxy, a secure HT'TP proxy

lwebstring, an XML template engine

45

http://xmlsoft.org/
http://www.zope.org/
http://www.plone.org/
http://code.google.com/p/cssutils/source/browse/trunk/examples/style.py?r=917
http://www.openplans.org/projects/deliverance/project-home
http://www.enfoldsystems.com/Products/Proxy/4
http://lists.wald.intevation.org/pipermail/inteproxy-devel/2007-February/000000.html
http://pypi.python.org/pypi/lwebstring

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

OpenXMLIib, a library for handling OpenXML document meta data

Pycoon, a WSGI web development framework based on XML pipelines

PyQuery, a query framework for XML /HTML, similar to jQuery for JavaScript

Rambler, a meta search engine that aggregates different data sources

rdfadict, an RDFa parser with a simple dictionary-like interface.
Zope3 and some of its extensions have good support for Ixml:
e gocept.lxml, Zope3 interface bindings for lxml
e z3c.rml, an implementation of ReportLab’s RML format
e zif.sedna, an XQuery based interface to the Sedna OpenSource XML database

And don’t miss the quotes by our generally happy users, and other sites that link to Ixml. As Liza Daly
puts it: “Many software products come with the pick-two caveat, meaning that you must choose only
two: speed, flexibility, or readability. When used carefully, Ixml can provide all three.”

What is the difference between lxml.etree and Ixml.objectify?

The two modules provide different ways of handling XML. However, objectify builds on top of Ixml.etree
and therefore inherits most of its capabilities and a large portion of its APIL.

e Ixml.etree is a generic API for XML and HTML handling. It aims for ElementTree compatibility
and supports the entire XML infoset. It is well suited for both mixed content and data centric
XML. Its generality makes it the best choice for most applications.

e Ixml.objectify is a specialized API for XML data handling in a Python object syntax. It provides
a very natural way to deal with data fields stored in a structurally well defined XML format. Data
is automatically converted to Python data types and can be manipulated with normal Python
operators. Look at the examples in the objectify documentation to see what it feels like to use it.

Objectify is not well suited for mixed contents or HTML documents. As it is built on top of
Ixml.etree, however, it inherits the normal support for XPath, XSLT or validation.

How can I make my application run faster?

Ixml.etree is a very fast library for processing XML. There are, however, a few caveats involved in the
mapping of the powerful libxml2 library to the simple and convenient ElementTree API. Not all operations
are as fast as the simplicity of the API might suggest, while some use cases can heavily benefit from
finding the right way of doing them. The benchmark page has a comparison to other ElementTree
implementations and a number of tips for performance tweaking. As with any Python application, the
rule of thumb is: the more of your processing runs in C, the faster your application gets. See also the
section on threading.

What about that trailing text on serialised Elements?

The ElementTree tree model defines an Element as a container with a tag name, contained text, child
Elements and a tail text. This means that whenever you serialise an Element, you will get all parts of
that Element:

46

http://permalink.gmane.org/gmane.comp.python.lxml.devel/3250
http://pypi.python.org/pypi/pycoon
http://pypi.python.org/pypi/pyquery
http://beta.rambler.ru/srch?query=python+lxml&searchtype=web
http://pypi.python.org/pypi/rdfadict
http://pypi.python.org/pypi/gocept.lxml
http://pypi.python.org/pypi/z3c.rml
http://pypi.python.org/pypi/zif.sedna
http://thread.gmane.org/gmane.comp.python.lxml.devel/3244/focus=3244
http://article.gmane.org/gmane.comp.python.lxml.devel/3246
http://www.google.com/search?as_lq=http:%2F%2Fcodespeak.net%2Flxml
http://www.ibm.com/developerworks/xml/library/x-hiperfparse/

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

>>> root = etree.XML("<root><tag>text<child/></tag>tail</root>")
>>> print(etree.tostring(root[0]))
<tag>text<child/></tag>tail

Here is an example that shows why not serialising the tail would be even more surprising from an object
point of view:

>>> root = etree.Element("test")

>>> root.text = "TEXT"
>>> print(etree.tostring(root))
<test>TEXT</test>

>>> root.tail = "TAIL"
>>> print(etree.tostring(root))
<test>TEXT</test>TAIL

>>> root.tail = None
>>> print(etree.tostring(root))
<test>TEXT</test>

Just imagine a Python list where you append an item and it doesn’t show up when you look at the list.

The .tail property is a huge simplification for the tree model as it avoids text nodes to appear in the
list of children and makes access to them quick and simple. So this is a benefit in most applications and
simplifies many, many XML tree algorithms.

However, in document-like XML (and especially HTML), the above result can be unexpected to new
users and can sometimes require a bit more overhead. A good way to deal with this is to use helper
functions that copy the Element without its tail. The 1xml.html package also deals with this in a couple
of places, as most HTML algorithms benefit from a tail-free behaviour.

How can I find out if an Element is a comment or PI?

>>> root = etree.XML("<?my PI7><root><!-- empty --></root>")

>>> root.tag

’root’

>>> root.getprevious() .tag is etree.PI
True

>>> root[0] .tag is etree.Comment

True

How can I map an XML tree into a dict of dicts?

I'm glad you asked.

def recursive_dict(element):
return element.tag, \
dict(map(recursive_dict, element)) or element.text

47

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

Installation

Which version of libxml2 and libxslt should I use or require?

It really depends on your application, but the rule of thumb is: more recent versions contain less bugs
and provide more features.

e Do not use libxml2 2.6.27 if you want to use XPath (including XSLT'). You will get crashes when
XPath errors occur during the evaluation (e.g. for unknown functions). This happens inside the
evaluation call to libxml2, so there is nothing that Ixml can do about it.

e Try to use versions of both libraries that were released together. At least the libxml2 version should
not be older than the libxslt version.

e If you use XML Schema or Schematron which are still under development, the most recent version
of libxml2 is usually a good bet.

e The same applies to XPath, where a substantial number of bugs and memory leaks were fixed over
time. If you encounter crashes or memory leaks in XPath applications, try a more recent version
of libxml2.

e For parsing and fixing broken HTML, Ixml requires at least libxml2 2.6.21.
e For the normal tree handling, however, any libxml2 version starting with 2.6.20 should do.

Read the release notes of libxml2 and the release notes of libxslt to see when (or if) a specific bug has
been fixed.

Where are the binary builds?

Sidnei da Silva regularly contributes Windows binaries for new releases. This is because two of the major
problems of Microsoft Windows make it non-trivial for users to build Ixml on this platform: the lack of
a pre-installed standard compiler and the missing package management.

If there is not currently a binary distribution of the most recent lxml release for this platform available
from the Python Package Index (PyPI), please look through the older versions to see if they provide a
binary build. This is done by appending the version number to the PyPI URL, e.g.:

http://pypi.python.org/pypi/lxml/2.1.5

Apart from that, we generally do not provide binary builds of Ixml, as most of the other operating
systems out there can build lxml without problems (with the exception of MacOS-X), and the sheer
mass of variations between platforms makes it futile to provide builds for everyone.

Why do I get errors about missing UCS4 symbols when installing Ixml?

Most likely, you use a Python installation that was configured for internal use of UCS2 unicode, meaning
16-bit unicode. The Ixml egg distributions are generally compiled on platforms that use UCS4, a 32-bit
unicode encoding, as this is used on the majority of platforms. Sadly, both are not compatible, so the
eggs can only support the one they were compiled with.

This means that you have to compile Ixml from sources for your system. Note that you do not need
Cython for this, the Ixml source distribution is directly compilable on both platform types. See the build
instructions on how to do this.

48

http://xmlsoft.org/news.html
http://xmlsoft.org/XSLT/news.html

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

Contributing

Why is Ixml not written in Python?

It almost is.

Ixml is not written in plain Python, because it interfaces with two C libraries: libxml2 and libxslt.
Accessing them at the C-level is required for performance reasons.

However, to avoid writing plain C-code and caring too much about the details of built-in types and
reference counting, lxml is written in Cython, a Python-like language that is translated into C-code.
Chances are that if you know Python, you can write code that Cython accepts. Again, the C-ish style
used in the Ixml code is just for performance optimisations. If you want to contribute, don’t bother with
the details, a Python implementation of your contribution is better than none. And keep in mind that
Ixml’s flexible API often favours an implementation of features in pure Python, without bothering with
C-code at all. For example, the 1xml.html package is entirely written in Python.

Please contact the mailing list if you need any help.

How can I contribute?

If you find something that you would like Ixml to do (or do better), then please tell us about it on the
mailing list. Patches are always appreciated, especially when accompanied by unit tests and documen-
tation (doctests would be great). See the tests subdirectories in the lxml source tree (below the src
directory) and the ReST text files in the doc directory.

We also have a list of missing features that we would like to implement but didn’t due to lack if time. If
you find the time, patches are very welcome.

Besides enhancing the code, there are a lot of places where you can help the project and its user base.
You can

e spread the word and write about Ixml. Many users (especially new Python users) have not yet
heared about lxml, although our user base is constantly growing. If you write your own blog and
feel like saying something about lxml, go ahead and do so. If we think your contribution or criticism
is valuable to other users, we may even put a link or a quote on the project page.

e provide code examples for the general usage of Ixml or specific problems solved with Ixml. Readable
code is a very good way of showing how a library can be used and what great things you can do
with it. Again, if we hear about it, we can set a link on the project page.

e work on the documentation. The web page is generated from a set of ReST text files. It is meant
both as a representative project page for Ixml and as a site for documenting Ixml’s API and usage.
If you have questions or an idea how to make it more readable and accessible while you are reading
it, please send a comment to the mailing list.

e enhance the web site. We put some work into making the web site usable, understandable and
also easy to find, but there’s always things that can be done better. You may notice that we are
not top-ranked when searching the web for “Python and XML”, so maybe you have an idea how to
improve that.

e help with the tutorial. A tutorial is the most important stating point for new users, so it is
important for us to provide an easy to understand guide into lxml. As allo documentation, the
tutorial is work in progress, so we appreciate every helping hand.

e improve the docstrings. Ixml uses docstrings to support Python’s integrated online help () function.

49

http://www.cython.org/
http://docs.cython.org/docs/tutorial.html
http://codespeak.net/mailman/listinfo/lxml-dev
http://codespeak.net/mailman/listinfo/lxml-dev
http://docutils.sourceforge.net/rst.html
http://codespeak.net/svn/lxml/trunk/doc/
http://codespeak.net/svn/lxml/trunk/IDEAS.txt
http://docutils.sourceforge.net/rst.html
http://codespeak.net/svn/lxml/trunk/doc/
http://codespeak.net/mailman/listinfo/lxml-dev

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

However, sometimes these are not sufficient to grasp the details of the function in question. If you
find such a place, you can try to write up a better description and send it to the mailing list.

Bugs

My application crashes!

One of the goals of Ixml is “no segfaults”, so if there is no clear warning in the documentation that you
were doing something potentially harmful, you have found a bug and we would like to hear about it.
Please report this bug to the mailing list. See the section on bug reporting to learn how to do that.

If your application (or e.g. your web container) uses threads, please see the FAQ section on threading
to check if you touch on one of the potential pitfalls.

In any case, try to reproduce the problem with the latest versions of libxml2 and libxslt. From time
to time, bugs and race conditions are found in these libraries, so a more recent version might already
contain a fix for your problem.

Remember: even if you see Ixml appear in a crash stack trace, it is not necessarily lxml that caused the
crash.

My application crashes on MacOS-X!

This was a common problem up to Ixml 2.1.x. Since Ixml 2.2, the only officially supported way to use
it on this platform is through a static build against freshly downloaded versions of libxml2 and libxslt.
See the build instructions for MacOS-X.

I think I have found a bug in Ixml. What should I do?

First, you should look at the current developer changelog to see if this is a known problem that has
already been fixed in the SVN trunk since the release you are using.

Also, the ’crash’ section above has a few good advices what to try to see if the problem is really in Ixml -
and not in your setup. Believe it or not, that happens more often than you might think, especially when
old libraries or even multiple library versions are installed.

You should always try to reproduce the problem with the latest versions of libxml2 and libxslt - and
make sure they are used. 1xml.etree can tell you what it runs with:

from 1lxml import etree

print "lxml.etree: ", etree.LXML_VERSION

print "libxml used: ", etree.LIBXML_VERSION

print "libxml compiled: ", etree.LIBXML_COMPILED_VERSION
print "libxslt used: ", etree.LIBXSLT_VERSION

print "libxslt compiled: ", etree.LIBXSLT_COMPILED_VERSION

If you can figure that the problem is not in Ixml but in the underlying libxml2 or libxslt, you can ask
right on the respective mailing lists, which may considerably reduce the time to find a fix or work-around.
See the next question for some hints on how to do that.

Otherwise, we would really like to hear about it. Please report it to the mailing list so that we can fix
it. It is very helpful in this case if you can come up with a short code snippet that demonstrates your

50

http://codespeak.net/mailman/listinfo/lxml-dev
http://codespeak.net/mailman/listinfo/lxml-dev
http://codespeak.net/svn/lxml/trunk/CHANGES.txt
http://codespeak.net/mailman/listinfo/lxml-dev

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

problem. If others can reproduce and see the problem, it is much easier for them to fix it - and maybe
even easier for you to describe it and get people convinced that it really is a problem to fix.

It is important that you always report the version of Ixml, libxml2 and libxslt that you get from the code
snippet above. If we do not know the library versions you are using, we will ask back, so it will take
longer for you to get a helpful answer.

Since as a user of Ixml you are likely a programmer, you might find this article on bug reports an
interesting read.

How do I know a bug is really in Ixml and not in libxml2?

A large part of Ixml’s functionality is implemented by libxml2 and libxslt, so problems that you encounter
may be in one or the other. Knowing the right place to ask will reduce the time it takes to fix the problem,
or to find a work-around.

Both libxml2 and libxslt come with their own command line frontends, namely xm1lint and xsltproc.
If you encounter problems with XSLT processing for specific stylesheets or with validation for specific
schemas, try to run the XSLT with xsltproc or the validation with xm11int respectively to find out if it
fails there as well. If it does, please report directly to the mailing lists of the respective project, namely:

e libxml2 mailing list
e libxslt mailing list

On the other hand, everything that seems to be related to Python code, including custom resolvers,
custom XPath functions, etc. is likely outside of the scope of libxml2/libxslt. If you encounter problems
here or you are not sure where there the problem may come from, please ask on the Ixml mailing list
first.

In any case, a good explanation of the problem including some simple test code and some input data
will help us (or the libxml2 developers) see and understand the problem, which largely increases your
chance of getting help. See the question above for a few hints on what is helpful here.

Threading

Can I use threads to concurrently access the Ixml API?

Short answer: yes, if you use Ixml 2.2 and later.

Since version 1.1, Ixml frees the GIL (Python’s global interpreter lock) internally when parsing from
disk and memory, as long as you use either the default parser (which is replicated for each thread)
or create a parser for each thread yourself. lxml also allows concurrency during validation (RelaxNG
and XMLSchema) and XSL transformation. You can share RelaxNG, XMLSchema and XSLT objects
between threads.

While you can also share parsers between threads, this will serialize the access to each of them, so it is
better to .copy() parsers or to just use the default parser if you do not need any special configuration.
The same applies to the XPath evaluators, which use an internal lock to protect their prepared evaluation
contexts. It is therefore best to use separate evaluator instances in threads.

Warning: Before Ixml 2.2, and especially before 2.1, there were various issues when moving subtrees
between different threads, or when applying XSLT objects from one thread to trees parsed or modified
in another. If you need code to run with older versions, you should generally avoid modifying trees
in other threads than the one it was generated in. Although this should work in many cases, there

51

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://mail.gnome.org/mailman/listinfo/xml
http://mail.gnome.org/mailman/listinfo/xslt

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

are certain scenarios where the termination of a thread that parsed a tree can crash the application if
subtrees of this tree were moved to other documents. You should be on the safe side when passing trees
between threads if you either

e do not modify these trees and do not move their elements to other trees, or

e do not terminate threads while the trees they parsed are still in use (e.g. by using a fixed size
thread-pool or long-running threads in processing chains)

Since Ixml 2.2, even multi-thread pipelines are supported. However, note that it is more efficient to do
all tree work inside one thread, than to let multiple threads work on a tree one after the other. This is
because trees inherit state from the thread that created them, which must be maintained when the tree
is modified inside another thread.

Does my program run faster if I use threads?

Depends. The best way to answer this is timing and profiling.

The global interpreter lock (GIL) in Python serializes access to the interpreter, so if the majority of
your processing is done in Python code (walking trees, modifying elements, etc.), your gain will be
close to zero. The more of your XML processing moves into lxml, however, the higher your gain. If
your application is bound by XML parsing and serialisation, or by very selective XPath expressions and
complex XSLTs, your speedup on multi-processor machines can be substantial.

See the question above to learn which operations free the GIL to support multi-threading.

Would my single-threaded program run faster if I turned off threading?

Possibly, yes. You can see for yourself by compiling Ixml entirely without threading support. Pass the
--without-threading option to setup.py when building lxml from source. You can also build libxml2
without pthread support (--without-pthreads option), which may add another bit of performance.
Note that this will leave internal data structures entirely without thread protection, so make sure you
really do not use lxml outside of the main application thread in this case.

Why can’t I reuse XSLT stylesheets in other threads?

Since later Ixml 2.0 versions, you can do this. There is some overhead involved as the result document
needs an additional cleanup traversal when the input document and/or the stylesheet were created in
other threads. However, on a multi-processor machine, the gain of freeing the GIL easily covers this
drawback.

If you need even the last bit of performance, consider keeping (a copy of) the stylesheet in thread-local
storage, and try creating the input document(s) in the same thread. And do not forget to benchmark
your code to see if the increased code complexity is really worth it.

My program crashes when run with mod python/Pyro/Zope/Plone/...

These environments can use threads in a way that may not make it obvious when threads are created
and what happens in which thread. This makes it hard to ensure Ixml’s threading support is used in a
reliable way. Sadly, if problems arise, they are as diverse as the applications, so it is difficult to provide
any generally applicable solution. Also, these environments are so complex that problems become hard
to debug and even harder to reproduce in a predictable way. If you encounter crashes in one of these

52

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

systems, but your code runs perfectly when started by hand, the following gives you a few hints for
possible approaches to solve your specific problem:

Note

make sure you use recent versions of libxml2, libxslt and lxml. The libxml2 developers keep fixing
bugs in each release, and lxml also tries to become more robust against possible pitfalls. So newer
versions might already fix your problem in a reliable way. Version 2.2 of lxml contains many
improvements.

make sure the library versions you installed are really used. Do not rely on what your operating
system tells you! Print the version constants in 1xml.etree from within your runtime environment
to make sure it is the case. This is especially a problem under MacOS-X when newer library versions
were installed in addition to the outdated system libraries. Please read the bugs section regarding
MacOS-X in this FAQ.

if you use mod_python, try setting this option:
PythonInterpreter main _interpreter

There was a discussion on the mailing list about this problem:
http://comments.gmane.org/gmane.comp.python.lxml.devel /2942

compile Ixml without threading support by running setup.py with the --without-threading
option. While this might be slower in certain scenarios on multi-processor systems, it might also
keep your application from crashing, which should be worth more to you than peek performance.
Remember that Ixml is fast anyway, so concurrency may not even be worth it.

look out for fancy XSLT stuff like foreign document access or passing in subtrees trough XSLT
variables. This might or might not work, depending on your specific usage. Again, later versions
of Ixml and libxslt provide safer support here.

try copying trees at suspicious places in your code and working with those instead of a tree shared
between threads. Note that the copying must happen inside the target thread to be effective, not
in the thread that created the tree. Serialising in one thread and parsing in another is also a simple
(and fast) way of separating thread contexts.

try keeping thread-local copies of XSLT stylesheets, i.e. one per thread, instead of sharing one.
Also see the question above.

you can try to serialise suspicious parts of your code with explicit thread locks, thus disabling the
concurrency of the runtime system.

report back on the mailing list to see if there are other ways to work around your specific problems.
Do not forget to report the version numbers of lxml, libxml2 and libxslt you are using (see the
question on reporting a bug).

that most of these options will degrade performance and/or your code quality. If you are unsure

what to do, please ask on the mailing list.

Parsing and Serialisation

Why doesn’t the pretty_print option reformat my XML output?

Pretty printing (or formatting) an XML document means adding white space to the content. These
modifications are harmless if they only impact elements in the document that do not carry (text) data.
They corrupt your data if they impact elements that contain data. If Ixml cannot distinguish between
whitespace and data, it will not alter your data. Whitespace is therefore only added between nodes that

53

http://comments.gmane.org/gmane.comp.python.lxml.devel/2942

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

do not contain data. This is always the case for trees constructed element-by-element, so no problems
should be expected here. For parsed trees, a good way to assure that no conflicting whitespace is left in
the tree is the remove_blank_text option:

>>> parser = etree.XMLParser(remove_blank_text=True)
>>> tree = etree.parse(filename, parser)

This will allow the parser to drop blank text nodes when constructing the tree. If you now call a
serialization function to pretty print this tree, Ixml can add fresh whitespace to the XML tree to indent
it.

Note that the remove_blank_text option also uses a heuristic if it has no definite knowledge about the
document’s ignorable whitespace. It will keep blank text nodes that appear after non-blank text nodes
at the same level. This is to prevent document-style XML from breaking.

If you want to be sure all blank text is removed, you have to use either a DTD to tell the parser which
whitespace it can safely ignore, or remove the ignorable whitespace manually after parsing, e.g. by setting
all tail text to None:

. sourcecode:: python
for element in root.iter(): element.tail = None

Fredrik Lundh also has a Python-level function for indenting XML by appending whitespace to tags. It
can be found on his element library recipe page.

Why can’t Ixml parse my XML from unicode strings?

Ixml can read Python unicode strings and even tries to support them if libxml2 does not. However, if
the unicode string declares an XML encoding internally (<?xml encoding="..."?>), parsing is bound
to fail, as this encoding is most likely not the real encoding used in Python unicode. The same is true for
HTML unicode strings that contain charset meta tags, although the problems may be more subtle here.
The libxml2 HTML parser may not be able to parse the meta tags in broken HTML and may end up
ignoring them, so even if parsing succeeds, later handling may still fail with character encoding errors.

Note that Python uses different encodings for unicode on different platforms, so even specifying the real
internal unicode encoding is not portable between Python interpreters. Don’t do it.

Python unicode strings with XML data or HTML data that carry encoding information are broken. lxml
will not parse them. You must provide parsable data in a valid encoding.

What is the difference between str(xslt(doc)) and xslt(doc).write() ?

The str() implementation of the XSLTResultTree class (a subclass of the ElementTree class) knows about
the output method chosen in the stylesheet (xsl:output), write() doesn’t. If you call write(), the result
will be a normal XML tree serialization in the requested encoding. Calling this method may also fail for
XSLT results that are not XML trees (e.g. string results).

If you call str(), it will return the serialized result as specified by the XSL transform. This correctly
serializes string results to encoded Python strings and honours xsl:output options like indent. This
almost certainly does what you want, so you should only use write() if you are sure that the XSLT
result is an XML tree and you want to override the encoding and indentation options requested by the
stylesheet.

54

http://effbot.org/zone/element-lib.htm

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

Why can’t I just delete parents or clear the root node in iterparse()?

The iterparse() implementation is based on the libxml2 parser. It requires the tree to be intact to
finish parsing. If you delete or modify parents of the current node, chances are you modify the structure
in a way that breaks the parser. Normally, this will result in a segfault. Please refer to the iterparse
section of the Ixml API documentation to find out what you can do and what you can’t do.

How do I output null characters in XML text?

Don’t. What you would produce is not well-formed XML. XML parsers will refuse to parse a document
that contains null characters. The right way to embed binary data in XML is using a text encoding such
as uuencode or base64.

XPath and Document Traversal

What are the findall() and xpath() methods on Element(Tree)?

findall() is part of the original ElementTree API. It supports a simple subset of the XPath language,
without predicates, conditions and other advanced features. It is very handy for finding specific tags
in a tree. Another important difference is namespace handling, which uses the {namespace}tagname
notation. This is not supported by XPath. The findall, find and findtext methods are compatible
with other ElementTree implementations and allow writing portable code that runs on ElementTree,
cElementTree and Ixml.etree.

xpath(), on the other hand, supports the complete power of the XPath language, including predicates,
XPath functions and Python extension functions. The syntax is defined by the XPath specification. If
you need the expressiveness and selectivity of XPath, the xpath() method, the XPath class and the
XPathEvaluator are the best choice.

Why doesn’t findall() support full XPath expressions?

It was decided that it is more important to keep compatibility with ElementTree to simplify code migra-
tion between the libraries. The main difference compared to XPath is the {namespace}tagname notation
used in findall (), which is not valid XPath.

ElementTree and lxml.etree use the same implementation, which assures 100% compatibility. Note that
findall() is so fast in Ixml that a native implementation would not bring any performance benefits.

How can I find out which namespace prefixes are used in a document?

You can traverse the document (root.iter()) and collect the prefix attributes from all Elements into
a set. However, it is unlikely that you really want to do that. You do not need these prefixes, honestly.
You only need the namespace URIs. All namespace comparisons use these, so feel free to make up your
own prefixes when you use XPath expressions or extension functions.

The only place where you might consider specifying prefixes is the serialization of Elements that were
created through the API. Here, you can specify a prefix mapping through the nsmap argument when
creating the root Element. Its children will then inherit this prefix for serialization.

55

http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-xpath.htm
http://www.w3.org/TR/xpath
http://effbot.org/zone/element-index.htm

CHAPTER 7. LXML FAQ - FREQUENTLY ASKED QUESTIONS

How can I specify a default namespace for XPath expressions?

You can’t. In XPath, there is no such thing as a default namespace. Just use an arbitrary prefix and
let the namespace dictionary of the XPath evaluators map it to your namespace. See also the question
above.

56

Part 11

Developing with Ixml

57

Chapter 8

The Ixml.etree Tutorial

Author: Stefan Behnel

This tutorial briefly overviews the main concepts of the ElementTree API as implemented by 1xml .etree,
and some simple enhancements that make your life as a programmer easier.

For a complete reference of the API, see the generated API documentation.
A common way to import 1xml.etree is as follows:
>>> from lxml import etree

If your code only uses the ElementTree API and does not rely on any functionality that is specific to
lxml.etree, you can also use (any part of) the following import chain as a fall-back to the original
ElementTree:

try:
from 1lxml import etree
print("running with lxml.etree")
except ImportError:
try:
Python 2.5
import xml.etree.cElementTree as etree
print ("running with cElementTree on Python 2.5+")
except ImportError:
try:
Python 2.5
import xml.etree.ElementTree as etree
print("running with ElementTree on Python 2.5+")
except ImportError:
try:
normal cElementTree install
import cElementTree as etree
print("running with cElementTree")
except ImportError:
try:
nmormal ElementTree install
import elementtree.ElementTree as etree
print("running with ElementTree")
except ImportError:
print("Failed to import ElementTree from any known place")

58

http://effbot.org/zone/element-index.htm#documentation
file:api/index.html

CHAPTER 8. THE LXML.ETREE TUTORIAL

To aid in writing portable code, this tutorial makes it clear in the examples which part of the presented
API is an extension of lxml.etree over the original ElementTree API, as defined by Fredrik Lundh’s
ElementTree library.

The Element class

An Element is the main container object for the ElementTree API. Most of the XML tree functionality
is accessed through this class. Elements are easily created through the Element factory:

>>> root = etree.Element("root")
The XML tag name of elements is accessed through the tag property:

>>> print(root.tag)
root

Elements are organised in an XML tree structure. To create child elements and add them to a parent
element, you can use the append () method:

>>> root.append(etree.Element("childi"))

However, this is so common that there is a shorter and much more efficient way to do this: the SubElement
factory. It accepts the same arguments as the Element factory, but additionally requires the parent as
first argument:

>>> child?2
>>> child3

etree.SubElement (root, "child2")
etree.SubElement (root, "child3")

To see that this is really XML, you can serialise the tree you have created:

>>> print(etree.tostring(root, pretty_print=True))
<root>

<child1l/>

<child2/>

<child3/>
</root>

Elements are lists

To make the access to these subelements as easy and straight forward as possible, elements behave like
normal Python lists:

>>> child = root[0]
>>> print(child.tag)
childl

>>> print(len(root))
3

>>> root.index(root[1]) # lzml.etree only!
1

>>> children = list(root)

>>> for child in root:

59

http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm

CHAPTER 8. THE LXML.ETREE TUTORIAL

.. print(child.tag)
childl
child?2
child3

>>> root.insert(0, etree.Element('"child0"))
>>> start = root[:1]
>>> end = root[-1:]

>>> print(start[0].tag)
childO

>>> print(end[0] .tag)
child3

>>> root[0] = root[-1] # this mowves the element!
>>> for child in root:

.. print(child.tag)

child3
child1l
child2

Prior to ElementTree 1.3 and lxml 2.0, you could also check the truth value of an Element to see if it has
children, i.e. if the list of children is empty. This is no longer supported as people tend to find it surprising
that a non-None reference to an existing Element can evaluate to False. Instead, use len(element),
which is both more explicit and less error prone.

Note in the examples that the last element was moved to a different position in the last example. This is
a difference from the original ElementTree (and from lists), where elements can sit in multiple positions
of any number of trees. In Ixml.etree, elements can only sit in one position of one tree at a time.

If you want to copy an element to a different position, consider creating an independent deep copy using
the copy module from Python’s standard library:

>>> from copy import deepcopy

>>> element = etree.Element("neu"
>>> element.append(deepcopy(root[1]))

>>> print(element [0] .tag)

childl

>>> print([c.tag for c in root])
[’child3’, ’childl’, ’child2’]

The way up in the tree is provided through the getparent () method:

>>> root is root[0].getparent() # lazml.etree only!
True

The siblings (or neighbours) of an element are accessed as next and previous elements:

>>> root[0] is root[1].getprevious() # laml.etree only!
True

>>> root[1] is root[0].getnext() # laml.etree only!
True

60

CHAPTER 8. THE LXML.ETREE TUTORIAL

Elements carry attributes

XML elements support attributes. You can create them directly in the Element factory:

>>> root = etree.Element("root", interesting="totally")
>>> etree.tostring(root)
b’<root interesting="totally"/>’

Fast and direct access to these attributes is provided by the set() and get () methods of elements:

>>> print(root.get("interesting"))
totally

>>> root.set("interesting", "somewhat")
>>> print(root.get("interesting"))
somewhat

However, a very convenient way of dealing with them is through the dictionary interface of the attrib
property:

>>> attributes = root.attrib

>>> print(attributes["interesting"])
somewhat

>>> print(attributes.get("hello"))

None

>>> attributes["hello"] = "Guten Tag"
>>> print(attributes.get("hello"))
Guten Tag

>>> print(root.get("hello"))

Guten Tag

Elements contain text

Elements can contain text:

>>> root = etree.Element("root")
>>> root.text = "TEXT"

>>> print(root.text)
TEXT

>>> etree.tostring(root)
b’<root>TEXT</root>’

In many XML documents (data-centric documents), this is the only place where text can be found. It
is encapsulated by a leaf tag at the very bottom of the tree hierarchy.

However, if XML is used for tagged text documents such as (X)HTML, text can also appear between
different elements, right in the middle of the tree:

<html><body>Hello
World</body></html>

Here, the
 tag is surrounded by text. This is often referred to as document-style or mized-content
XML. Elements support this through their tail property. It contains the text that directly follows the

61

CHAPTER 8. THE LXML.ETREE TUTORIAL

element, up to the next element in the XML tree:

>>> html = etree.Element("html")
>>> body = etree.SubElement (html, "body")
>>> body.text = "TEXT"

>>> etree.tostring(html)
b’ <html><body>TEXT</body></html>’

>>> br = etree.SubElement(body, "br")
>>> etree.tostring(html)
b’<html><body>TEXT
</body></html>’

>>> br.tail = "TAIL"
>>> etree.tostring(html)
b’<html><body>TEXT
TAIL</body></html>’

The two properties .text and .tail are enough to represent any text content in an XML document.
This way, the ElementTree API does not require any special text nodes in addition to the Element class,
that tend to get in the way fairly often (as you might know from classic DOM APIs).

However, there are cases where the tail text also gets in the way. For example, when you serialise an
Element from within the tree, you do not always want its tail text in the result (although you would
still want the tail text of its children). For this purpose, the tostring() function accepts the keyword
argument with_tail:

>>> etree.tostring(br)

b’
TAIL’

>>> etree.tostring(br, with_tail=False) # laml.etree only!
b’
’

If you want to read only the text, i.e. without any intermediate tags, you have to recursively concatenate
all text and tail attributes in the correct order. Again, the tostring() function comes to the rescue,
this time using the method keyword:

>>> etree.tostring(html, method="text")
b’TEXTTAIL’

Using XPath to find text

Another way to extract the text content of a tree is XPath, which also allows you to extract the separate
text chunks into a list:

>>> print (html.xpath("string()")) # lazml.etree only!
TEXTTAIL

>>> print(html.xpath("//text()")) # lzml.etree only!
[’TEXT’, °TAIL’]

If you want to use this more often, you can wrap it in a function:

>>> build_text_list = etree.XPath("//text()") # laml.etree only!
>>> print(build_text_list(html))
[>TEXT’, °TAIL’]

Note that a string result returned by XPath is a special ’smart’ object that knows about its origins. You
can ask it where it came from through its getparent () method, just as you would with Elements:

62

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1312295772
http://www.w3.org/TR/DOM-Level-3-Core/core.html

CHAPTER 8. THE LXML.ETREE TUTORIAL

>>> texts = build_text_list(html)
>>> print (texts[0])

TEXT

>>> parent = texts[0].getparent()
>>> print(parent.tag)

body

>>> print (texts[1])

TATL

>>> print(texts[1].getparent() .tag)
br

You can also find out if it’s normal text content or tail text:

>>> print(texts[0] .is_text)
True

>>> print(texts[1].is_text)
False

>>> print(texts[1].is_tail)
True

While this works for the results of the text () function, Ixml will not tell you the origin of a string value
that was constructed by the XPath functions string() or concat():

>>> stringify = etree.XPath("string()")
>>> print(stringify(html))

TEXTTAIL

>>> print(stringify(html) .getparent())
None

Tree iteration

For problems like the above, where you want to recursively traverse the tree and do something with its
elements, tree iteration is a very convenient solution. Elements provide a tree iterator for this purpose.
It yields elements in document order, i.e. in the order their tags would appear if you serialised the tree
to XML:

>>> root = etree.Element("root")

>>> etree.SubElement (root, "child").text "Child 1"
>>> etree.SubElement (root, "child").text "Child 2"
>>> etree.SubElement (root, "another").text = "Child 3"

>>> print(etree.tostring(root, pretty_print=True))
<root>

<child>Child 1</child>

<child>Child 2</child>

<another>Child 3</another>
</root>

>>> for element in root.iter():
print("%s - 7%s" % (element.tag, element.text))
root - None
child - Child 1
child - Child 2
another - Child 3

63

CHAPTER 8. THE LXML.ETREE TUTORIAL

If you know you are only interested in a single tag, you can pass its name to iter () to have it filter for
you:

>>> for element in root.iter('"child"):

. print("%s - 7%s" 7% (element.tag, element.text))
child - Child 1

child - Child 2

By default, iteration yields all nodes in the tree, including ProcessingInstructions, Comments and Entity
instances. If you want to make sure only Element objects are returned, you can pass the Element factory
as tag parameter:

>>> root.append(etree.Entity("#234"))
>>> root.append(etree.Comment ("some comment"))

>>> for element in root.iter():
if isinstance(element.tag, basestring):
print("%s - %s" % (element.tag, element.text))
else:
.. print ("SPECIAL: %s - 7%s" % (element, element.text))
root - None
child - Child 1
child - Child 2
another - Child 3
SPECIAL: ê - ê
SPECIAL: <!--some comment--> - some comment

>>> for element in root.iter(tag=etree.Element):
print("%s - %s" 7% (element.tag, element.text))

root - None

child - Child 1

child - Child 2

another - Child 3

>>> for element in root.iter(tag=etree.Entity):
. print (element.text)
ê

In Ixml.etree, elements provide further iterators for all directions in the tree: children, parents (or rather
ancestors) and siblings.

Serialisation

Serialisation commonly uses the tostring () function that returns a string, or the ElementTree.write ()
method that writes to a file, a file-like object, or a URL (via FTP PUT or HTTP POST). Both calls
accept the same keyword arguments like pretty_print for formatted output or encoding to select a
specific output encoding other than plain ASCII:

>>> root = etree.XML(’<root><a></root>’)

>>> etree.tostring(root)
b’<root><a></root>’

>>> print(etree.tostring(root, xml_declaration=True))

<?xml version=’1.0’ encoding=’ASCII’?7>
<root><a></root>

64

CHAPTER 8. THE LXML.ETREE TUTORIAL

>>> print(etree.tostring(root, encoding=’iso0-8859-17))
<?xml version=’1.0’ encoding=’iso0-8859-1’7>
<root><a></root>

>>> print(etree.tostring(root, pretty_print=True))
<root>
<a>

</root>

Note that pretty printing appends a newline at the end.

Since Ixml 2.0 (and ElementTree 1.3), the serialisation functions can do more than XML serialisation.
You can serialise to HTML or extract the text content by passing the method keyword:

>>> root = etree.XML(
’<html><head/><body><p>Hello
World</p></body></html>’)

>>> etree.tostring(root) # default: method = ’zml’
b’<html><head/><body><p>Hello
World</p></body></html>’

>>> etree.tostring(root, method=’xml’) # same as above
b’<html><head/><body><p>Hello
World</p></body></html>’

>>> etree.tostring(root, method=’html’)
b’<html><head></head><body><p>Hello
World</p></body></html>’

>>> print(etree.tostring(root, method=’html’, pretty_print=True))
<html>

<head></head>

<body><p>Hello
World</p></body>

</html>

>>> etree.tostring(root, method=’text’)
b’HelloWorld’

As for XML serialisation, the default encoding for plain text serialisation is ASCII:

>>> br = root.find(’.//br’)
>>> br.tail = wW\xf6rld’

>>> etree.tostring(root, method=’text’) # doctest: +ELLIPSIS
Traceback (most recent call last):

UnicodeEncodeError: ’ascii’ codec can’t encode character u’\xf6’

>>> etree.tostring(root, method=’text’, encoding="UTF-8")
b’HelloW\xc3\xb6rld’

Here, serialising to a Python unicode string instead of a byte string might become handy. Just pass the
unicode type as encoding:

>>> etree.tostring(root, encoding=unicode, method="text’)
u’HelloW\xf6rld’

The W3C has a good article about the Unicode character set and character encodings.

65

http://www.w3.org/International/tutorials/tutorial-char-enc/

CHAPTER 8. THE LXML.ETREE TUTORIAL

The ElementTree class

An ElementTree is mainly a document wrapper around a tree with a root node. It provides a couple of
methods for parsing, serialisation and general document handling. One of the bigger differences is that
it serialises as a complete document, as opposed to a single Element. This includes top-level processing
instructions and comments, as well as a DOCTYPE and other DTD content in the document:

>>> tree = etree.parse(StringI0(’’’\
.. <?xml version="1.0"7>
. <!DOCTYPE root SYSTEM "test" [<!ENTITY tasty "eggs"> 1>
. <root>
<a>&tasty;
. </root>

?77))

>>> print(tree.docinfo.doctype)
<!DOCTYPE root SYSTEM "test">

>>> # lzml 1.3.4 and later
>>> print(etree.tostring(tree))
<!DOCTYPE root SYSTEM "test" [
<!ENTITY tasty "eggs">
1>
<root>
<a>eggs
</root>

>>> # lzml 1.3.4 and later
>>> print(etree.tostring(etree.ElementTree(tree.getroot())))
<!DOCTYPE root SYSTEM "test" [
<IENTITY tasty "eggs">
1>
<root>
<a>eggs
</root>

>>> # ElementTree and lzml <= 1.3.3
>>> print(etree.tostring(tree.getroot()))
<root>
<a>eggs
</root>

Note that this has changed in Ixml 1.3.4 to match the behaviour of Ixml 2.0. Before, the examples were
serialised without DTD content, which made Ixml loose DTD information in an input-output cycle.

Parsing from strings and files

1xml.etree supports parsing XML in a number of ways and from all important sources, namely strings,
files, URLs (http/ftp) and file-like objects. The main parse functions are fromstring() and parse(),
both called with the source as first argument. By default, they use the standard parser, but you can
always pass a different parser as second argument.

66

CHAPTER 8. THE LXML.ETREE TUTORIAL

The fromstring() function

The fromstring() function is the easiest way to parse a string:

>>> some_xml_data = "<root>data</root>"

>>> root = etree.fromstring(some_xml_data)
>>> print(root.tag)

root

>>> etree.tostring(root)
b’<root>data</root>’

The XML() function

The XML () function behaves like the fromstring () function, but is commonly used to write XML literals
right into the source:

>>> root = etree.XML("<root>data</root>")
>>> print(root.tag)

root

>>> etree.tostring(root)
b’<root>data</root>’

The parse() function

The parse() function is used to parse from files and file-like objects:

>>> some_file_like = StringI0("<root>data</root>")
>>> tree = etree.parse(some_file_like)

>>> etree.tostring(tree)
b’<root>data</root>’

Note that parse () returns an ElementTree object, not an Element object as the string parser functions:

>>> root = tree.getroot()
>>> print(root.tag)

root

>>> etree.tostring(root)
b’<root>data</root>’

The reasoning behind this difference is that parse() returns a complete document from a file, while the
string parsing functions are commonly used to parse XML fragments.

The parse() function supports any of the following sources:
e an open file object
e a file-like object that has a .read(byte_count) method returning a byte string on each call
e a filename string
e an HTTP or FTP URL string

Note that passing a filename or URL is usually faster than passing an open file.

67

CHAPTER 8. THE LXML.ETREE TUTORIAL

Parser objects

By default, 1xml.etree uses a standard parser with a default setup. If you want to configure the parser,
you can create a you instance:

>>> parser = etree.XMLParser(remove_blank_text=True) # lzml.etree only!

This creates a parser that removes empty text between tags while parsing, which can reduce the size of
the tree and avoid dangling tail text if you know that whitespace-only content is not meaningful for your
data. An example:

>>> root = etree.XML("<root> <a/> </root>", parser)

>>> etree.tostring(root)
b’<root><a/> </root>’

Note that the whitespace content inside the tag was not removed, as content at leaf elements tends
to be data content (even if blank). You can easily remove it in an additional step by traversing the tree:

>>> for element in root.iter("x"):
if element.text is not None and not element.text.strip():
element.text = None

>>> etree.tostring(root)
b’<root><a/></root>’

See help(etree.XMLParser) to find out about the available parser options.

Incremental parsing

1xml.etree provides two ways for incremental step-by-step parsing. One is through file-like objects,
where it calls the read () method repeatedly. This is best used where the data arrives from a source like
urllib or any other file-like object that can provide data on request. Note that the parser will block
and wait until data becomes available in this case:

>>> class DataSource:
data = [b"<roo", b"t><", b"a/", b"><", b"/root>"]
def read(self, requested_size):
try:
return self.data.pop(0)
except IndexError:
return b’’

>>> tree = etree.parse(DataSource())

>>> etree.tostring(tree)
b’<root><a/></root>’

The second way is through a feed parser interface, given by the feed(data) and close() methods:

>>> parser = etree.XMLParser()

>>> parser.feed("<roo")
>>> parser.feed("t><")
>>> parser.feed("a/")

>>> parser.feed("><")
>>> parser.feed("/root>")

68

CHAPTER 8. THE LXML.ETREE TUTORIAL

>>> root = parser.close()

>>> etree.tostring(root)
b’<root><a/></root>’

Here, you can interrupt the parsing process at any time and continue it later on with another call to
the feed() method. This comes in handy if you want to avoid blocking calls to the parser, e.g. in
frameworks like Twisted, or whenever data comes in slowly or in chunks and you want to do other things
while waiting for the next chunk.

After calling the close() method (or when an exception was raised by the parser), you can reuse the
parser by calling its feed () method again:

>>> parser.feed("<root/>")
>>> root = parser.close()
>>> etree.tostring(root)
b’<root/>’

Event-driven parsing

Sometimes, all you need from a document is a small fraction somewhere deep inside the tree, so parsing
the whole tree into memory, traversing it and dropping it can be too much overhead. lxml.etree
supports this use case with two event-driven parser interfaces, one that generates parser events while
building the tree (iterparse), and one that does not build the tree at all, and instead calls feedback
methods on a target object in a SAX-like fashion.

Here is a simple iterparse() example:

>>> some_file_like = StringI0("<root><a>data</root>")

>>> for event, element in etree.iterparse(some_file_like):
print("%s, %4s, %s" 7 (event, element.tag, element.text))

end, a, data

end, root, None

By default, iterparse() only generates events when it is done parsing an element, but you can control
this through the events keyword argument:

>>> some_file_like = StringI0("<root><a>data</root>")

>>> for event, element in etree.iterparse(some_file_like,
events=("start", "end")):
print ("%5s, %4s, %s" , (event, element.tag, element.text))
start, root, None
start, a, data
end, a, data
end, root, None

Note that the text, tail and children of an Element are not necessarily there yet when receiving the start
event. Only the end event guarantees that the Element has been parsed completely.

It also allows to .clear() or modify the content of an Element to save memory. So if you parse a large
tree and you want to keep memory usage small, you should clean up parts of the tree that you no longer
need:

>>> some_file_like = StringI0(

69

CHAPTER 8. THE LXML.ETREE TUTORIAL

"<root><a>data<a></root>")

>>> for event, element in etree.iterparse(some_file_like):

if element.tag == ’b’:
print (element.text)
elif element.tag == ’a’:

print ("** cleaning up the subtree")
R element.clear()

data
** cleaning up the subtree
None

** cleaning up the subtree

If memory is a real bottleneck, or if building the tree is not desired at all, the target parser interface
of 1xml.etree can be used. It creates SAX-like events by calling the methods of a target object. By
implementing some or all of these methods, you can control which events are generated:

>>> class ParserTarget:

events = []

close_count = 0

def start(self, tag, attrib):
self.events.append(("start", tag, attrib))

def close(self):
events, self.events = self.events, []
self.close_count += 1
return events

>>> parser_target = ParserTarget()

>>> parser = etree.XMLParser (target=parser_target)
>>> events = etree.fromstring(’<root test="true"/>’, parser)

>>> print(parser_target.close_count)

>>> for event in events:
print(Pevent: s - tag: %s’ % (event[0], event[1]))
for attr, value in event[2].items():
print(’ * %s = %s’ % (attr, value))
event: start - tag: root
* test = true

You can reuse the parser and its target as often as you like, so you should take care that the .close()
methods really resets the target to a usable state (also in the case of an error!).

>>> events = etree.fromstring(’<root test="true"/>’, parser)
>>> print(parser_target.close_count)

2

>>> events = etree.fromstring(’<root test="true"/>’, parser)
>>> print(parser_target.close_count)

3

>>> events = etree.fromstring(’<root test="true"/>’, parser)
>>> print(parser_target.close_count)

4

>>> for event in events:
print(’event: ’%s - tag: %s’ % (event[0], event[1]))

70

CHAPTER 8. THE LXML.ETREE TUTORIAL

for attr, value in event[2].items():
print(’ * Y%s = %s’ % (attr, value))
event: start - tag: root
* test = true

Namespaces

The ElementTree API avoids namespace prefixes wherever possible and deploys the real namespaces
instead:

>>> xhtml = etree.Element ("{http://www.w3.0rg/1999/xhtml}html")
>>> body = etree.SubElement(xhtml, "{http://www.w3.org/1999/xhtml}body")
>>> body.text = "Hello World"

>>> print(etree.tostring(xhtml, pretty_print=True))

<html:html xmlns:html="http://www.w3.org/1999/xhtml">
<html:body>Hello World</html:body>

</html:html>

As you can see, prefixes only become important when you serialise the result. However, the above code
becomes somewhat verbose due to the lengthy namespace names. And retyping or copying a string over
and over again is error prone. It is therefore common practice to store a namespace URI in a global
variable. To adapt the namespace prefixes for serialisation, you can also pass a mapping to the Element
factory, e.g. to define the default namespace:

>>> XHTML_NAMESPACE = "http://www.w3.org/1999/xhtml"
>>> XHTML = "{%s}" 7 XHTML_NAMESPACE

>>> NSMAP = {None : XHTML_NAMESPACE} # the default namespace (no prefiz)
>>> xhtml = etree.Element (XHTML + "html", nsmap=NSMAP) # laml only!

>>> body = etree.SubElement(xhtml, XHTML + "body")

>>> body.text = "Hello World"

>>> print(etree.tostring(xhtml, pretty_print=True))

<html xmlns="http://www.w3.org/1999/xhtml">
<body>Hello World</body>

</html>

Namespaces on attributes work alike:

>>> body.set (XHTML + "bgcolor", "#CCFFAA")

>>> print(etree.tostring(xhtml, pretty_print=True))
<html xmlns="http://www.w3.o0rg/1999/xhtml">

<body bgcolor="#CCFFAA">Hello World</body>
</html>

>>> print(body.get ("bgcolor"))
None

>>> body.get (XHTML + "bgcolor")
*#CCFFAA°

You can also use XPath in this way:

71

http://www.w3.org/TR/xml-names/#ns-qualnames

CHAPTER 8. THE LXML.ETREE TUTORIAL

>>> find_xhtml_body = etree.ETXPath(# lzml only !
"//{)s}¥body" 7 XHTML_NAMESPACE)
>>> results = find_xhtml_body (xhtml)

>>> print(results[0].tag)
{http://www.w3.0rg/1999/xhtml}body

The E-factory

The E-factory provides a simple and compact syntax for generating XML and HTML:

>>> from lxml.builder import E

>>> def CLASS(*args): # class is a reserved word in Python
return {"class":’ ’.join(args)}

>>> html = page = (

E.html(# create an Element called "html"
E.head(
E.title("This is a sample document")
),
E.body(

E.h1("Hello!", CLASS("title")),

E.p("This is a paragraph with ", E.b("bold"), " text in it!"),

E.p("This is another paragraph, with a", "\n ",
E.a("link", href="http://www.python.org"), "."),

E.p("Here are some reservered characters: <spam&egg>."),

etree . XML("<p>And finally an embedded XHTML fragment.</p>"),

>>> print(etree.tostring(page, pretty_print=True))
<html>
<head>
<title>This is a sample document</title>
</head>
<body>
<hl class="title">Hello!</h1>
<p>This is a paragraph with bold text in it!</p>
<p>This is another paragraph, with a
link.</p>
<p>Here are some reservered characters: <spam&egg>.</p>
<p>And finally an embedded XHTML fragment.</p>
</body>
</html>

The Element creation based on attribute access makes it easy to build up a simple vocabulary for an
XML language:

>>> from lxml.builder import ElementMaker # lzml only !

>>> E = ElementMaker (namespace="http://my.de/fault/namespace",
nsmap={’p’ : "http://my.de/fault/namespace"})

72

CHAPTER 8. THE LXML.ETREE TUTORIAL

>>> DOC = E.doc

>>> TITLE = E.title

>>> SECTION = E.section
>>> PAR = E.par

>>> my_doc = DOC(
TITLE("The dog and the hog"),
SECTION (
TITLE("The dog"),
PAR("Once upon a time, ..."),
PAR("And then ...")
),
SECTION (
TITLE("The hog"),
PAR("Sooner or later ...")

)

>>> print(etree.tostring(my_doc, pretty_print=True))
<p:doc xmlns:p="http://my.de/fault/namespace">
<p:title>The dog and the hog</p:title>
<p:section>
<p:title>The dog</p:title>
<p:par>Once upon a time, ...</p:par>
<p:par>And then ...</p:par>
</p:section>
<p:section>
<p:title>The hog</p:title>
<p:par>Sooner or later ...</p:par>
</p:section>
</p:doc>

One such example is the module 1xml.html.builder, which provides a vocabulary for HTML.

ElementPath

The ElementTree library comes with a simple XPath-like path language called ElementPath. The main
difference is that you can use the {namespace}tag notation in ElementPath expressions. However,
advanced features like value comparison and functions are not available.

In addition to a full XPath implementation, Ixml.etree supports the ElementPath language in the same
way ElementTree does, even using (almost) the same implementation. The API provides four methods
here that you can find on Elements and ElementTrees:

e iterfind() iterates over all Elements that match the path expression
e findall() returns a list of matching Elements
e find() efficiently returns only the first match
e findtext() returns the .text content of the first match
Here are some examples:

>>> root = etree.XML("<root>aText<c/></root>")

73

http://effbot.org/zone/element-xpath.htm

CHAPTER 8. THE LXML.ETREE TUTORIAL

Find a child of an Element:

>>> print(root.find("b"))
None

>>> print(root.find("a") .tag)
a

Find an Element anywhere in the tree:

>>> print(root.find(".//b") .tag)

b
>>> [b.tag for b in root.iterfind(".//b")]
[7b7, 7b7:|

Find Elements with a certain attribute:

>>> print(root.findall(".//al@x]") [0].tag)
a

>>> print(root.findall(".//al@y]l"))

(]

74

Chapter 9

APIs specific to Ixml.etree

Ixml.etree tries to follow established APIs wherever possible. Sometimes, however, the need to expose a
feature in an easy way led to the invention of a new API. This page describes the major differences and
a few additions to the main ElementTree API.

For a complete reference of the API, see the generated API documentation.

Separate pages describe the support for parsing XML, executing XPath and XSLT, validating XML and
interfacing with other XML tools through the SAX-API.

Ixml is extremely extensible through XPath functions in Python, custom Python element classes, custom
URL resolvers and even at the C-level.

Ixml.etree

Ixml.etree tries to follow the ElementTree API wherever it can. There are however some incompatibilities
(see compatibility). The extensions are documented here.

If you need to know which version of Ixml is installed, you can access the 1xml.etree.LXML_VERSION
attribute to retrieve a version tuple. Note, however, that it did not exist before version 1.0, so you will
get an AttributeError in older versions. The versions of libxml2 and libxslt are available through the
attributes LIBXML_VERSION and LIBXSLT_VERSION.

The following examples usually assume this to be executed first:

>>> from lxml import etree

Other Element APIs

While Ixml.etree itself uses the ElementTree API, it is possible to replace the Element implementation
by custom element subclasses. This has been used to implement well-known XML APIs on top of Ixml.
For example, Ixml ships with a data-binding implementation called objectify, which is similar to the
Amara bindery tool.

Ixml.etree comes with a number of different lookup schemes to customize the mapping between libxml2
nodes and the Element classes used by Ixml.etree.

(0]

file:api/index.html
http://effbot.org/zone/element-index.htm
http://uche.ogbuji.net/tech/4suite/amara/

CHAPTER 9. APIS SPECIFIC TO LXML.ETREE

Trees and Documents

Compared to the original ElementTree API, Ixml.etree has an extended tree model. It knows about
parents and siblings of elements:

>>> root = etree.Element("root")

>>> a = etree.SubElement (root, "a'")
>>> b = etree.SubElement(root, "b")
>>> ¢ = etree.SubElement(root, "c")
>>> d = etree.SubElement (root, "d")
>>> e = etree.SubElement(d, "e')
>>> b.getparent() == root

True

>>> print(b.getnext () .tag)

c

>>> print(c.getprevious() .tag)

b

Elements always live within a document context in Ixml. This implies that there is also a notion of an
absolute document root. You can retrieve an ElementTree for the root node of a document from any of
its elements.

>>> tree = d.getroottree()
>>> print(tree.getroot() .tag)
root

Note that this is different from wrapping an Element in an ElementTree. You can use ElementTrees to
create XML trees with an explicit root node:

>>> tree = etree.ElementTree(d)
>>> print(tree.getroot() .tag)

d

>>> etree.tostring(tree)
b’<d><e/></d>"’

ElementTree objects are serialised as complete documents, including preceding or trailing processing
instructions and comments.

All operations that you run on such an ElementTree (like XPath, XSLT, etc.) will understand the ex-
plicitly chosen root as root node of a document. They will not see any elements outside the ElementTree.
However, ElementTrees do not modify their Elements:

>>> element = tree.getroot()

>>> print (element.tag)

d

>>> print(element.getparent() .tag)

root

>>> print(element.getroottree() .getroot() .tag)
root

The rule is that all operations that are applied to Elements use either the Element itself as reference point,
or the absolute root of the document that contains this Element (e.g. for absolute XPath expressions).
All operations on an ElementTree use its explicit root node as reference.

76

CHAPTER 9. APIS SPECIFIC TO LXML.ETREE

Iteration

The ElementTree API makes Elements iterable to supports iteration over their children. Using the tree
defined above, we get:

>>> [child.tag for child in root]
[;a7, ’b’, ’C’, 7d7:|

To iterate in the opposite direction, use the reversed () function that exists in Python 2.4 and later.
Tree traversal should use the element.iter () method:

>>> [el.tag for el in root.iter()]
[’I‘OOt’, ;a7’ ’b’, ’C’, ’d’,)e7:|

Ixml.etree also supports this, but additionally features an extended API for iteration over the children,
following/preceding siblings, ancestors and descendants of an element, as defined by the respective XPath
axis:

>>> [child.tag for child in root.iterchildren() 1]

[;a7’ ’b’, ’C’, 7d7:|

>>> [child.tag for child in root.iterchildren(reversed=True)]
[’d’, ’C’, ’b’, :a7:|

>>> [sibling.tag for sibling in b.itersiblings()]

[7C7, 7d7:|
>>> [sibling.tag for sibling in c.itersiblings(preceding=True)]
[’b’ s 7a7:|

>>> [ancestor.tag for ancestor in e.iterancestors()]
[’d’, ’root’]

>>> [el.tag for el in root.iterdescendants()]

[7a7’ ’b’, ’C’, ’d’, 7e1:|

Note how element . iterdescendants () does not include the element itself, as opposed to element.iter ().
The latter effectively implements the ’descendant-or-self’ axis in XPath.

All of these iterators support an additional tag keyword argument that filters the generated elements by
tag name:

>>> [child.tag for child in root.iterchildren(tag=’a’)]
[’a’]

>>> [child.tag for child in d.iterchildren(tag=’a’)]

(]

>>> [el.tag for el in root.iterdescendants(tag=’d’)]
[°d’]

>>> [el.tag for el in root.iter(tag=’d’) 1]

[’d’]

The most common way to traverse an XML tree is depth-first, which traverses the tree in document
order. This is implemented by the .iter() method. While there is no dedicated method for breadth-
first traversal, it is almost as simple if you use the collections.deque type from Python 2.4.

>>> root = etree.XML(’<root><a><c/><d><e/></d></root>’)
>>> print(etree.tostring(root, pretty_print=True, encoding=unicode))
<root>
<a>

<c/>

7

CHAPTER 9. APIS SPECIFIC TO LXML.ETREE

<d>
<e/>
</d>
</root>

>>> queue = deque([root])

>>> wyhile queue:
el = queue.popleft() # pop next element
queue.extend(el) # append tts children
print(el.tag)

root

© 0O T Q

See also the section on the utility functions iterparse() and iterwalk() in the parser documentation.

Error handling on exceptions

Libxml2 provides error messages for failures, be it during parsing, XPath evaluation or schema validation.
The preferred way of accessing them is through the local error_log property of the respective evaluator
or transformer object. See their documentation for details.

However, Ixml also keeps a global error log of all errors that occurred at the application level. Whenever
an exception is raised, you can retrieve the errors that occured and “might have” lead to the problem
from the error log copy attached to the exception:

>>> etree.clear_error_log()
>>> broken_xml = ’’’
. <root>
<a>
. </root>
.. 2
>>> try:
etree.parse(StringI0(broken_xml))
. except etree.XMLSyntaxError, e:
pass # just put the exception into e

Once you have caught this exception, you can access its error_log property to retrieve the log entries
or filter them by a specific type, error domain or error level:

>>> log = e.error_log.filter_from_level(etree.ErrorLevels.FATAL)

>>> print(log)

<string>:4:8:FATAL:PARSER:ERR_TAG_NAME_MISMATCH: Opening and ending tag mismatch: a line 3 and root
<string>:5:1:FATAL:PARSER:ERR_TAG_NOT_FINISHED: Premature end of data in tag root line 2

This might look a little cryptic at first, but it is the information that libxml2 gives you. At least the
message at the end should give you a hint what went wrong and you can see that the fatal errors (FATAL)
happened during parsing (PARSER) lines 4, column 8 and line 5, column 1 of a string (<string>, or the
filename if available). Here, PARSER is the so-called error domain, see 1xml.etree.ErrorDomains for
that. You can get it from a log entry like this:

>>> entry = log[0]
>>> print(entry.domain_name)

78

CHAPTER 9. APIS SPECIFIC TO LXML.ETREE

PARSER

>>> print(entry.type_name)
ERR_TAG_NAME_MISMATCH

>>> print(entry.filename)
<string>

There is also a convenience attribute last_error that returns the last error or fatal error that occurred:

>>> entry = e.error_log.last_error
>>> print(entry.domain_name)
PARSER

>>> print(entry.type_name)
ERR_TAG_NOT_FINISHED

>>> print(entry.filename)

<string>

Error logging

Ixml.etree supports logging libxml2 messages to the Python stdlib logging module. This is done through
the etree.PyErrorLog class. It disables the error reporting from exceptions and forwards log messages to
a Python logger. To use it, see the descriptions of the function etree.useGlobalPythonLog and the class
etree.PyErrorLog for help. Note that this does not affect the local error logs of XSLT, XMLSchema,
etc.

Serialisation

Ixml.etree has direct support for pretty printing XML output. Functions like ElementTree.write () and
tostring() support it through a keyword argument:

>>> root = etree.XML("<root><test/></root>")
>>> etree.tostring(root)
b’<root><test/></root>’

>>> print(etree.tostring(root, pretty_print=True))
<root>

<test/>
</root>

Note the newline that is appended at the end when pretty printing the output. It was added in Ixml 2.0.
By default, Ixml (just as ElementTree) outputs the XML declaration only if it is required by the standard:

>>> unicode_root = etree.Element(u"t\u3120st")

>>> unicode_root.text = u"t\uOAOAst"

>>> etree.tostring(unicode_root, encoding="utf-8")

b’ <t\xe3\x84\xal0st>t\xe0\xa8\x8ast</t\xe3\x84\xalst>"’

>>> print(etree.tostring(unicode_root, encoding="iso-8859-1"))

<?xml version=’1.0’ encoding=’iso0-8859-1’7>
<tㄠst>tਊst</tㄠst>

Also see the general remarks on Unicode support.

79

CHAPTER 9. APIS SPECIFIC TO LXML.ETREE

You can enable or disable the declaration explicitly by passing another keyword argument for the serial-
isation:

>>> print(etree.tostring(root, xml_declaration=True))
<?xml version=’1.0’ encoding=’ASCII’?>
<root><test/></root>

>>> unicode_root.clear()
>>> etree.tostring(unicode_root, encoding="UTF-16LE",

... xml_declaration=False)
b’ <\x00t\x00 1s\x00t\x00/\x00>\x00°

Note that a standard compliant XML parser will not consider the last line well-formed XML if the
encoding is not explicitly provided somehow, e.g. in an underlying transport protocol:

>>> notxml = etree.tostring(unicode_root, encoding="UTF-16LE",
... xml_declaration=False)
>>> root = etree.XML(notxml) #doctest: +ELLIPSIS
Traceback (most recent call last):

1xml.etree.XMLSyntaxError:

CDATA

By default, Ixml’s parser will strip CDATA sections from the tree and replace them by their plain text
content. As real applications for CDATA are rare, this is the best way to deal with this issue.

However, in some cases, keeping CDATA sections or creating them in a document is required to adhere to
existing XML language definitions. For these special cases, you can instruct the parser to leave CDATA
sections in the document:

>>> parser = etree.XMLParser(strip_cdata=False)

>>> root = etree.XML(’<root><![CDATA[test]]></root>’, parser)
>>> root.text

‘test’

>>> etree.tostring(root)
b’<root><! [CDATA[test]]></root>’

Note how the .text property does not give any indication that the text content is wrapped by a CDATA
section. If you want to make sure your data is wrapped by a CDATA block, you can use the CDATA()
text wrapper:

>>> root.text = ’test’

>>> root.text

’test’

>>> etree.tostring(root)
b’<root>test</root>’

>>> root.text = etree.CDATA(root.text)
>>> root.text
‘test’

>>> etree.tostring(root)
b’<root><! [CDATA[test]]></root>’

80

CHAPTER 9. APIS SPECIFIC TO LXML.ETREE

XInclude and ElementInclude

You can let Ixml process xinclude statements in a document by calling the xinclude() method on a tree:

>>> data = StringI0(’’’\
. <doc xmlns:xi="http://www.w3.o0rg/2001/XInclude">
. <foo/>
. <xi:include href="doc/test.xml" />
. </doc>?’7?)

>>> tree = etree.parse(data)

>>> tree.xinclude()

>>> print(etree.tostring(tree.getroot()))

<doc xmlns:xi="http://www.w3.org/2001/XInclude">
<foo/>

<a xml:base="doc/test.xml"/>

</doc>

Note that the ElementTree compatible ElementInclude module is also supported as 1xml.ElementInclude
It has the additional advantage of supporting custom URL resolvers at the Python level. The normal
XInclude mechanism cannot deploy these. If you need ElementTree compatibility or custom resolvers,
you have to stick to the external Python module.

write cl4n on ElementTree

The Ixml.etree.ElementTree class has a method write c14n, which takes a file object as argument. This
file object will receive an UTF-8 representation of the canonicalized form of the XML, following the W3C
C14N recommendation. For example:

>>> f = StringI0(’<a>’)

>>> tree = etree.parse(f)

>>> £2 = StringI0()

>>> tree.write_c14n(f2)

>>> print (£f2.getvalue() .decode("utf-8"))
<a>

81

http://effbot.org/zone/element-xinclude.htm

Chapter 10

Parsing XML and HTML with Ixml

Ixml provides a very simple and powerful API for parsing XML and HTML. It supports one-step parsing
as well as step-by-step parsing using an event-driven API (currently only for XML).

The usual setup procedure:

>>> from lxml import etree

Parsers

Parsers are represented by parser objects. There is support for parsing both XML and (broken) HTML.
Note that XHTML is best parsed as XML, parsing it with the HTML parser can lead to unexpected
results. Here is a simple example for parsing XML from an in-memory string:

>>> xml = ’<b xmlns="test"/>’

>>> root = etree.fromstring(xml)
>>> etree.tostring(root)
b’<b xmlns="test"/>’

To read from a file or file-like object, you can use the parse() function, which returns an ElementTree
object:

>>> tree = etree.parse(StringI0(xml))
>>> etree.tostring(tree.getroot())
b’<b xmlns="test"/>’

Note how the parse() function reads from a file-like object here. If parsing is done from a real file, it is
more common (and also somewhat more efficient) to pass a filename:

>>> tree = etree.parse("doc/test.xml")

Ixml can parse from a local file, an HT'TP URL or an FTP URL. It also auto-detects and reads gzip-
compressed XML files (.gz).

If you want to parse from memory and still provide a base URL for the document (e.g. to support
relative paths in an XInclude), you can pass the base_url keyword argument:

>>> root = etree.fromstring(xml, base_url="http://where.it/is/from.xml")

82

CHAPTER 10. PARSING XML AND HTML WITH LXML

Parser options

The parsers accept a number of setup options as keyword arguments. The above example is easily
extended to clean up namespaces during parsing:

>>> parser = etree.XMLParser(ns_clean=True)
>>> tree = etree.parse(StringI0(xml), parser)
>>> etree.tostring(tree.getroot())

b’’

The keyword arguments in the constructor are mainly based on the libxml2 parser configuration. A DTD
will also be loaded if validation or attribute default values are requested.

Available boolean keyword arguments:

e attribute defaults - read the DTD (if referenced by the document) and add the default attributes
from it

e dtd validation - validate while parsing (if a DTD was referenced)

e load dtd - load and parse the DTD while parsing (no validation is performed)

e no_network - prevent network access when looking up external documents (on by default)
e ns_clean - try to clean up redundant namespace declarations

e recover - try hard to parse through broken XML

e remove blank text - discard blank text nodes between tags

e remove comments - discard comments

e remove_pis - discard processing instructions

e strip cdata - replace CDATA sections by normal text content (on by default)

e resolve entities - replace entities by their text value (on by default)

e huge tree - disable security restrictions and support very deep trees and very long text content
(only affects libxml2 2.7+)

e compact - use compact storage for short text content (on by default)

Error log

Parsers have an error_log property that lists the errors of the last parser run:

>>> parser = etree.XMLParser()
>>> print(len(parser.error_log))
0

>>> tree = etree.XML("<root>", parser)
Traceback (most recent call last):

1xml.etree.XMLSyntaxError: Opening and ending tag mismatch: root line 1 and b, line 1, column 11

>>> print(len(parser.error_log))
1

83

CHAPTER 10. PARSING XML AND HTML WITH LXML

>>> error = parser.error_log[0]

>>> print(error.message)

Opening and ending tag mismatch: root line 1 and b
>>> print(error.line)

1

>>> print(error.column)

11

Parsing HTML

HTML parsing is similarly simple. The parsers have a recover keyword argument that the HTMLParser
sets by default. It lets libxml2 try its best to return a valid HTML tree with all content it can manage
to parse. It will not raise an exception on parser errors. You should use libxml2 version 2.6.21 or newer
to take advantage of this feature.

>>> broken_html = "<html><head><title>test<body><hi>page title</h3>"

>>> parser = etree.HTMLParser ()
>>> tree etree.parse(StringI0(broken_html), parser)

>>> result = etree.tostring(tree.getroot(),
. pretty_print=True, method="html")
>>> print(result)
<html>
<head>
<title>test</title>
</head>
<body>
<h1>page title</h1>
</body>
</html>

Lxml has an HTML function, similar to the XML shortcut known from ElementTree:

>>> html = etree.HTML(broken_html)
>>> result = etree.tostring(html, pretty_print=True, method="html")
>>> print(result)
<html>
<head>
<title>test</title>
</head>
<body>
<hil>page title</hi1>
</body>
</html>

The support for parsing broken HTML depends entirely on libxml2’s recovery algorithm. It is not the
fault of Ixml if you find documents that are so heavily broken that the parser cannot handle them. There
is also no guarantee that the resulting tree will contain all data from the original document. The parser
may have to drop seriously broken parts when struggling to keep parsing. Especially misplaced meta
tags can suffer from this, which may lead to encoding problems.

Note that the result is a valid HTML tree, but it may not be a well-formed XML tree. For example,
XML forbids double hyphens in comments, which the HTML parser will happily accept in recovery mode.
Therefore, if your goal is to serialise an HTML document as an XML/XHTML document after parsing,
you may have to apply some manual preprocessing first.

84

CHAPTER 10. PARSING XML AND HTML WITH LXML

Doctype information

The use of the libxml2 parsers makes some additional information available at the API level. Currently,
ElementTree objects can access the DOCTYPE information provided by a parsed document, as well as
the XML version and the original encoding:

>>> pub_id "-//W3C//DTD XHTML 1.0 Transitional//EN"

>>> sys_url = "http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd"

>>> doctype_string = ’<!DOCTYPE html PUBLIC "7s" "7%s">’ % (pub_id, sys_url)
>>> xml_header = ’<7xml version="1.0" encoding="ascii"?>’

>>> xhtml = xml_header + doctype_string + ’<html><body></body></html>’

>>> tree = etree.parse(StringI0(xhtml))

>>> docinfo = tree.docinfo

>>> print(docinfo.public_id)

-//W3C//DTD XHTML 1.0 Transitiomnal//EN

>>> print(docinfo.system_url)
http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd
>>> docinfo.doctype == doctype_string

True

>>> print(docinfo.xml_version)
1.0

>>> print(docinfo.encoding)
ascii

The target parser interface

As in ElementTree, and similar to a SAX event handler, you can pass a target object to the parser:

>>> class EchoTarget:
def start(self, tag, attrib):
print("start %s %s" % (tag, attrib))
def end(self, tag):
print("end %s" % tag)
def data(self, data):
print("data %r" % data)
def comment(self, text):
print ("comment %s" % text)
def close(self):
print("close")
return "closed!"

>>> parser = etree.XMLParser(target = EchoTarget())

>>> result = etree.XML("<element>some<!--comment-->text</element>",
ces parser)

start element {}
data u’some’
comment comment
data u’text’

end element
close

85

http://effbot.org/elementtree/elementtree-xmlparser.htm

CHAPTER 10. PARSING XML AND HTML WITH LXML

>>> print(result)
closed!

It is important for the .close() method to reset the parser target to a usable state, so that you can
reuse the parser as often as you like:

>>> result = etree.XML("<element>some<!--comment-->text</element>",
ce parser)

start element {}
data u’some’
comment comment
data u’text’

end element
close

>>> print(result)
closed!

Note that the parser does not build a tree when using a parser target. The result of the parser run is
whatever the target object returns from its .close() method. If you want to return an XML tree here,
you have to create it programmatically in the target object. An example for a parser target that builds
a tree is the TreeBuilder.

>>> parser = etree.XMLParser(target = etree.TreeBuilder())

>>> result = etree.XML("<element>some<!--comment-->text</element>",

parser)
>>> print(result.tag)
element
>>> print (result[0] .text)
comment

The feed parser interface

Since Ixml 2.0, the parsers have a feed parser interface that is compatible to the ElementTree parsers.
You can use it to feed data into the parser in a controlled step-by-step way.

In Ixml.etree, you can use both interfaces to a parser at the same time: the parse() or XML () functions,
and the feed parser interface. Both are independent and will not conflict (except if used in conjunction
with a parser target object as described above).

To start parsing with a feed parser, just call its feed() method to feed it some data.

>>> parser = etree.XMLParser()

>>> for data in (’<?xml versio’, ’n="1.0"7’, ’><roo’, ’t><a’, ’/></root>’):
parser.feed(data)

When you are done parsing, you must call the close () method to retrieve the root Element of the parse
result document, and to unlock the parser:

>>> root = parser.close()
>>> print(root.tag)

root
>>> print(root[0] .tag)

86

http://effbot.org/elementtree/elementtree-xmlparser.htm

CHAPTER 10. PARSING XML AND HTML WITH LXML

a

If you do not call close(), the parser will stay locked and subsequent feeds will keep appending data,
usually resulting in a non well-formed document and an unexpected parser error. So make sure you
always close the parser after use, also in the exception case.

Another way of achieving the same step-by-step parsing is by writing your own file-like object that
returns a chunk of data on each read() call. Where the feed parser interface allows you to actively pass
data chunks into the parser, a file-like object passively responds to read () requests of the parser itself.
Depending on the data source, either way may be more natural.

Note that the feed parser has its own error log called feed_error_log. Errors in the feed parser do not
show up in the normal error_log and vice versa.

You can also combine the feed parser interface with the target parser:

>>> parser = etree.XMLParser(target = EchoTarget())

>>> parser.feed("<eleme")

>>> parser.feed("nt>some text</elem")
start element {}

data u’some text’

>>> parser.feed("ent>")

end element

>>> result = parser.close()
close

>>> print(result)

closed!

Again, this prevents the automatic creation of an XML tree and leaves all the event handling to the
target object. The close() method of the parser forwards the return value of the target’s close()
method.

iterparse and iterwalk

As known from ElementTree, the iterparse () utility function returns an iterator that generates parser
events for an XML file (or file-like object), while building the tree. The values are tuples (event-type,
object). The event types supported by ElementTree and lxml.etree are the strings ’start’, ’end’, 'start-
ns’ and ’end-ns’.

The ’start’ and ’end’ events represent opening and closing elements. They are accompanied by the
respective Element instance. By default, only ’end’ events are generated:

>>> xml = 770\
. <root>
<element key=’value’>text</element>
<element>text</element>tail
<empty-element xmlns="http://testns/" />

. </root>
32

>>> context = etree.iterparse(StringI0(xml))
>>> for action, elem in context:

print("%s: 7%s" ’ (action, elem.tag))
end: element

87

CHAPTER 10. PARSING XML AND HTML WITH LXML

end: element
end: {http://testns/}empty-element
end: root

The resulting tree is available through the root property of the iterator:

>>> context.root.tag
root’

The other event types can be activated with the events keyword argument:

>>> events = ("start", "end")
>>> context = etree.iterparse(StringI0(xml), events=events)
>>> for action, elem in context:
print("%s: %s" 7 (action, elem.tag))
start: root
start: element
end: element
start: element
end: element
start: {http://testns/}empty-element
end: {http://testns/}empty-element
end: root

The ’start-ns’ and ’end-ns’ events notify about namespace declarations. They do not come with Ele-
ments. Instead, the value of the ’start-ns’ event is a tuple (prefix, namespaceURI) that designates
the beginning of a prefix-namespace mapping. The corresponding end-ns event does not have a value
(None). It is common practice to use a list as namespace stack and pop the last entry on the ’end-ns’
event.

>>> print (xml[:-1])

<root>
<element key=’value’>text</element>
<element>text</element>tail
<empty-element xmlns="http://testns/" />

</root>

>>> events = ("start", "end", "start-ns", "end-ns")
>>> context = etree.iterparse(StringI0(xml), events=events)
>>> for action, elem in context:
if action in (’start’, ’end’):
print("%s: %s" % (action, elem.tag))
elif action == ’start-ns’:
print("%s: %s" % (action, elem))
else:
.. print (action)
start: root
start: element
end: element
start: element
end: element
start-ns: (°’, ’http://testns/’)
start: {http://testns/}empty-element
end: {http://testns/}empty-element
end-ns
end: root

88

CHAPTER 10. PARSING XML AND HTML WITH LXML

Selective tag events

As an extension over ElementTree, Ixml.etree accepts a tag keyword argument just like element .iter (tag).
This restricts events to a specific tag or namespace:

>>> context = etree.iterparse(StringIO(xml), tag="element")
>>> for action, elem in context:
print("%s: %s" 7 (action, elem.tag))
end: element
end: element

>>> events = ("start", "end")
>>> context = etree.iterparse(
.. StringI0(xml), events=events, tag="{http://testns/}*")
>>> for action, elem in context:
.. print("%s: %s" % (action, elem.tag))
start: {http://testns/}empty-element
end: {http://testns/}empty-element

Comments and Pls

As an extension over ElementTree, the iterparse() function in Ixml.etree also supports the event types
‘comment’ and ’pi’ for the respective XML structures.

>>> commented_xml = 777\

<?some pi 7>

<!-- a comment -->

<root>
<element key=’value’>text</element>
<!-- another comment -->
<element>text</element>tail
<empty-element xmlns="http://testns/" />

</root>
20

>>> events = ("start", "end", "comment", "pi")
>>> context = etree.iterparse(StringI0(commented_xml), events=events)
>>> for action, elem in context:
if action in (’start’, ’end’):
print("%s: %s" 7 (action, elem.tag))
elif action == ’pi’:
print("%s: -%s=)s-" % (action, elem.target, elem.text))
else: # ’comment’
print("%s: -%s-" 7 (action, elem.text))
pi: -some=pi -
comment: - a comment -
start: root
start: element
end: element
comment: - another comment -
start: element
end: element
start: {http://testns/}empty-element
end: {http://testns/}empty-element
end: root

89

CHAPTER 10. PARSING XML AND HTML WITH LXML

>>> print(context.root.tag)
root

Modifying the tree

You can modify the element and its descendants when handling the ’end’ event. To save memory, for
example, you can remove subtrees that are no longer needed:

>>> context = etree.iterparse(StringI0(xml))
>>> for action, elem in context:
print(len(elem))

elem.clear()

w o O o -

>>> context.root.getchildren()

(]

WARNING: During the ’start’ event, the descendants and following siblings are not yet available and
should not be accessed. During the 'end’ event, the element and its descendants can be freely modified,
but its following siblings should not be accessed. During either of the two events, you must not modify
or move the ancestors (parents) of the current element. You should also avoid moving or discarding the
element itself. The golden rule is: do not touch anything that will have to be touched again by the parser
later on.

If you have elements with a long list of children in your XML file and want to save more memory during
parsing, you can clean up the preceding siblings of the current element:

>>> for event, element in etree.iterparse(StringI0(xml)):
... do something with the element
element.clear() # clean up children
while element.getprevious() is not None:
del element.getparent() [0] # clean up preceding siblings

The while loop deletes multiple siblings in a row. This is only necessary if you skipped over some of
them using the tag keyword argument. Otherwise, a simple if should do. The more selective your tag
is, however, the more thought you will have to put into finding the right way to clean up the elements
that were skipped. Therefore, it is sometimes easier to traverse all elements and do the tag selection by
hand in the event handler code.

iterwalk

A second extension over ElementTree is the iterwalk() function. It behaves exactly like iterparse(),
but works on Elements and ElementTrees:

>>> root = etree.XML(xml)
>>> context = etree.iterwalk(
- root, events=("start", "end"), tag="element")
>>> for action, elem in context:
print("%s: %s" % (action, elem.tag))
start: element
end: element
start: element

90

CHAPTER 10. PARSING XML AND HTML WITH LXML

end: element

>>> f = StringI0(xml)
>>> context = etree.iterparse(
f, events=("start", "end"), tag="element")

>>> for action, elem in context:
print("%s: %s" % (action, elem.tag))
start: element
end: element
start: element
end: element

Python unicode strings

Ixml.etree has broader support for Python unicode strings than the ElementTree library. First of all,
where ElementTree would raise an exception, the parsers in Ixml.etree can handle unicode strings straight
away. This is most helpful for XML snippets embedded in source code using the XML () function:

>>> uxml = u’<test> \uf8dil + \uf8d2 </test>’
>>> uxml

u’<test> \uf8dl + \uf8d2 </test>’

>>> root = etree.XML(uxml)

This requires, however, that unicode strings do not specify a conflicting encoding themselves and thus
lie about their real encoding:

>>> etree.XML(u’<7xml version="1.0" encoding="ASCII"?>\n’ + uxml)
Traceback (most recent call last):

ValueError: Unicode strings with encoding declaration are not supported.

Similarly, you will get errors when you try the same with HTML data in a unicode string that specifies a
charset in a meta tag of the header. You should generally avoid converting XML/HTML data to unicode
before passing it into the parsers. It is both slower and error prone.

Serialising to Unicode strings

To serialize the result, you would normally use the tostring() module function, which serializes to plain
ASCII by default or a number of other byte encodings if asked for:

>>> etree.tostring(root)
b’<test>  +  </test>’

>>> etree.tostring(root, encoding=’UTF-8’, xml_declaration=False)
b’<test> \xef\xa3\x91 + \xef\xa3\x92 </test>’

As an extension, Ixml.etree recognises the unicode type as an argument to the encoding parameter to
build a Python unicode representation of a tree:

>>> etree.tostring(root, encoding=unicode)
u’<test> \uf8dl + \uf8d2 </test>’

>>> el = etree.Element("test")

91

CHAPTER 10.

PARSING XML AND HTML WITH LXML

>>> etree.tostring(el, encoding=unicode)
u’<test/>’

>>> subel = etree.SubElement(el, "subtest")
>>> etree.tostring(el, encoding=unicode)
u’<test><subtest/></test>’

>>> tree = etree.ElementTree(el)
>>> etree.tostring(tree, encoding=unicode)
u’<test><subtest/></test>’

The result of tostring(encoding=unicode) can be treated like any other Python unicode string and
then passed back into the parsers. However, if you want to save the result to a file or pass it over the
network, you should use write() or tostring() with a byte encoding (typically UTF-8) to serialize the
XML. The main reason is that unicode strings returned by tostring(encoding=unicode) are not byte
streams and they never have an XML declaration to specify their encoding. These strings are most likely

not parsable by other XML libraries.

For normal byte encodings, the tostring() function automatically adds a declaration as needed that
reflects the encoding of the returned string. This makes it possible for other parsers to correctly parse
the XML byte stream. Note that using tostring() with UTF-8 is also considerably faster in most cases.

92

Chapter 11

Validation with Ixml

Apart from the built-in DTD support in parsers, Ixml currently supports three schema languages: DTD,
Relax NG and XML Schema. All three provide identical APIs in Ixml, represented by validator classes
with the obvious names.

There is also initial support for Schematron. However, it does not currently support error reporting in
the validation phase due to insufficiencies in the implementation as of libxml2 2.6.30.

The usual setup procedure:

>>> from lxml import etree

Validation at parse time

The parser in Ixml can do on-the-fly validation of a document against a DTD or an XML schema. The
DTD is retrieved automatically based on the DOCTYPE of the parsed document. All you have to do is
use a parser that has DTD validation enabled:

>>> parser = etree.XMLParser(dtd_validation=True)

Obviously, a request for validation enables the DTD loading feature. There are two other options that
enable loading the DTD, but that do not perform any validation. The first is the load_dtd keyword
option, which simply loads the DTD into the parser and makes it available to the document as external
subset. You can retrieve the DTD from the parsed document using the docinfo property of the result
ElementTree object. The internal subset is available as internalDTD, the external subset is provided as
externalDTD.

The third way way to activate DTD loading is with the attribute_defaults option, which loads the
DTD and weaves attribute default values into the document. Again, no validation is performed unless
explicitly requested.

XML schema is supported in a similar way, but requires an explicit schema to be provided:

>>> schema_root = etree.XML(’’’\
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="a" type="xsd:integer"/>
</xsd:schema>
))7)

>>> schema = etree.XMLSchema(schema_root)

93

http://en.wikipedia.org/wiki/Document_Type_Definition
http://www.relaxng.org/
http://www.w3.org/XML/Schema
http://www.ascc.net/xml/schematron

CHAPTER 11. VALIDATION WITH LXML

>>> parser = etree.XMLParser(schema = schema)
>>> root = etree.fromstring("<a>5", parser)

If the validation fails (be it for a DTD or an XML schema), the parser will raise an exception:

>>> root = etree.fromstring("<a>no int", parser)
Traceback (most recent call last):
1xml.etree.XMLSyntaxError: Element ’a’: ’no int’ is not a valid value of the atomic type ’xs:integer

If you want the parser to succeed regardless of the outcome of the validation, you should use a non
validating parser and run the validation separately after parsing the document.

DTD

As described above, the parser support for DTDs depends on internal or external subsets of the XML file.
This means that the XML file itself must either contain a DTD or must reference a DTD to make this
work. If you want to validate an XML document against a DTD that is not referenced by the document
itself, you can use the DTD class.

To use the DTD class, you must first pass a filename or file-like object into the constructor to parse a
DTD:

>>> f = StringIO("<!ELEMENT b EMPTY>")
>>> dtd = etree.DTD(f)

Now you can use it to validate documents:

>>> root = etree.XML("")
>>> print(dtd.validate(root))
True

>>> root = etree.XML("<a/>")
>>> print(dtd.validate(root))
False

The reason for the validation failure can be found in the error log:

>>> print(dtd.error_log.filter_from_errors() [0])
<string>:1:0:ERROR:VALID:DTD_NOT_EMPTY: Element b was declared EMPTY this one has content

As an alternative to parsing from a file, you can use the external_id keyword argument to parse from
a catalog. The following example reads the DocBook DTD in version 4.2, if available in the system
catalog:

dtd = etree.DTD(external_id = "-//0ASIS//DTD DocBook XML V4.2//EN")

RelaxNG

The RelaxNG class takes an ElementTree object to construct a Relax NG validator:

>>> f = StringI0(’ 77\
. <element name="a" xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>
<element name="b">
<text />

94

CHAPTER 11. VALIDATION WITH LXML

</element>
</zero0rMore>
</element>
77:)
>>> relaxng_doc = etree.parse(f)
>>> relaxng = etree.RelaxNG(relaxng_doc)

Alternatively, pass a filename to the file keyword argument to parse from a file. This also enables
correct handling of include files from within the RelaxNG parser.

You can then validate some ElementTree document against the schema. You’ll get back True if the
document is valid against the Relax NG schema, and False if not:

>>> valid = StringI0(’<a>’)
>>> doc = etree.parse(valid)

>>> relaxng.validate(doc)

True

>>> invalid = StringI0(’<a><c></c>?)
>>> doc2 = etree.parse(invalid)

>>> relaxng.validate(doc2)

False

Calling the schema object has the same effect as calling its validate method. This is sometimes used in
conditional statements:

>>> invalid = StringI0(’<a><c></c>?)

>>> doc2 = etree.parse(invalid)

>>> if not relaxng(doc2):
print("invalid!")

invalid!

If you prefer getting an exception when validating, you can use the assert_ or assertValid methods:

>>> relaxng.assertValid(doc2)
Traceback (most recent call last):

1xml.etree.DocumentInvalid: Did not expect element c there, line 1

>>> relaxng.assert_(doc2)
Traceback (most recent call last):

AssertionError: Did not expect element c there, line 1

If you want to find out why the validation failed in the second case, you can look up the error log of the
validation process and check it for relevant messages:

>>> log = relaxng.error_log
>>> print(log.last_error)
<string>:1:0:ERROR:RELAXNGV:RELAXNG_ERR_ELEMWRONG: Did not expect element c there

You can see that the error (ERROR) happened during RelaxNG validation (RELAXNGYV). The message
then tells you what went wrong. You can also look at the error domain and its type directly:

>>> error = log.last_error
>>> print (error.domain_name)
RELAXNGV

>>> print(error.type_name)
RELAXNG_ERR_ELEMWRONG

95

CHAPTER 11. VALIDATION WITH LXML

Note that this error log is local to the RelaxNG object. It will only contain log entries that appeared
during the validation.

Similar to XSLT, there’s also a less efficient but easier shortcut method to do one-shot RelaxNG valida-
tion:

>>> doc.relaxng(relaxng_doc)
True
>>> doc2.relaxng(relaxng_doc)
False

libxml2 does not currently support the RelaxNG Compact Syntax. However, the trang translator can
convert the compact syntax to the XML syntax, which can then be used with lxml.

XMLSchema

Ixml.etree also has XML Schema (XSD) support, using the class Ixml.etree. XMLSchema. The API is
very similar to the Relax NG and DTD classes. Pass an ElementTree object to construct a XMLSchema
validator:

>>> f = StringI0(’’’\
. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
. <xsd:element name="a" type="AType'"/>
. <xsd:complexType name="AType">
<xsd:sequence>
<xsd:element name="b" type="xsd:string" />
. </xsd:sequence>
. </xsd:complexType>
. </xsd:schema>
. 22
>>> xmlschema_doc = etree.parse(f)
>>> xmlschema = etree.XMLSchema(xmlschema_doc)

You can then validate some ElementTree document with this. Like with RelaxNG, you’ll get back true
if the document is valid against the XML schema, and false if not:

>>> valid = StringI0(’<a>’)
>>> doc = etree.parse(valid)

>>> xmlschema.validate(doc)

True

>>> invalid = StringI0(’<a><c></c>?)
>>> doc2 = etree.parse(invalid)

>>> xmlschema.validate(doc2)

False

Calling the schema object has the same effect as calling its validate method. This is sometimes used in
conditional statements:

>>> invalid = StringI0(’<a><c></c>?)

>>> doc2 = etree.parse(invalid)

>>> if not xmlschema(doc2):
print("invalid!")

invalid!

If you prefer getting an exception when validating, you can use the assert_ or assertValid methods:

96

http://www.thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/relaxng/trang.html

CHAPTER 11. VALIDATION WITH LXML

>>> xmlschema.assertValid(doc2)
Traceback (most recent call last):

1xml.etree.DocumentInvalid: Element ’c’: This element is not expected. Expected is (b)., line 1

>>> xmlschema.assert_(doc2)
Traceback (most recent call last):

AssertionError: Element ’c’: This element is not expected. Expected is (b)., line 1
Error reporting works as for the RelaxNG class:

>>> log = xmlschema.error_log
>>> error = log.last_error
>>> print (error.domain_name)
SCHEMASV

>>> print(error.type_name)
SCHEMAV_ELEMENT_CONTENT

If you were to print this log entry, you would get something like the following. Note that the error
message depends on the libxml2 version in use:

<string>:1:ERROR::SCHEMAV_ELEMENT_CONTENT: Element ’c’: This element is not expected.

Similar to XSLT and RelaxNG, there’s also a less efficient but easier shortcut method to do XML Schema
validation:

>>> doc.xmlschema(xmlschema_doc)
True
>>> doc2.xmlschema(xmlschema_doc)
False

Schematron

Since version 2.0, lxml.etree features Schematron support, using the class Ixml.etree.Schematron. It
requires at least libxml2 2.6.21 to work. The API is the same as for the other validators. Pass an
ElementTree object to construct a Schematron validator:

>>> f = StringI0(’ 7\
. <schema xmlns="http://www.ascc.net/xml/schematron" >
<pattern name="Sum equals 100%.">
<rule context="Total">
<assert test="sum(//Percent)=100">Sum is not 100%.</assert>
</rule>
</pattern>
. </schema>

7):)

>>> sct_doc = etree.parse(f)
>>> schematron = etree.Schematron(sct_doc)

You can then validate some ElementTree document with this. Like with RelaxNG, you'll get back true
if the document is valid against the schema, and false if not:

>>> valid = StringI0(’’’\
. <Total>

97

Expected

http://www.ascc.net/xml/schematron

CHAPTER 11.

VALIDATION WITH LXML

<Percent>20</Percent>
<Percent>30</Percent>
<Percent>50</Percent>
. </Total>
))7)

>>> doc = etree.parse(valid)
>>> schematron.validate(doc)
True

>>> etree.SubElement (doc.getroot(), "Percent").text = "10"

>>> schematron.validate(doc)
False

Calling the schema object has the same effect as calling its validate method. This is sometimes used in

conditional statements:

>>> is_valid = etree.Schematron(sct_doc)

>>> if not is_valid(doc):
print("invalid!")
invalid!

Note that libxml2 restricts error reporting to the parsing step (when creating the Schematron instance).

There is not currently any support for error reporting during validation.

98

Chapter 12

XPath and XSLT with Ixml

Ixml supports XPath 1.0, XSLT 1.0 and the EXSLT extensions through libxml2 and libxslt in a standards
compliant way.

The usual setup procedure:

>>> from lxml import etree

XPath

Ixml.etree supports the simple path syntax of the find, findall and findtext methods on ElementTree and
Element, as known from the original ElementTree library (ElementPath). As an Ixml specific extension,
these classes also provide an xpath() method that supports expressions in the complete XPath syntax,
as well as custom extension functions.

There are also specialized XPath evaluator classes that are more efficient for frequent evaluation: XPath
and XPathEvaluator. See the performance comparison to learn when to use which. Their semantics
when used on Elements and ElementTrees are the same as for the xpath() method described here.

The xpath() method

For ElementTree, the xpath method performs a global XPath query against the document (if absolute)
or against the root node (if relative):

>>> f = StringI0(’<foo><bar></bar></foo>’)
>>> tree = etree.parse(f)

>>> r = tree.xpath(’/foo/bar’)
>>> len(r)

1

>>> r[0] .tag

’bar’

>>> r = tree.xpath(’bar’)

>>> r[0] .tag
’bar’

99

http://effbot.org/zone/element.htm#searching-for-subelements
http://effbot.org/zone/element-xpath.htm

CHAPTER 12. XPATH AND XSLT WITH LXML

When xpath() is used on an Element, the XPath expression is evaluated against the element (if relative)

or against the root tree (if absolute):

>>> root = tree.getroot()
>>> r = root.xpath(’bar’)
>>> r[0] .tag

’bar’

>>> bar = root[0]

>>> r = bar.xpath(’/foo/bar’)
>>> r[0] .tag

’bar’

>>> tree = bar.getroottree()
>>> r = tree.xpath(’/foo/bar’)
>>> r[0] .tag

’bar’

The xpath() method has support for XPath variables:

>>> expr = "//*[local-name() = $name]"

>>> print(root.xpath(expr, name
foo

>>> print(root.xpath(expr, name
bar

"foo") [0] .tag)

"bar") [0] . tag)

>>> print(root.xpath("$text", text = "Hello World!"))

Hello World!

Namespaces and prefixes

If your XPath expression uses namespace prefixes, you must define them in a prefix mapping. To this
end, pass a dictionary to the namespaces keyword argument that maps the namespace prefixes used in
the XPath expression to namespace URIs:

>>> f = StringI0(’ 7\

. <a:foo xmlns:a="http://codespeak.net/ns/testl"
xmlns:b="http://codespeak.net/ns/test2">

<b:bar>Text</b:bar>
. </a:foo>
777)

>>> doc = etree.parse(f)

>>> r = doc.xpath(’/t:foo/b:bar’,

namespaces={’t’:
7b,:

>>> len(r)
1
>>> r[0] .tag

’http://codespeak.net/ns/testl’,
’http://codespeak.net/ns/test2’})

’{http://codespeak.net/ns/test2}bar’

>>> r[0] .text
‘Text?’

100

CHAPTER 12. XPATH AND XSLT WITH LXML

The prefixes you choose here are not linked to the prefixes used inside the XML document. The document
may define whatever prefixes it likes, including the empty prefix, without breaking the above code.

Note that XPath does not have a notion of a default namespace. The empty prefix is therefore undefined
for XPath and cannot be used in namespace prefix mappings.

There is also an optional extensions argument which is used to define custom extension functions in
Python that are local to this evaluation. The namespace prefixes that they use in the XPath expression
must also be defined in the namespace prefix mapping.

XPath return values

The return value types of XPath evaluations vary, depending on the XPath expression used:
e True or False, when the XPath expression has a boolean result
e a float, when the XPath expression has a numeric result (integer or float)
e a 'smart’ string (as described below), when the XPath expression has a string result.

e a list of items, when the XPath expression has a list as result. The items may include Elements
(also comments and processing instructions), strings and tuples. Text nodes and attributes in
the result are returned as ’smart’ string values. Namespace declarations are returned as tuples of
strings: (prefix, URI).

XPath string results are ’smart’ in that they provide a getparent () method that knows their origin:

e for attribute values, result.getparent () returns the Element that carries them. An example is
//foo/@attribute, where the parent would be a foo Element.

e for the text () function (as in //text ()), it returns the Element that contains the text or tail that
was returned.

You can distinguish between different text origins with the boolean properties is_text, is_tail and
is_attribute.

Note that getparent () may not always return an Element. For example, the XPath functions string()
and concat() will construct strings that do not have an origin. For them, getparent() will return
None.

There are certain cases where the smart string behaviour is undesirable. For example, it means that the
tree will be kept alive by the string, which may have a considerable memory impact in the case that the
string value is the only thing in the tree that is actually of interest. For these cases, you can deactivate
the parental relationship using the keyword argument smart_strings.

>>> root = etree.XML("<root><a>TEXT</root>")

>>> find_text = etree.XPath("//text(O")
>>> text = find_text(root) [0]

>>> print(text)

TEXT

>>> print(text.getparent() .text)

TEXT

>>> find_text = etree.XPath("//text()", smart_strings=False)
>>> text = find_text(root) [0]

>>> print(text)

TEXT

>>> hasattr(text, ’getparent’)

101

CHAPTER 12. XPATH AND XSLT WITH LXML

Generating XPath expressions

False

ElementTree objects have a method getpath(element), which returns a structural, absolute XPath
expression to find that element:

>>> a
>>> b =
>>> ¢ =
>>> dl =
>>> d2 =

>>> tree

/c/d[2]

>>> tree.xpath(tree.getpath(d2)) == [d2]

True

etree.Element("a")
etree.SubElement (a,
etree.SubElement (a,
etree.SubElement (c,
etree.SubElement (c,

"b")
"C")
"d")
"d")

= etree.ElementTree(c)
>>> print(tree.getpath(d2))

The XPath class

The XPath class compiles an XPath expression into a callable function:

>>> root

>>> find

= etree.XPath("//b")

>>> print (find(root) [0] .tag)

b

etree.XML("<root><a></root>")

The compilation takes as much time as in the xpath() method, but it is done only once per class
instantiation. This makes it especially efficient for repeated evaluation of the same XPath expression.

Just like the xpath() method, the XPath class supports XPath variables:

>>> count_elements = etree.XPath("count(//*[local-name() = $name])")

>>> print(count_elements(root, name =

1.0

>>> print(count_elements(root, name =

2.0

This supports very efficient evaluation of modified versions of an XPath expression, as compilation is
still only required once.

Prefix-to-namespace mappings can be passed as second parameter:

>>> root

>>> find

{NS}b

= etree.XML("<root xmlns=’NS’><a></root>")

= etree.XPath("//n:b", namespaces={’n’:’NS’})
>>> print (find(root) [0] .tag)

By default, XPath supports regular expressions in the EXSLT namespace:

>>> regexpNS = "http://exslt.org/regular-expressions"

>>> find = etree.XPath("//*[re:test(.,

’~abc$?’, ’i?)]",

102

http://www.exslt.org/

CHAPTER 12. XPATH AND XSLT WITH LXML

namespaces={’re’ :regexpNS})

>>> root = etree.XML("<root><a>aBaBc</root>")
>>> print(find(root) [0] .text)
aBc

You can disable this with the boolean keyword argument regexp which defaults to True.

The XPathEvaluator classes

Ixml.etree provides two other efficient XPath evaluators that work on ElementTrees or Elements respec-
tively: XPathDocumentEvaluator and XPathElementEvaluator. They are automatically selected if you
use the XPathEvaluator helper for instantiation:

>>> root = etree.XML("<root><a></root>")
>>> xpatheval = etree.XPathEvaluator(root)

>>> print(isinstance(xpatheval, etree.XPathElementEvaluator))
True

>>> print (xpatheval("//b") [0] .tag)
b

This class provides efficient support for evaluating different XPath expressions on the same Element or
ElementTree.

ETXPath

ElementTree supports a language named ElementPath in its find*() methods. One of the main dif-
ferences between XPath and ElementPath is that the XPath language requires an indirection through
prefixes for namespace support, whereas ElementTree uses the Clark notation ({ns}name) to avoid pre-
fixes completely. The other major difference regards the capabilities of both path languages. Where
XPath supports various sophisticated ways of restricting the result set through functions and boolean
expressions, ElementPath only supports pure path traversal without nesting or further conditions. So,
while the ElementPath syntax is self-contained and therefore easier to write and handle, XPath is much
more powerful and expressive.

Ixml.etree bridges this gap through the class ETXPath, which accepts XPath expressions with namespaces
in Clark notation. It is identical to the XPath class, except for the namespace notation. Normally, you
would write:

>>> root = etree.XML("<root xmlns=’ns’><a></root>")

>>> find = etree.XPath("//p:b", namespaces={’p’ : ’ns’})
>>> print (find(root) [0] . tag)
{ns}b

ETXPath allows you to change this to:

>>> find = etree.ETXPath("//{ns}b")
>>> print(find(root) [0].tag)
{ns}b

103

http://effbot.org/zone/element-xpath.htm

CHAPTER 12. XPATH AND XSLT WITH LXML

Error handling

Ixml.etree raises exceptions when errors occur while parsing or evaluating an XPath expression:

>>> find = etree.XPath("\\")
Traceback (most recent call last):

1xml.etree.XPathSyntaxError: Invalid expression

Ixml will also try to give you a hint what went wrong, so if you pass a more complex expression, you
may get a somewhat more specific error:

>>> find = etree.XPath("//x[1.1.1]")
Traceback (most recent call last):

1xml.etree.XPathSyntaxError: Invalid predicate
During evaluation, Ixml will emit an XPathEvalError on errors:

>>> find = etree.XPath("//ns:a")
>>> find(root)
Traceback (most recent call last):

1xml.etree.XPathEvalError: Undefined namespace prefix

This works for the XPath class, however, the other evaluators (including the xpath() method) are one-
shot operations that do parsing and evaluation in one step. They therefore raise evaluation exceptions
in all cases:

>>> root = etree.Element("test")
>>> find = root.xpath("//*[1.1.1]1")
Traceback (most recent call last):

1xml.etree.XPathEvalError: Invalid predicate

>>> find = root.xpath("//ns:a")
Traceback (most recent call last):

1xml.etree.XPathEvalError: Undefined namespace prefix

>>> find = root.xpath("\\")
Traceback (most recent call last):

1xml.etree.XPathEvalError: Invalid expression

Note that lxml versions before 1.3 always raised an XPathSyntaxError for all errors, including evaluation
errors. The best way to support older versions is to except on the superclass XPathError.

XSLT

Ixml.etree introduces a new class, Ixml.etree. XSLT. The class can be given an ElementTree object to
construct an XSLT transformer:

>>> f = StringI0(’ 77\
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

104

CHAPTER 12. XPATH AND XSLT WITH LXML

<xsl:template match="/">
<foo><xsl:value-of select="/a/b/text()" /></foo>
</xsl:template>
. </xsl:stylesheet>’’’)
>>> xslt_doc = etree.parse(f)
>>> transform = etree.XSLT(xslt_doc)

You can then run the transformation on an ElementTree document by simply calling it, and this results
in another ElementTree object:

>>> f = StringI0(’<a>Text’)
>>> doc = etree.parse(f)
>>> result_tree = transform(doc)

By default, XSLT supports all extension functions from libxslt and libexslt as well as Python regular
expressions through the EXSLT regexp functions. Also see the documentation on custom extension
functions, XSLT extension elements and document resolvers. There is a separate section on controlling
access to external documents and resources.

XSLT result objects

The result of an XSL transformation can be accessed like a normal ElementTree document:

>>> f = StringI0(’<a>Text’)
>>> doc = etree.parse(f)
>>> result = transform(doc)

>>> result.getroot() .text
’Text’

but, as opposed to normal ElementTree objects, can also be turned into an (XML or text) string by
applying the str() function:

>>> str(result)
’<?7xml version="1.0"?>\n<foo>Text</foo>\n’

The result is always a plain string, encoded as requested by the xsl:output element in the stylesheet.
If you want a Python unicode string instead, you should set this encoding to UTF-8 (unless the ASCIT
default is sufficient). This allows you to call the builtin unicode () function on the result:

>>> unicode (result)
u’<?xml version="1.0"?>\n<foo>Text</foo>\n’

You can use other encodings at the cost of multiple recoding. Encodings that are not supported by
Python will result in an error:

>>> xslt_tree = etree.XML(’’’\

. <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output encoding="UCS4"/>
<xsl:template match="/">

<foo><xsl:value-of select="/a/b/text()" /></foo>
. </xsl:template>
... </xsl:stylesheet>’’?)
>>> transform = etree.XSLT(xslt_tree)

>>> result = transform(doc)

105

http://www.exslt.org/regexp/

CHAPTER 12. XPATH AND XSLT WITH LXML

>>> unicode(result)
Traceback (most recent call last):

LookupError: unknown encoding: UCS4

Stylesheet parameters

It is possible to pass parameters, in the form of XPath expressions, to the XSLT template:

>>> xslt_tree = etree.XML(’’’\
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:param name="a" />
<xsl:template match="/">
<foo><xsl:value-of select="$a" /></foo>
</xsl:template>
</xsl:stylesheet>’’’)
>>> transform = etree.XSLT(xslt_tree)
>>> f = Stringl0(’<a>Text’)
>>> doc = etree.parse(f)

The parameters are passed as keyword parameters to the transform call. First, let’s try passing in a
simple integer expression:

>>> result = transform(doc, a="5")
>>> str(result)
’<?7xml version="1.0"7?>\n<foo>5</foo>\n’

You can use any valid XPath expression as parameter value:

>>> result = transform(doc, a="/a/b/text()")
>>> str(result)
’<?xml version="1.0"7>\n<foo>Text</foo>\n’

Passing a string expression looks like this:

>>> result = transform(doc, a="’A’")
>>> str(result)
’<?xml version="1.0"7>\n<foo>A</foo>\n’

To pass a string that (potentially) contains quotes, you can use the .strparam() class method. Note
that it does not escape the string. Instead, it returns an opaque object that keeps the string value.

>>> plain_string_value = etree.XSLT.strparam(

. nmnn It)s llMonty Pythonll IIIIII)
>>> result = transform(doc, a=plain_string_value)

>>> str(result)

’<?7xml version="1.0"7>\n<foo> It\’s "Monty Python" </foo>\n’

The xs1t() tree method

There’s also a convenience method on ElementTree objects for doing XSL transformations. This is less
efficient if you want to apply the same XSL transformation to multiple documents, but is shorter to write
for one-shot operations, as you do not have to instantiate a stylesheet yourself:

106

CHAPTER 12. XPATH AND XSLT WITH LXML

>>> result = doc.xslt(xslt_tree, a="’A"")
>>> str(result)
’<?xml version="1.0"7?>\n<foo>A</foo>\n’

This is a shortcut for the following code:

>>> transform = etree.XSLT(xslt_tree)
>>> result = transform(doc, a="’A’")
>>> str(result)

’<?7xml version="1.0"7>\n<foo>A</foo>\n’

Dealing with stylesheet complexity

Some applications require a larger set of rather diverse stylesheets. lxml.etree allows you to deal with
this in a number of ways. Here are some ideas to try.

The most simple way to reduce the diversity is by using XSLT parameters that you pass at call time to
configure the stylesheets. The partial () function in the functools module of Python 2.5 may come in
handy here. It allows you to bind a set of keyword arguments (i.e. stylesheet parameters) to a reference
of a callable stylesheet. The same works for instances of the XPath () evaluator, obviously.

You may also consider creating stylesheets programmatically. Just create an XSL tree, e.g. from a parsed
template, and then add or replace parts as you see fit. Passing an XSL tree into the XSLT() constructor
multiple times will create independent stylesheets, so later modifications of the tree will not be reflected
in the already created stylesheets. This makes stylesheet generation very straight forward.

A third thing to remember is the support for custom extension functions and XSLT extension elements.
Some things are much easier to express in XSLT than in Python, while for others it is the complete
opposite. Finding the right mixture of Python code and XSL code can help a great deal in keeping
applications well designed and maintainable.

Profiling

If you want to know how your stylesheet performed, pass the profile_run keyword to the transform:

>>> result = transform(doc, a="/a/b/text()", profile_run=True)
>>> profile = result.xslt_profile

The value of the xs1lt_profile property is an ElementTree with profiling data about each template,
similar to the following:

<profile>
<template rank="1" match="/" name="" mode="" calls="1" time="1" average=”1”/>
</profile>

Note that this is a read-only document. You must not move any of its elements to other documents.
Please deep-copy the document if you need to modify it. If you want to free it from memory, just do:

>>> del result.xslt_profile

107

Chapter 13

Ixml.objectify

Author: Stefan Behnel
Author: Holger Joukl

Ixml supports an alternative API similar to the Amara bindery or gnosis.xml.objectify through a custom
Element implementation. The main idea is to hide the usage of XML behind normal Python objects,
sometimes referred to as data-binding. It allows you to use XML as if you were dealing with a normal
Python object hierarchy.

Accessing the children of an XML element deploys object attribute access. If there are multiple children
with the same name, slicing and indexing can be used. Python data types are extracted from XML
content automatically and made available to the normal Python operators.

To set up and use objectify, you need both the 1xml.etree module and 1xml.objectify:

>>> from 1lxml import etree
>>> from lxml import objectify

The objectify API is very different from the ElementTree API. If it is used, it should not be mixed with
other element implementations (such as trees parsed with 1xml.etree), to avoid non-obvious behaviour.

The benchmark page has some hints on performance optimisation of code using Ixml.objectify.
To make the doctests in this document look a little nicer, we also use this:
>>> import lxml.usedoctest

Imported from within a doctest, this relieves us from caring about the exact formatting of XML output.

The Ixml.objectify API

In 1xml.objectify, element trees provide an API that models the behaviour of normal Python object
trees as closely as possible.

Creating objectify trees

As with 1xml.etree, you can either create an objectify tree by parsing an XML document or by
building one from scratch. To parse a document, just use the parse() or fromstring() functions of the
module:

108

http://uche.ogbuji.net/tech/4suite/amara/
http://gnosis.cx/download/

CHAPTER 13. LXML.OBJECTIFY

>>> fileobject = StringI0(’<test/>’)

>>> tree = objectify.parse(fileobject)
>>> print(isinstance(tree.getroot(), objectify.ObjectifiedElement))
True

>>> root = objectify.fromstring(’<test/>’)
>>> print(isinstance(root, objectify.0ObjectifiedElement))
True

To build a new tree in memory, objectify replicates the standard factory function Element () from
1xml.etree:

>>> obj_el = objectify.Element ("new")
>>> print(isinstance(obj_el, objectify.ObjectifiedElement))
True

After creating such an Element, you can use the usual API of Ixml.etree to add SubElements to the tree:
>>> child = etree.SubElement(obj_el, "newchild", attr="value")

New subelements will automatically inherit the objectify behaviour from their tree. However, all inde-
pendent elements that you create through the Element () factory of Ixml.etree (instead of objectify) will
not support the objectify API by themselves:

>>> subel = etree.SubElement(obj_el, "sub")
>>> print(isinstance(subel, objectify.0bjectifiedElement))
True

>>> independent_el = etree.Element("new"
>>> print(isinstance(independent_el, objectify.0ObjectifiedElement))
False

Element access through object attributes

The main idea behind the objectify API is to hide XML element access behind the usual object
attribute access pattern. Asking an element for an attribute will return the sequence of children with
corresponding tag names:

>>> root = objectify.Element("root")
>>> b = etree.SubElement(root, "b")
>>> print(root.b[0].tag)

b

>>> root.index(root.b[0])

0

>>> b = etree.SubElement (root, "b")
>>> print(root.b[0].tag)

b

>>> print(root.b[1].tag)

b

>>> root.index(root.b[1])

1

For convenience, you can omit the index '0’ to access the first child:

>>> print(root.b.tag)
b

109

CHAPTER 13. LXML.OBJECTIFY

>>> root.index(root.b)
0
>>> del root.b

Iteration and slicing also obey the requested tag:

>>> x1 = etree.SubElement (root, "x")
>>> x2 = etree.SubElement(root, "x")
>>> x3 = etree.SubElement(root, "x")

>>> [el.tag for el in root.x]
[’X’, ’X’, ’X’]

>>> [el.tag for el in root.x[1:3] 1]
[7X,, ,X,:l

>>> [el.tag for el in root.x[-1:]]

[’x°]

>>> del root.x[1:2]
>>> [el.tag for el in root.x]
[’X’, ’X’]

If you want to iterate over all children or need to provide a specific namespace for the tag, use the
iterchildren() method. Like the other methods for iteration, it supports an optional tag keyword

argument:

>>> [el.tag for el in root.iterchildren()]
[7b7, 7X,, ’X,]

>>> [el.tag for el in root.iterchildren(tag=’b’)]
[’b’]

>>> [el.tag for el in root.b]
[’b’]

XML attributes are accessed as in the normal ElementTree API:

>>> ¢ = etree.SubElement(root, "c", myattr="someval")
>>> print(root.c.get("myattr"))
someval

>>> root.c.set("c", "oh-oh")
>>> print(root.c.get("c"))
oh-oh

In addition to the normal ElementTree API for appending elements to trees, subtrees can also be added
by assigning them to object attributes. In this case, the subtree is automatically deep copied and the

tag name of its root is updated to match the attribute name:

>>> el = objectify.Element ("yet_another_child")
>>> root.new_child = el

>>> print(root.new_child.tag)

new_child

>>> print(el.tag)

yet_another_child

>>> root.y = [objectify.Element("y"), objectify.Element("y")]

110

CHAPTER 13.

LXML.OBJECTIFY

>>> [el.tag for el in root.y]
[7y7 s 7y7:|

The latter is a short form for operations on the full slice:

>>> root.y[:] = [objectify.Element("y")]
>>> [el.tag for el in root.y]
[’y°]

You can also replace children that way:

>>> childl = etree.SubElement(root, "child")
>>> child2 = etree.SubElement(root, "child")
>>> child3 = etree.SubElement(root, "child")

>>> el = objectify.Element ("new_child")
>>> subel = etree.SubElement(el, "sub")

>>> root.child = el
>>> print(root.child.sub.tag)
sub

>>> root.child[2] = el
>>> print(root.child[2] .sub.tag)
sub

Note that special care must be taken when changing the tag name of an element:

>>> print(root.b.tag)

b

>>> root.b.tag = "notB"

>>> root.b

Traceback (most recent call last):

AttributeError: no such child: b
>>> print(root.notB.tag)
notB

Tree generation with the E-factory

To simplify the generation of trees even further, you can use the E-factory:

>>> E = objectify.E
>>> root = E.root(
E.a(5),
E.b(6.1),
E.c(True),
E.d("how", tell="me")

>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:py="http://codespeak.net/lxml/objectify/pytype">
<a py:pytype="int">5
<b py:pytype="float">6.1
<c py:pytype="bool">true</c>
<d py:pytype="str" tell="me">how</d>

111

CHAPTER 13. LXML.OBJECTIFY

</root>
This allows you to write up a specific language in tags:

>>> ROOT = objectify.E.root
>>> TITLE = objectify.E.title
>>> HOWMANY = getattr(objectify.E, "how-many")

>>> root = ROOT(
TITLE("The title"),
HOWMANY (5)
)

>>> print(etree.tostring(root, pretty_print=True))

<root xmlns:py="http://codespeak.net/lxml/objectify/pytype">
<title py:pytype="str">The title</title>
<how-many py:pytype="int">5</how-many>

</root>

objectify.E is an instance of objectify.ElementMaker. By default, it creates pytype annotated
Elements without a namespace. You can switch off the pytype annotation by passing False to the
annotate keyword argument of the constructor. You can also pass a default namespace and an nsmap:

>>> myE = objectify.ElementMaker (annotate=False,
namespace="http://my/ns", nsmap={None : "http://my/ns"})

>>> root = myE.root(myE.someint(2))

>>> print(etree.tostring(root, pretty_print=True))
<root xmlns="http://my/ns">

<someint>2</someint>
</root>

Namespace handling
During tag lookups, namespaces are handled mostly behind the scenes. If you access a child of an
Element without specifying a namespace, the lookup will use the namespace of the parent:

>>> root = objectify.Element("{http://ns/}root")
>>> b = etree.SubElement(root, "{http://ns/}b")
>>> ¢ = etree.SubElement(root, "{http://other/}c")

>>> print(root.b.tag)
{http://ns/}b

Note that the SubElement () factory of 1xml.etree does not inherit any namespaces when creating a
new subelement. Element creation must be explicit about the namespace, and is simplified through the
E-factory as described above.

Lookups, however, inherit namespaces implicitly:

>>> print(root.b.tag)
{http://ns/}b

>>> print(root.c)
Traceback (most recent call last):

112

CHAPTER 13. LXML.OBJECTIFY

AttributeError: no such child: {http://ns/}c
To access an element in a different namespace than its parent, you can use getattr():

>>> ¢ = getattr(root, "{http://other/}c")
>>> print(c.tag)
{http://other/}c

For convenience, there is also a quick way through item access:

>>> ¢ = root["{http://other/}c"]
>>> print(c.tag)
{http://other/}c

The same approach must be used to access children with tag names that are not valid Python identifiers:

>>> el = etree.SubElement(root, "{http://ns/}tag-name")
>>> print(root["tag-name"] .tag)
{http://ns/}tag-name

>>> new_el = objectify.Element ("{http://ns/Inew-element")
>>> el = etree.SubElement(new_el, "{http://ns/}child")

>>> el = etree.SubElement(new_el, "{http://ns/}child")
>>> el = etree.SubElement(new_el, "{http://ns/}child")
>>> root["tag-name"] = [new_el, new_el]

>>> print(len(root["tag-name"]))

2

>>> print(root["tag-name"] .tag)
{http://ns/}tag-name

>>> print(len(root["tag-name"].child))

3

>>> print(root["tag-name"].child.tag)
{http://ns/}child

>>> print(root["tag-name"] [1].child.tag)
{http://ns/}child

or for names that have a special meaning in Ixml.objectify:

>>> root = objectify.XML("<root><text>TEXT</text></root>")

>>> print(root.text.text)
Traceback (most recent call last):

AttributeError: ’NoneType’ object has no attribute ’text’

>>> print(root["text"].text)
TEXT

Asserting a Schema

When dealing with XML documents from different sources, you will often require them to follow a
common schema. In Ixml.objectify, this directly translates to enforcing a specific object tree, i.e. expected
object attributes are ensured to be there and to have the expected type. This can easily be achieved
through XML Schema validation at parse time. Also see the documentation on validation on this topic.

113

CHAPTER 13. LXML.OBJECTIFY

First of all, we need a parser that knows our schema, so let’s say we parse the schema from a file-like
object (or file or filename):

>>> f = StringI0(’’’\
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="a" type="AType"/>
<xsd:complexType name="AType">
<xsd:sequence>
<xsd:element name="b" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:schema>
7?7)

>>> schema = etree.XMLSchema(file=f)

When creating the validating parser, we must make sure it returns objectify trees. This is best done
with the makeparser() function:

>>> parser = objectify.makeparser(schema = schema)
Now we can use it to parse a valid document:

>>> xml = "<a>test"
>>> a = objectify.fromstring(xml, parser)

>>> print(a.b)
test

Or an invalid document:

>>> xml = "<a>test<c/>"

>>> a = objectify.fromstring(xml, parser)

Traceback (most recent call last):

1xml.etree.XMLSyntaxError: Element ’c’: This element is not expected.

Note that the same works for parse-time DTD validation, except that DTDs do not support any data
types by design.

ObjectPath

For both convenience and speed, objectify supports its own path language, represented by the ObjectPath
class:

>>> root = objectify.Element("{http://ns/}root")
>>> bl = etree.SubElement(root, "{http://ns/}b")
>>> ¢ = etree.SubElement (bil, "{http://ns/}c")
>>> b2 = etree.SubElement (root, "{http://ns/}b")
>>> d = etree.SubElement(root, "{http://other/}d")

>>> path = objectify.ObjectPath("root.b.c")
>>> print(path)

root.b.c

>>> path.hasattr(root)

True

>>> print(path.find(root) .tag)
{http://ns/}c

114

CHAPTER 13.

LXML.OBJECTIFY

>>> find = objectify.ObjectPath("root.b.c")
>>> print(find(root) .tag)
{http://ns/}c

>>> find = objectify.0ObjectPath("root.{http://other/}d")
>>> print (find(root) . tag)
{http://other/}d

>>> find = objectify.0ObjectPath("root.{not}there")
>>> print(find(root) .tag)
Traceback (most recent call last):

AttributeError: no such child: {not}there
>>> find = objectify.0ObjectPath("{not}there")

>>> print(find(root) .tag)
Traceback (most recent call last):

ValueError: root element does not match: need {not}there, got {http://ns/}root

>>> find = objectify.0ObjectPath("root.b[1]")
>>> print (find(root) .tag)
{http://ns/}b

>>> find = objectify.0bjectPath("root.{http://ns/}b[1]")
>>> print(find(root) .tag)
{http://ns/}b

Apart from strings, ObjectPath also accepts lists of path segments:

>>> find = objectify.0ObjectPath([’root’, ’b’, ’c’])
>>> print (find(root) . tag)
{http://ns/}c

>>> find = objectify.0ObjectPath([’root’, ’{http://ns/}b[1]’])
>>> print(find(root) .tag)
{http://ns/}b

You can also use relative paths starting with a ’.” to ignore the actual root element and only inherit its

namespace:

>>> find = objectify.ObjectPath(".b[1]")
>>> print (find(root) . tag)
{http://ns/}b

>>> find = objectify.0ObjectPath([’’, ’b[1]°])
>>> print(find(root) .tag)

{http://ns/}b

>>> find = objectify.0ObjectPath(".unknown[1]")
>>> print(find(root) .tag)

Traceback (most recent call last):

AttributeError: no such child: {http://ns/}unknown

>>> find = objectify.0ObjectPath(".{http://other/}unknown[1]")

115

CHAPTER 13. LXML.OBJECTIFY

>>> print(find(root) .tag)
Traceback (most recent call last):

AttributeError: no such child: {http://other/}unknown
For convenience, a single dot represents the empty ObjectPath (identity):

>>> find = objectify.ObjectPath(".")
>>> print(find(root) .tag)
{http://ns/}root

ObjectPath objects can be used to manipulate trees:

>>> root = objectify.Element ("{http://ns/}root")

>>> path = objectify.0ObjectPath(".some.child.{http://other/}unknown")
>>> path.hasattr(root)

False

>>> path.find(root)

Traceback (most recent call last):

AttributeError: no such child: {http://ns/}some

>>> path.setattr(root, "my value") # creates children as necessary
>>> path.hasattr(root)

True

>>> print(path.find(root) .text)

my value

>>> print(root.some.child["{http://other/}unknown"] .text)
my value

>>> print(len(path.find(root)))

1

>>> path.addattr(root, "my new value")
>>> print(len(path.find(root)))

2

>>> [el.text for el in path.find(root)]
[’my value’, ’my new value’]

As with attribute assignment, setattr() accepts lists:

>>> path.setattr(root, ["v1", "v2", "v3"])
>>> [el.text for el in path.find(root)]
[vi’, *v2?, ’v3’]

Note, however, that indexing is only supported in this context if the children exist. Indexing of non
existing children will not extend or create a list of such children but raise an exception:

>>> path = objectify.ObjectPath(".{non}existing[1]")
>>> path.setattr(root, "my value")
Traceback (most recent call last):

TypeError: creating indexed path attributes is not supported

It is worth noting that ObjectPath does not depend on the objectify module or the ObjectifiedElement
implementation. It can also be used in combination with Elements from the normal Ixml.etree API.

116

CHAPTER 13. LXML.OBJECTIFY

Python data types

The objectify module knows about Python data types and tries its best to let element content behave
like them. For example, they support the normal math operators:

>>> root = objectify.fromstring(

... "<root><a>b11<c>true</c><d>hoi</d></root>")
>>> root.a + root.b

16

>>> root.a += root.b

>>> print(root.a)

16

>>> root.a = 2
>>> print(root.a + 2)

>>> print(1l + root.a)
3

>>> print(root.c)

True

>>> root.c = False

>>> if not root.c:
print("false!")

false!

>>> print(root.d + " test !")

hoi test !

>>> root.d = "Ys - %s"

>>> print(root.d % (1234, 12345))
1234 - 12345

However, data elements continue to provide the objectify API. This means that sequence operations such
as len(), slicing and indexing (e.g. of strings) cannot behave as the Python types. Like all other tree
elements, they show the normal slicing behaviour of objectify elements:

>>> root = objectify.fromstring("<root><a>testtoast</root>")
>>> print(root.a + ’ me’) # behaves like a string, 7Tight?

test me

>>> len(root.a) # but there’s only one ’a’ element!

1

>>> [a.tag for a in root.a]

[’a’]

>>> print(root.al[0].tag)

a

>>> print(root.a)

test
>>> [str(a) for a in root.al[:1] 1]
["test’]

If you need to run sequence operations on data types, you must ask the API for the real Python value.
The string value is always available through the normal ElementTree .text attribute. Additionally, all
data classes provide a .pyval attribute that returns the value as plain Python type:

117

CHAPTER 13. LXML.OBJECTIFY

>>> root = objectify.fromstring("<root><a>test5</root>")
>>> root.a.text

’test’

>>> root.a.pyval

‘test’

>>> root.b.text
757

>>> root.b.pyval
5

Note, however, that both attributes are read-only in objectify. If you want to change values, just assign
them directly to the attribute:

>>> root.a.text = "25"
Traceback (most recent call last):

TypeError: attribute ’text’ of ’StringElement’ objects is not writable

>>> root.a.pyval = 25
Traceback (most recent call last):

TypeError: attribute ’pyval’ of ’StringElement’ objects is not writable

>>> root.a = 25

>>> print(root.a)

25

>>> print(root.a.pyval)
25

In other words, objectify data elements behave like immutable Python types. You can replace them,
but not modify them.

Recursive tree dump

To see the data types that are currently used, you can call the module level dump () function that returns
a recursive string representation for elements:

>>> root = objectify.fromstring("""

<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
1
<a>1.2
1
true
<c>what?</c>
<d xsi:nil="true"/>

</root>

nn ll)

>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = 1 [IntElement]
* attrl = ’foo’
* attr2 = ’bar’

a = 1.2 [FloatElement]

118

CHAPTER 13. LXML.OBJECTIFY

1 [IntElement]

= True [BoolElement]
’what?’ [StringElement]
None [NoneElement]

* xsi:nil = ’true’

o o0 o o

You can freely switch between different types for the same child:

>>> root = objectify.fromstring("<root><a>5</root>")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = 5 [IntElement]

>>> root.a = ’nice string!’
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = ’nice string!’ [StringElement]

* py:pytype = ’str’

>>> root.a = True

>>> print(objectify.dump(root))

root = None [ObjectifiedElement]
a = True [BoolElement]

* py:pytype = ’bool’

>>> root.a = [1, 2, 3]

>>> print(objectify.dump(root))

root = None [ObjectifiedElement]
a =1 [IntElement]

py:pytype = ’int’

*

a = 2 [IntElement]
* py:pytype = ’int’
a = 3 [IntElement]

*

pPy:pytype = ’int’

>>> root.a = (1, 2, 3)

>>> print(objectify.dump(root))

root = None [ObjectifiedElement]
a =1 [IntElement]

py:pytype = ’int’

*

a = 2 [IntElement]
* py:pytype = ’int’
a = 3 [IntElement]

*

py:pytype = ’int’

Recursive string representation of elements

Normally, elements use the standard string representation for str() that is provided by lxml.etree. You
can enable a pretty-print representation for objectify elements like this:

>>> objectify.enable_recursive_str()
>>> root = objectify.fromstring("""

. <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
1

119

CHAPTER 13. LXML.OBJECTIFY

<a>1.2

1
true
<c>what?</c>

<d xsi:nil="true"/>

. </root>

>>>

nn ll)

print(str(root))

root = None [ObjectifiedElement]

1 [IntElement]

* attrl = ’foo’

* attr2 = ’bar’

= 1.2 [FloatElement]

= 1 [IntElement]

True [BoolElement]

= ’what?’ [StringElement]
= None [NoneElement]

a

Q0 T o
I

*¥ xsi:nil = ’true’

This behaviour can be switched off in the same way:

>>>

objectify.enable_recursive_str(False)

How data types are matched

Objectify uses two different types of Elements. Structural Elements (or tree Elements) represent the ob-

ject

tree structure. Data Elements represent the data containers at the leafs. You can explicitly create tree

Elements with the objectify.Element () factory and data Elements with the objectify.DataElement ()
factory.

When Element objects are created, Ixml.objectify must determine which implementation class to use
for them. This is relatively easy for tree Elements and less so for data Elements. The algorithm is as
follows:

1

2

6.
7.

You

. If an element has children, use the default tree class.

. If an element is defined as xsi:nil, use the NoneElement class.

If a “Python type hint” attribute is given, use this to determine the element class, see below.
If an XML Schema xsi:type hint is given, use this to determine the element class, see below.
Try to determine the element class from the text content type by trial and error.

If the element is a root node then use the default tree class.

Otherwise, use the default class for empty data classes.

can change the default classes for tree Elements and empty data Elements at setup time. The

ObjectifyElementClassLookup() call accepts two keyword arguments, tree_class and empty_data_class,
that determine the Element classes used in these cases. By default, tree_class is a class called
ObjectifiedElement and empty_data_class is a StringElement.

120

CHAPTER 13. LXML.OBJECTIFY

Type annotations

The “type hint” mechanism deploys an XML attribute defined as 1xml.objectify.PYTYPE_ATTRIBUTE.
It may contain any of the following string values: int, long, float, str, unicode, NoneType:

>>> print(objectify.PYTYPE_ATTRIBUTE)
{http://codespeak.net/lxml/objectify/pytypelpytype
>>> ns, name = Objectify.PYTYPE_ATTRIBUTE[l:].Split(’}’)

>>> root = objectify.fromstring("""\
. <root xmlns:py=’Ys’>
<a py:pytype=’str’>5
<b py:pytype=’int’>5
<c py:pytype=’NoneType’ />
. </root>
w9 ns)

>>> print(root.a + 10)
510

>>> print(root.b + 10)
15

>>> print(root.c)

None

Note that you can change the name and namespace used for this attribute through the set_pytype_attribute_tag(tag)
module function, in case your application ever needs to. There is also a utility function annotate() that
recursively generates this attribute for the elements of a tree:

>>> root = objectify.fromstring("<root><a>test5</root>")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = ’test’ [StringElement]
b = 5 [IntElement]

>>> objectify.annotate(root)

>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = ’test’ [StringElement]
* py:pytype = ’str’
b = 5 [IntElement]

*

py:pytype = ’int’

XML Schema datatype annotation

A second way of specifying data type information uses XML Schema types as element annotations.
Objectify knows those that can be mapped to normal Python types:

>>> root = objectify.fromstring(’’’\
<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://wuw.w3.org/2001/XMLSchema" >
<d xsi:type="xsd:double">5</d>

<i xsi:type="xsd:int" >5</i>
<s xsi:type="xsd:string">5</s>
</root>

121

CHAPTER 13. LXML.OBJECTIFY

777)
>>> print (objectify.dump(root))
root = None [ObjectifiedElement]

d = 5.0 [FloatElement]

* xsi:type = ’xsd:double’
i = 5 [IntElement]

* xsi:type = ’xsd:int’
s = ’5’ [StringElement]

*

xsi:type = ’xsd:string’

Again, there is a utility function xsiannotate() that recursively generates the “xsi:type” attribute for
the elements of a tree:

>>> root = objectify.fromstring(’’’\
<root><a>test5<c>true</c></root>
777)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = ’test’ [StringElement]
5 [IntElement]
True [BoolElement]

]

o o
]

>>> objectify.xsiannotate(root)

>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
’test’ [StringElement]
xsi:type = ’xsd:string’
b = 5 [IntElement]

xsi:type = ’xsd:integer’
True [BoolElement]
xsi:type = ’xsd:boolean’

a

*

o
* 1 %

Note, however, that xsiannotate() will always use the first XML Schema datatype that is defined for
any given Python type, see also Defining additional data classes.

The utility function deannotate() can be used to get rid of 'py:pytype’ and/or ’xsi:type’ information:

>>> root = objectify.fromstring(’’’\
. <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<d xsi:type="xsd:double">5</d>
<i xsi:type="xsd:int" >b</i>
<s xsi:type="xsd:string">5</s>
. </root>’’?)
>>> objectify.annotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
d = 5.0 [FloatElement]

* xsi:type = ’xsd:double’
* py:pytype = ’float’
i = 5 [IntElement]
* xsi:type = ’xsd:int’
* py:pytype = ’int’
s = ’5’ [StringElement]

xsi:type = ’xsd:string’
py:pytype = ’str’

122

CHAPTER 13. LXML.OBJECTIFY

>>> objectify.deannotate(root)

>>> print(objectify.dump(root))

root = None [ObjectifiedElement]
d = 5 [IntElement]

5 [IntElement]

5 [IntElement]

You can control which type attributes should be de-annotated with the keyword arguments ’pytype’
(default: True) and ’xsi’ (default: True). deannotate() can also remove ’xsi:nil’ attributes by setting
'xsi_nil=True’ (default: False):

>>> root = objectify.fromstring(’’’\
. <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<d xsi:type="xsd:double">5</d>
<i xsi:type="xsd:int" >b5</i>
<s xsi:type="xsd:string">5</s>
.. <n xsi:nil="true"/>
. </root>’’?)
>>> objectify.annotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
d = 5.0 [FloatElement]
xsi:type = ’xsd:double’
py:pytype = ’float’
5 [IntElement]

.
]

* xsi:type = ’xsd:int’
* py:pytype = ’int’
s = ’5’ [StringElement]
xsi:type = ’xsd:string’
py:pytype = ’str’
n = None [NoneElement]
* xsi:nil = ’true’
* py:pytype = ’NoneType’
>>> objectify.deannotate(root, xsi_nil=True)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
d = 5 [IntElement]
i = 5 [IntElement]
S
n

5 [IntElement]
u’’ [StringElement]

The DataElement factory

For convenience, the DataElement () factory creates an Element with a Python value in one step. You
can pass the required Python type name or the XSI type name:

>>> root = objectify.Element("root")
>>> root.x = objectify.DataElement(5, _pytype="int")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
x = 5 [IntElement]

* py:pytype = ’int’

>>> root.x = objectify.DataElement(5, _pytype="str", myattr="someval")

123

CHAPTER 13. LXML.OBJECTIFY

>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
x = ’5° [StringElement]
* py:pytype = ’str’
* myattr = ’someval’

>>> root.x = objectify.DataElement(5, _xsi="integer")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
x = 5 [IntElement]
* py:pytype = ’int’
* xsi:type = ’xsd:integer’

XML Schema types reside in the XML schema namespace thus DataElement () tries to correctly prefix
the xsi:type attribute value for you:

>>> root = objectify.Element("root")
>>> root.s = objectify.DataElement(5, _xsi="string")

>>> objectify.deannotate(root, xsi=False)

>>> print(etree.tostring(root, pretty_print=True))

<root xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsd="http://www.w3.org/2001/XMLSch
<s xsi:type="xsd:string">5</s>

</root>

DataElement () uses a default nsmap to set these prefixes:

>>> el = objectify.DataElement(’5’, _xsi=’string’)
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort ()
>>> for prefix, namespace in namespaces:
print("%s - %s" % (prefix, namespace))
py - http://codespeak.net/lxml/objectify/pytype
xsd - http://www.w3.org/2001/XMLSchema
xsi - http://www.w3.org/2001/XMLSchema-instance

>>> print(el.get("{http://wuw.w3.0rg/2001/XMLSchema-instance}type"))
xsd:string

While you can set custom namespace prefixes, it is necessary to provide valid namespace information if
you choose to do so:

>>> el = objectify.DataElement(’5’, _xsi=’foo:string’,
nsmap={’foo’: ’http://www.w3.org/2001/XMLSchema’})
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort ()
>>> for prefix, namespace in namespaces:
print("%s - %s" % (prefix, namespace))
foo - http://wuw.w3.o0rg/2001/XMLSchema
py - http://codespeak.net/lxml/objectify/pytype
xsi - http://www.w3.org/2001/XMLSchema-instance

>>> print(el.get ("{http://www.w3.0rg/2001/XMLSchema-instance}type"))
foo:string

Note how Ixml chose a default prefix for the XML Schema Instance namespace. We can override it as in
the following example:

124

CHAPTER 13. LXML.OBJECTIFY

>>> el = objectify.DataElement(’5’, _xsi=’foo:string’,
nsmap={’foo’: ’http://www.w3.org/2001/XMLSchema’,

ce ’myxsi’: ’http://www.w3.org/2001/XMLSchema-instance’})
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort ()
>>> for prefix, namespace in namespaces:

. print("%s - %s" 7% (prefix, namespace))
foo - http://wuw.w3.o0rg/2001/XMLSchema
myxsi - http://www.w3.org/2001/XMLSchema-instance
py - http://codespeak.net/lxml/objectify/pytype

>>> print(el.get ("{http://www.w3.0rg/2001/XMLSchema-instance}type"))
foo:string

Care must be taken if different namespace prefixes have been used for the same namespace. Namespace
information gets merged to avoid duplicate definitions when adding a new sub-element to a tree, but
this mechanism does not adapt the prefixes of attribute values:

>>> root = objectify.fromstring("""<root zmlns:schema="http://www.w3.org/2001/XMLSchema"/>""")
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.0rg/2001/XMLSchema"/>

>>> s = objectify.DataElement ("17", _xsi="string")
>>> print(etree.tostring(s, pretty_print=True))
<value xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsd="http://www.w3.org/2001/XMLSc

>>> root.s = s
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.org/2001/XMLSchema">
<s zmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsi="http://www.w3.org/2001/XMLSche
</root>

It is your responsibility to fix the prefixes of attribute values if you choose to deviate from the standard
prefixes. A convenient way to do this for xsi:type attributes is to use the xsiannotate () utility:

>>> objectify.xsiannotate(root)
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.org/2001/XMLSchema">
<s xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsi="http://www.w3.org/2001/XMLSche
</root>

Of course, it is discouraged to use different prefixes for one and the same namespace when building up
an objectify tree.

Defining additional data classes

You can plug additional data classes into objectify that will be used in exactly the same way as the
predefined types. Data classes can either inherit from ObjectifiedDataElement directly or from one of
the specialised classes like NumberElement or BoolElement. The numeric types require an initial call to
the NumberElement method self._setValueParser (function) to set their type conversion function
(string -> numeric Python type). This call should be placed into the element _init () method.

The registration of data classes uses the PyType class:

>>> class ChristmasDate(objectify.0ObjectifiedDataElement) :
def call_santa(self):

125

CHAPTER 13. LXML.OBJECTIFY

print ("Ho ho ho!")

>>> def checkChristmasDate(date_string):
if not date_string.startswith(’24.12.°):
raise ValueError # or TypeError

>>> xmas_type = objectify.PyType(’date’, checkChristmasDate, ChristmasDate)

The PyType constructor takes a string type name, an (optional) callable type check and the custom data
class. If a type check is provided it must accept a string as argument and raise ValueError or TypeFError
if it cannot handle the string value.

PyTypes are used if an element carries a py:pytype attribute denoting its data type or, in absence of
such an attribute, if the given type check callable does not raise a ValueError/TypeError exception when
applied to the element text.

If you want, you can also register this type under an XML Schema type name:
>>> xmas_type.xmlSchemaTypes = ("date",)

XML Schema types will be considered if the element has an xsi:type attribute that specifies its data
type. The line above binds the XSD type date to the newly defined Python type. Note that this must
be done before the next step, which is to register the type. Then you can use it:

>>> xmas_type.register()

>>> root = objectify.fromstring(

R "<root><a>24.12.200012.24.2000</root>")
>>> root.a.call_santa()

Ho ho ho!

>>> root.b.call_santa()

Traceback (most recent call last):

AttributeError: no such child: call_santa

If you need to specify dependencies between the type check functions, you can pass a sequence of type
names through the before and after keyword arguments of the register () method. The PyType will
then try to register itself before or after the respective types, as long as they are currently registered.
Note that this only impacts the currently registered types at the time of registration. Types that are
registered later on will not care about the dependencies of already registered types.

If you provide XML Schema type information, this will override the type check function defined above:

>>> root = objectify.fromstring(’’’\
<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<a xsi:type="date">12.24.2000
</root>
77?)
>>> print(root.a)
12.24.2000
>>> root.a.call_santa()
Ho ho ho!

To unregister a type, call its unregister () method:

>>> root.a.call_santa()
Ho ho ho!

>>> xmas_type.unregister()
>>> root.a.call_santa()

126

CHAPTER 13. LXML.OBJECTIFY

Traceback (most recent call last):

AttributeError: no such child: call_santa

Be aware, though, that this does not immediately apply to elements to which there already is a Python
reference. Their Python class will only be changed after all references are gone and the Python object
is garbage collected.

Advanced element class lookup

In some cases, the normal data class setup is not enough. Being based on 1lxml.etree, however,
1xml.objectify supports very fine-grained control over the Element classes used in a tree. All you
have to do is configure a different class lookup mechanism (or write one yourself).

The first step for the setup is to create a new parser that builds objectify documents. The objectify
APT is meant for data-centric XML (as opposed to document XML with mixed content). Therefore, we
configure the parser to let it remove whitespace-only text from the parsed document if it is not enclosed
by an XML element. Note that this alters the document infoset, so if you consider the removed spaces as
data in your specific use case, you should go with a normal parser and just set the element class lookup.
Most applications, however, will work fine with the following setup:

>>> parser = objectify.makeparser(remove_blank_text=True)
What this does internally, is:

>>> parser = etree.XMLParser(remove_blank_text=True)

>>> lookup = objectify.0ObjectifyElementClassLookup()
>>> parser.set_element_class_lookup(lookup)

If you want to change the lookup scheme, say, to get additional support for namespace specific classes,
you can register the objectify lookup as a fallback of the namespace lookup. In this case, however, you
have to take care that the namespace classes inherit from objectify.0ObjectifiedElement, not only
from the normal 1xml.etree.ElementBase, so that they support the objectify APIL. The above setup
code then becomes:

>>> lookup = etree.ElementNamespaceClassLookup(
ce objectify.0ObjectifyElementClassLookup())
>>> parser.set_element_class_lookup(lookup)

See the documentation on class lookup schemes for more information.

What is different from Ixml.etree?
Such a different Element API obviously implies some side effects to the normal behaviour of the rest of
the API.

e len(<element>) returns the sibling count, not the number of children of <element>. You can
retrieve the number of children with the countchildren() method.

e [teration over elements does not yield the children, but the siblings. You can access all children
with the iterchildren() method on elements or retrieve a list by calling the getchildren()
method.

e The find, findall and findtext methods require a different implementation based on ETXPath. In

127

CHAPTER 13. LXML.OBJECTIFY

1xml.etree, they use a Python implementation based on the original iteration scheme. This has
the disadvantage that they may not be 100% backwards compatible, and the additional advantage
that they now support any XPath expression.

128

Chapter 14

Ixml.html

Author: Tan Bicking

Since version 2.0, Ixml comes with a dedicated package for dealing with HTML: 1xml.html. It provides
a special Element API for HTML elements, as well as a number of utilities for common tasks.

The main API is based on the Ixml.etree API, and thus, on the ElementTree APIL.

Parsing HTML

Parsing HTML fragments

There are several functions available to parse HTML:

parse(filename_url_or_file): Parses the named file or url, or if the object has a .read() method,
parses from that.

If you give a URL, or if the object has a . geturl () method (as file-like objects from urllib.urlopen()
have), then that URL is used as the base URL. You can also provide an explicit base_url keyword
argument.

document_fromstring(string): Parses a document from the given string. This always creates a correct
HTML document, which means the parent node is <htm1>, and there is a body and possibly a head.

fragment_fromstring(string, create_parent=False): Returns an HTML fragment from a string.
The fragment must contain just a single element, unless create_parent is given; e.g,. fragment_fromstring(strin
create_parent=’div’) will wrap the element in a <div>.

fragments_fromstring(string): Returns a list of the elements found in the fragment.

fromstring(string): Returns document_fromstring or fragment_fromstring, based on whether the
string looks like a full document, or just a fragment.

Really broken pages

The normal HTML parser is capable of handling broken HTML, but for pages that are far enough from
HTML to call them ’tag soup’, it may still fail to parse the page. A way to deal with this is ElementSoup,
which deploys the well-known BeautifulSoup parser to build an Ixml HTML tree.

129

http://effbot.org/zone/element-index.htm
http://www.crummy.com/software/BeautifulSoup/

CHAPTER 14. LXML.HTML

HTML Element Methods

HTML elements have all the methods that come with ElementTree, but also include some extra methods:

.drop_tree(): Drops the element and all its children. Unlike el.getparent () .remove(el) this does
not remove the tail text; with drop_tree the tail text is merged with the previous element.

.drop_tag(): Drops the tag, but keeps its children and text.

.find_class(class_name): Returns a list of all the elements with the given CSS class name. Note that
class names are space separated in HTML, so doc.find_class_name(’highlight’) will find an
element like <div class="sidebar highlight">. Class names are case sensitive.

.find_rel_links(rel): Returnsalist of all the elements. E.g.,doc.find_rel_links(’tag’)
returns all the links marked as tags.

.get_element_by_id(id, default=None): Return the element with the given id, or the default if
none is found. If there are multiple elements with the same id (which there shouldn’t be, but there
often is), this returns only the first.

.text_content (): Returns the text content of the element, including the text content of its children,
with no markup.

.cssselect (expr): Select elements from this element and its children, using a CSS selector expression.
(Note that .xpath(expr) is also available as on all Ixml elements.)

.label: Returns the corresponding <label> element for this element, if any exists (None if there is
none). Label elements have a label.for_element attribute that points back to the element.

.base_url: The base URL for this element, if one was saved from the parsing. This attribute is not
settable. Is None when no base URL was saved.

Running HTML doctests

One of the interesting modules in the 1xml .html package deals with doctests. It can be hard to compare
two HTML pages for equality, as whitespace differences aren’t meaningful and the structural formatting
can differ. This is even more a problem in doctests, where output is tested for equality and small
differences in whitespace or the order of attributes can let a test fail. And given the verbosity of tag-
based languages, it may take more than a quick look to find the actual differences in the doctest output.

Luckily, Ixml provides the 1xml .doctestcompare module that supports relaxed comparison of XML and
HTML pages and provides a readable diff in the output when a test fails. The HTML comparison is
most easily used by importing the usedoctest module in a doctest:

>>> import lxml.html.usedoctest

Now, if you have a HTML document and want to compare it to an expected result document in a doctest,
you can do the following:

>>> import lxml.html
>>> html = lxml.html.fromstring(’’’\
<html><body onload="" color="white">
<p>Hi !</p>
</body></html>
) 7)

>>> print lxml.html.tostring(html)

130

http://microformats.org/wiki/rel-tag

CHAPTER 14. LXML.HTML

<html><body onload="" color="white"><p>Hi !</p></body></html>

>>> print lxml.html.tostring(html)
<html> <body color="white" onload=""> <p>Hi 1</p> </body> </html>

>>> print lxml.html.tostring(html)

<html>
<body color="white" onload="">
<p>Hi !</p>
</body>
</html>

In documentation, you would likely prefer the pretty printed HTML output, as it is the most readable.
However, the three documents are equivalent from the point of view of an HTML tool, so the doctest
will silently accept any of the above. This allows you to concentrate on readability in your doctests, even
if the real output is a straight ugly HTML one-liner.

Note that there is also an 1xml.usedoctest module which you can import for XML comparisons. The
HTML parser notably ignores namespaces and some other XMLisms.

Creating HTML with the E-factory

Ixml.html comes with a predefined HTML vocabulary for the E-factory, originally written by Fredrik
Lundh. This allows you to quickly generate HTML pages and fragments:

>>> from lxml.html import builder as E
>>> from lxml.html import usedoctest
>>> html = E.HTML(
E.HEAD(
E.LINK(rel="stylesheet", href="great.css", type="text/css"),
E.TITLE("Best Page Ever")
),
E.BODY(
E.H1(E.CLASS("heading"), "Top News"),
E.P("World News only on this page", style="font-size: 200%"),
"Ah, and here’s some more text, by the way.",
1xml.html.fromstring("<p>... and this is a parsed fragment ...</p>")

>>> print lxml.html.tostring(html)
<html>
<head>
<link href="great.css" rel="stylesheet" type="text/css">
<title>Best Page Ever</title>
</head>
<body>
<h1l class="heading">Top News</h1>
<p style="font-size: 200%">World News only on this page</p>
Ah, and here’s some more text, by the way.
<p>... and this is a parsed fragment ...</p>
</body>
</html>

131

http://online.effbot.org/2006_11_01_archive.htm#et-builder

CHAPTER 14. LXML.HTML

Note that you should use 1xml.html.tostring and not lxml.tostring. lxml.tostring(doc) will
return the XML representation of the document, which is not valid HTML. In particular, things like
<script src="..."></script> will be serialized as <script src="..." />, which completely confuses
browsers.

Viewing your HTML

A handy method for viewing your HTML: 1xml .html.open_in_browser (1xml_doc) will write the doc-
ument to disk and open it in a browser (with the webbrowser module).

Working with links

There are several methods on elements that allow you to see and modify the links in a document.

.iterlinks(): Thisyields (element, attribute, link, pos) for every link in the document. attribute
may be None if the link is in the text (as will be the case with a <style> tag with @import).

This finds any link in an action, archive, background, cite, classid, codebase, data, href,
longdesc, profile, src, usemap, dynsrc, or lowsrc attribute. It also searches style attributes
for url (1ink), and <style> tags for @import and url().

This function does not pay attention to <base href>.

.resolve_base_href (): This function will modify the document in-place to take account of <base
href> if the document contains that tag. In the process it will also remove that tag from the
document.

.make_links_absolute(base_href, resolve_base_href=True): This makes all links in the document
absolute, assuming that base_href is the URL of the document. So if you pass base_href="http://localhost/foo
and there is a link to baz.html that will be rewritten as http://localhost/foo/baz.html.

If resolve_base_href is true, then any <base href> tag will be taken into account (just calling
self.resolve_base_href()).

.rewrite_links(link_repl_func, resolve_base_href=True, base_href=None): Thisrewrites all the
links in the document using your given link replacement function. If you give a base_href value,
all links will be passed in after they are joined with this URL.

For each link link_repl_func(link) is called. That function then returns the new link, or None
to remove the attribute or tag that contains the link. Note that all links will be passed in, including
links like "#anchor" (which is purely internal), and things like "mailto:bob@example.com" (or
javascript:...).

If you want access to the context of the link, you should use .iterlinks() instead.

Functions

In addition to these methods, there are corresponding functions:
e iterlinks(html)
e make_links_absolute(html, base_href, ...)

e rewrite_links(html, link_repl_func, ...)

132

http://python.org/doc/current/lib/module-webbrowser.html

CHAPTER 14. LXML.HTML

e resolve_base_href (html)

These functions will parse html if it is a string, then return the new HTML as a string. If you pass in a
document, the document will be copied (except for iterlinks()), the method performed, and the new
document returned.

Forms

Any <form> elements in a document are available through the list doc.forms (e.g., doc.forms[0]).
Form, input, select, and textarea elements each have special methods.

Input elements (including <select> and <textarea>) have these attributes:
.name: The name of the element.

.value: The value of an input, the content of a textarea, the selected option(s) of a select. This attribute
can be set.

In the case of a select that takes multiple options (<select multiple>) this will be a set of the
selected options; you can add or remove items to select and unselect the options.

Select attributes:

.value_options: For select elements, this is all the possible values (the values of all the options).
.multiple: For select elements, true if this is a <select multiple> element.

Input attributes:

.type: The type attribute in <input> elements.

.checkable: True if this can be checked (i.e., true for type=radio and type=checkbox).

.checked: If this element is checkable, the checked state. Raises AttributeError on non-checkable inputs.
The form itself has these attributes:

.inputs: A dictionary-like object that can be used to access input elements by name. When there are
multiple input elements with the same name, this returns list-like structures that can also be used
to access the options and their values as a group.

.fields: A dictionary-like object used to access values by their name. form.inputs returns elements,
this only returns values. Setting values in this dictionary will effect the form inputs. Basically
form.fields[x] is equivalent to form.inputs[x].value and form.fields[x] = y is equivalent
to form.inputs[x].value = y. (Note that sometimes form.inputs[x] returns a compound ob-
ject, but these objects also have .value attributes.)

If you set this attribute, it is equivalent to form.fields.clear(); form.fields.update(new_value)

.form_values(): Returnsalist of [(name, value), ...],suitableto be passed tourllib.urlencode()
for form submission.

.action: The action attribute. This is resolved to an absolute URL if possible.

.method: The method attribute, which defaults to GET.

133

CHAPTER 14. LXML.HTML

Form Filling Example

Note that you can change any of these attributes (values, method, action, etc) and then serialize the
form to see the updated values. You can, for instance, do:

>>> from lxml.html import fromstring, tostring
>>> form_page = fromstring(’’’<html><body><form>
Your name: <input type="text" name="name">

Your phone: <input type="text" name="phone">

Your favorite pets:

Dogs: <input type='"checkbox" name="interest" value="dogs">

Cats: <input type='"checkbox" name="interest" value="cats">

Llamas: <input type="checkbox" name="interest" value="llamas">

... <input type="submit"></form></body></html>’’?’)
>>> form = form_page.forms[0]
>>> form.fields = dict(
name=’John Smith?’,
phone=’555-555-3949" ,
. interest=set([’cats’, ’llamas’]))
>>> print tostring(form)
<html>
<body>
<form>
Your name:
<input name="name" type="text" value="John Smith">

Your phone:
<input name="phone" type="text" value="555-555-3949">

Your favorite pets:

Dogs:
<input name="interest" type="checkbox" value="dogs">

Cats:
<input checked name="interest" type="checkbox" value="cats">

Llamas:
<input checked name="interest" type="checkbox" value="llamas">

<input type="submit">
</form>
</body>
</html>

Form Submission

You can submit a form with 1xml.html.submit_form(form_element). This will return a file-like object
(the result of urllib.urlopen()).

If you have extra input values you want to pass you can use the keyword argument extra_values, like
extra_values={’submit’: ’Yes!’}. This is the only way to get submit values into the form, as there
is no state of “submitted” for these elements.

You can pass in an alternate opener with the open_http keyword argument, which is a function with
the signature open_http(method, url, values).

Example:

>>> from lxml.html import parse, submit_form

134

CHAPTER 14. LXML.HTML

>>> page = parse(’http://tinyurl.com’).getroot()

>>> page.forms[1] .fields[’url’] = ’http://codespeak.net/lxml/’

>>> result = parse(submit_form(page.forms[1])) .getroot()

>>> [a.attrib[’href’] for a in result.xpath("//a[@target=’_blank’]")]
[’http://tinyurl.com/2xae8s’, ’http://preview.tinyurl.com/2xae8s’]

Cleaning up HTML

The module 1xml.html.clean provides a Cleaner class for cleaning up HTML pages. It supports
removing embedded or script content, special tags, CSS style annotations and much more.

Say, you have an evil web page from an untrusted source that contains lots of content that upsets browsers
and tries to run evil code on the client side:

>>> html = ’77\
<html>
<head>
<script type="text/javascript" src="evil-site"></script>
<link rel="alternate" type="text/rss" src="evil-rss">
<style>
body {background-image: url(javascript:do_evil)l};
div {color: expression(evil)};

</style>
</head>
<body onload="evil_function()">
<!-- I am interpreted for EVIL! -->

a link
another link
<p onclick="evil_function()">a paragraph</p>
<div style="display: none">secret EVIL!</div>
<object> of EVIL! </object>
<iframe src="evil-site"></iframe>
<form action="evil-site">
Password: <input type="password" name="password">
</form>
<blink>annoying EVIL!</blink>
spam spam SPAM!
<image src="evil!">
</body>
</html>?>’>

To remove the all suspicious content from this unparsed document, use the clean_html function:

>>> from lxml.html.clean import clean_html

>>> print clean_html (html)
<html>
<body>
<div>
<style>/* deleted */</style>
a link
another link
<p>a paragraph</p>
<div>secret EVIL!</div>
of EVIL!

135

CHAPTER 14. LXML.HTML

Password:
annoying EVIL!
spam spam SPAM!

</div>
</body>
</html>

The Cleaner class supports several keyword arguments to control exactly which content is removed:

>>> from lxml.html.clean import Cleaner

>>> cleaner = Cleaner(page_structure=False, links=False)
>>> print cleaner.clean_html (html)
<html>
<head>
<link rel="alternate" src="evil-rss" type="text/rss">
<style>/* deleted */</style>
</head>
<body>
a link
another link
<p>a paragraph</p>
<div>secret EVIL!</div>
of EVIL!
Password:
annoying EVIL!
spam spam SPAM!

</body>
</html>

>>> cleaner = Cleaner(style=True, links=True, add_nofollow=True,
page_structure=False, safe_attrs_only=False)

>>> print cleaner.clean_html (html)
<html>
<head>
</head>
<body>
a link
another link
<p>a paragraph</p>
<div>secret EVIL!</div>
of EVIL!
Password:
annoying EVIL!
spam spam SPAM!

</body>
</html>

You can also whitelist some otherwise dangerous content with Cleaner (host_whitelist=[’www.youtube.com’]),
which would allow embedded media from YouTube, while still filtering out embedded media from other
sites.

See the docstring of Cleaner for the details of what can be cleaned.

136

CHAPTER 14. LXML.HTML

autolink

In addition to cleaning up malicious HTML, 1xml.html.clean contains functions to do other things to
your HTML. This includes autolinking:

autolink(doc, ...)

autolink_html (html, ...)

This finds anything that looks like a link (e.g., http://example.com) in the text of an HTML document,
and turns it into an anchor. It avoids making bad links.

Links in the elements <textarea>, <pre>, <code>, anything in the head of the document. You can pass
in a list of elements to avoid in avoid_elements=[’textarea’, ...].

Links to some hosts can be avoided. By default links to localhost*, example.* and 127.0.0.1 are not
autolinked. Pass in avoid_hosts=[1ist_of_regexes] to control this.

Elements with the nolink CSS class are not autolinked. Pass in avoid_classes=[’code’, ...] to
control this.

The autolink_html () version of the function parses the HT'ML string first, and returns a string.

wordwrap

You can also wrap long words in your html:

word_break(doc, max_width=40, ...)

word_break_html (html, ...)

This finds any long words in the text of the document and inserts ​ in the document (which is
the Unicode zero-width space).

This avoids the elements <pre>, <textarea>, and <code>. You can control this with avoid_elements=[’textarea’,

.

It also avoids elements with the CSS class nobreak. You can control this with avoid_classes=[’code’,

..

Lastly you can control the character that is inserted with break_character=u’\u200b’. However, you
cannot insert markup, only text.

word_break_html (html) parses the HTML document and returns a string.

HTML Diff

The module 1xml.html.diff offers some ways to visualize differences in HTML documents. These
differences are content oriented. That is, changes in markup are largely ignored; only changes in the
content itself are highlighted.

There are two ways to view differences: htmldiff and html_annotate. One shows differences with <ins>
and , while the other annotates a set of changes similar to svn blame. Both these functions operate
on text, and work best with content fragments (only what goes in <body>), not complete documents.

Example of htmldiff:

137

CHAPTER 14. LXML.HTML

>>> from 1lxml.html.diff import htmldiff, html_annotate
>>> docl = ’’’<p>Here is some text.</p>’?’
>>> doc2 ’?<p>Here is a lot of <i>text</i>.</p>’’’
>>> doc3 Y2o<p>Here is a little <i>text</i>.</p>’?°
>>> print htmldiff (docl, doc2)
<p>Here is <ins>a lot of <i>text</i>.</ins> some text. </p>
>>> print html_annotate([(docl, ’authorl’), (doc2, ’author2’),
- (doc3, ’author3?’)])
<p>Here is

a

little

<i>text</i>

.</p>

As you can see, it is imperfect as such things tend to be. On larger tracts of text with larger edits it will
generally do better.

The html_annotate function can also take an optional second argument, markup. This is a function
like markup (text, version) that returns the given text marked up with the given version. The default
version, the output of which you see in the example, looks like:

def default_markup(text, version):
return ’Js’ 7, (
cgi.escape(unicode(version), 1), text)

Examples

Microformat Example

This example parses the hCard microformat.
First we get the page:

>>> import urllib

>>> from lxml.html import fromstring
>>> url = ’http://microformats.org/’

>>> content = urllib.urlopen(url).read()
>>> doc = fromstring(content)

>>> doc.make_links_absolute(url)

Then we create some objects to put the information in:

>>> class Card(object):
def __init__(self, #**kw):
for name, value in kw:
- setattr(self, name, value)
>>> class Phone(object):
def __init__(self, phone, types=()):
self.phone, self.types = phone, types

And some generally handy functions for microformats:

>>> def get_text(el, class_name):
els = el.find_class(class_name)
if els:
return els[0].text_content()

138

http://microformats.org/wiki/hcard

CHAPTER 14.

LXML.HTML

else:
return ’°
>>> def get_value(el):
. return get_text(el, ’value’) or el.text_content()
>>> def get_all_texts(el, class_name):
return [e.text_content() for e in els.find_class(class_name)]
>>> def parse_addresses(el):
Ideally this would parse street, etc.
return el.find_class(’adr’)

Then the parsing:

>>> for el in doc.find_class(’hcard’):
card = Card()
card.el = el
card.fn = get_text(el, ’fn’)
card.tels = []
for tel_el in card.find_class(’tel’):
card.tels.append(Phone(get_value(tel_el),
get_all_texts(tel_el, ’type’)))
card.addresses = parse_addresses(el)

139

Chapter 15

Ixml.cssselect

Ixml supports a number of interesting languages for tree traversal and element selection. The most
important is obviously XPath, but there is also ObjectPath in the Ixml.objectify module. The newest
child of this family is CSS selection, which is implemented in the new 1xml.cssselect module.

The CSSSelector class

The most important class in the cssselect module is CSSSelector. It provides the same interface as
the XPath class, but accepts a CSS selector expression as input:

>>> from lxml.cssselect import CSSSelector
>>> gel = CSSSelector(’div.content’)

>>> gsel #doctest: +ELLIPSIS

<CSSSelector ... for ’div.content’>

>>> sel.css

’div.content’

The selector actually compiles to XPath, and you can see the expression by inspecting the object:

>>> sel.path
"descendant-or-self::div[contains(concat(’ ’, normalize-space(@class), ’ ’), ’> content ’)]"

To use the selector, simply call it with a document or element object:

>>> from lxml.etree import fromstring
>>> h = fromstring(’’’<div id="outer">
<div id="inner" class="content body">
text
</div></div>’??)
>>> [e.get(’id’) for e in sel(h)]
[?inner’]

CSS Selectors

This libraries attempts to implement CSS selectors as described in the w3c specification. Many of the
pseudo-classes do not apply in this context, including all dynamic pseudo-classes. In particular these
will not be available:

140

http://www.w3.org/TR/CSS21/selector.html
http://www.w3.org/TR/2001/CR-css3-selectors-20011113/
http://www.w3.org/TR/2001/CR-css3-selectors-20011113/#dynamic-pseudos

CHAPTER 15. LXML.CSSSELECT

e link state: :1ink, :visited, :target
e actions: :hover, :active, :focus
e Ul states: :enabled, :disabled, :indeterminate (:checked and :unchecked are available)

Also, none of the psuedo-elements apply, because the selector only returns elements and psuedo-elements
select portions of text, like : :first-line.

Namespaces

In CSS you can use namespace-prefix|element, similar to namespace-prefix:element in an XPath
expression. In fact, it maps one-to-one, and the same rules are used to map namespace prefixes to
namespace URIs.

Limitations

These applicable pseudoclasses are not yet implemented:
e :lang(language)
e :root

e x:first-of-type, *:last-of-type, *:nth-of-type, *:nth-last-of-type, *:only-of-type. All
of these work when you specify an element type, but not with *

Unlike XPath you cannot provide parameters in your expressions -- all expressions are completely static.

XPath has underspecified string quoting rules (there seems to be no string quoting at all), so if you use
expressions that contain characters that requiring quoting you might have problems with the translation
from CSS to XPath.

141

Chapter 16

BeautifulSoup Parser

BeautifulSoup is a Python package that parses broken HTML, just like Ixml supports it based on the
parser of libxml2. BeautifulSoup uses a different parsing approach. It is not a real HTML parser but uses
regular expressions to dive through tag soup. It is therefore more forgiving in some cases and less good in
others. It is not uncommon that lxml/libxml2 parses and fixes broken HTML better, but BeautifulSoup
has superiour support for encoding detection. It very much depends on the input which parser works
better.

To prevent users from having to choose their parser library in advance, Ixml can interface to the pars-
ing capabilities of BeautifulSoup through the 1xml.html.soupparser module. It provides three main
functions: fromstring() and parse() to parse a string or file using BeautifulSoup into an 1xml.html
document, and convert_tree() to convert an existing BeautifulSoup tree into a list of top-level Ele-
ments.

Parsing with the soupparser

The functions fromstring() and parse() behave as known from ElementTree. The first returns a root
Element, the latter returns an ElementTree.

There is also a legacy module called 1xml.html.ElementSoup, which mimics the interface provided by
ElementTree’s own ElementSoup module. Note that the soupparser module was added in lxml 2.0.3.
Previous versions of Ixml 2.0.x only have the ElementSoup module.

Here is a document full of tag soup, similar to, but not quite like, HTML:
>>> tag_soup = ’<meta><head><title>Hello</head><body onload=crash()>Hi all<p>’
all you need to do is pass it to the fromstring() function:

>>> from lxml.html.soupparser import fromstring
>>> root = fromstring(tag_soup)

To see what we have here, you can serialise it:

>>> from lxml.etree import tostring
>>> print tostring(root, pretty_print=True),
<html>
<meta/>
<head>
<title>Hello</title>

142

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/documentation.html#Beautiful%20Soup%20Gives%20You%20Unicode%2C%20Dammit
http://effbot.org/zone/element-soup.htm

CHAPTER 16. BEAUTIFULSOUP PARSER

</head>
<body onload="crash()">Hi all<p/></body>
</html>

Not quite what you’d expect from an HTML page, but, well, it was broken already, right? BeautifulSoup
did its best, and so now it’s a tree.

To control which Element implementation is used, you can pass a makeelement factory function to
parse() and fromstring(). By default, this is based on the HTML parser defined in 1xml.html.

For a quick comparison, libxml2 2.6.32 parses the same tag soup as follows. The main difference is that
libxml2 tries harder to adhere to the structure of an HTML document and moves misplaced tags where
they (likely) belong. Note, however, that the result can vary between parser versions.

<html>
<head>
<meta/>
<title>Hello</title>
</head>
<body>
<p>Hi all</p>
<p/>
</body>
</html>

Entity handling

By default, the BeautifulSoup parser also replaces the entities it finds by their character equivalent.

>>> tag_soup = ’<body>©€-õƽ<p>’
>>> body = fromstring(tag_soup).find(’.//body’)

>>> body.text

u’\xa9\u20ac-\x£f5\u01bd’

If you want them back on the way out, you can just serialise with the default encoding, which is *US-
ASCIT.

>>> tostring(body)
’<body>© € ; -õ ; ƽ ;<p/></body>’

>>> tostring(body, method="html")
’<body>©€ ; -õ ; ƽ ; <p></p></body>"’

Any other encoding will output the respective byte sequences.

>>> tostring(body, encoding="utf-8")
’<body>\xc2\xa9\xe2\x82\xac-\xc3\xb5\xc6\xbd<p/></body>’

>>> tostring(body, method="html", encoding="utf-8")
’<body>\xc2\xa9\xe2\x82\xac-\xc3\xb5\xc6\xbd<p></p></body>’

>>> tostring(body, encoding=unicode)
u’<body>\xa9\u20ac-\xf5\u01bd<p/></body>’

>>> tostring(body, method="html", encoding=unicode)
u’<body>\xa9\u20ac-\xf5\u01bd<p></p></body>’

143

CHAPTER 16. BEAUTIFULSOUP PARSER

Using soupparser as a fallback

The downside of using this parser is that it is much slower than the HTML parser of lxml. So if
performance matters, you might want to consider using soupparser only as a fallback for certain cases.

One common problem of Ixml’s parser is that it might not get the encoding right in cases where the
document contains a <meta> tag at the wrong place. In this case, you can exploit the fact that lxml
serialises much faster than most other HTML libraries for Python. Just serialise the document to unicode
and if that gives you an exception, re-parse it with BeautifulSoup to see if that works better.

>>> tag_soup = ’7°\
. <meta http-equiv="Content-Type"

. content="text/html;charset=utf-8" />

. <html>
<head>

<title>Hello W\xc3\xb6rld!</title>

</head>

.. <body>Hi all</body>

. </html>’?°

>>> import lxml.html
>>> import lxml.html.soupparser

>>> root = lxml.html.fromstring(tag_soup)
>>> try:
ignore = tostring(root, encoding=unicode)
. except UnicodeDecodeError:
root = lxml.html.soupparser.fromstring(tag_soup)

Using only the encoding detection

If you prefer a 'real’ (and fast) HTML parser instead of the regular expression based one in BeautifulSoup,
you can still benefit from BeautifulSoup’s support for encoding detection in the UnicodeDammit class.

>>> from BeautifulSoup import UnicodeDammit

>>> def decode_html (html_string):
converted = UnicodeDammit (html_string, isHTML=True)
if not converted.unicode:
raise UnicodeDecodeError(
"Failed to detect encoding, tried [%s]",
>, ?.join(converted.triedEncodings))
print converted.originalEncoding
return converted.unicode

>>> root = lxml.html.fromstring(decode_html(tag_soup))

144

http://blog.ianbicking.org/2008/03/30/python-html-parser-performance/
http://www.crummy.com/software/BeautifulSoup/documentation.html#Beautiful%20Soup%20Gives%20You%20Unicode%2C%20Dammit

Chapter 17

htmlb5lib Parser

html5lib is a Python package that implements the HTML5 parsing algorithm which is heavily influenced
by current browsers and based on the WHATWG HTMLS5 specification.

Ixml can benefit from the parsing capabilities of html5lib through the 1xml.html.html5parser mod-
ule. It provides a similar interface to the 1xml.html module by providing fromstring(), parse(),
document_fromstring(), fragment_fromstring() and fragments_fromstring() that work like the
regular html parsing functions.

Differences to regular HTTML parsing

There are a few differences in the returned tree to the regular HTML parsing functions from 1xml.html.
htmlb5lib normalizes some elements and element structures to a common format. For example even if a
tables does not have a tbody htmlb5lib will inject one automatically:

>>> from 1lxml.html import tostring, htmlbparser
>>> tostring(htmlbparser.fromstring("<table><td>foo"))
’<table><tbody><tr><td>foo</td></tr></tbody></table>’

Also the parameters the functions accept are different.

Function Reference

parse(filename_url_or_file): Parses the named file or url, or if the object has a .read() method,
parses from that.

document_fromstring(html, guess_charset=True): Parses a document from the given string. This
always creates a correct HTML document, which means the parent node is <html>, and there is a
body and possibly a head.

If a bytestring is passed and guess_charset is true the chardet library (if installed) will guess the
charset if ambiguities exist.

fragment_fromstring(string, create_parent=False, guess_charset=False): Returns an HTML
fragment from a string. The fragment must contain just a single element, unless create_parent
is given; e.g,. fragment_fromstring(string, create_parent=’div’) will wrap the element in
a <div>. If create_parent is true the default parent tag (div) is used.

145

http://code.google.com/p/html5lib/
http://www.whatwg.org/specs/web-apps/current-work/

CHAPTER 17. HTML5LIB PARSER

If a bytestring is passed and guess_charset is true the chardet library (if installed) will guess the
charset if ambiguities exist.

fragments_fromstring(string, no_leading_text=False, parser=None): Returns a list of the ele-
ments found in the fragment. The first item in the list may be a string. If no_leading_text is
true, then it will be an error if there is leading text, and it will always be a list of only elements.

If a bytestring is passed and guess_charset is true the chardet library (if installed) will guess the
charset if ambiguities exist.

fromstring(string): Returns document_fromstring or fragment_fromstring, based on whether the
string looks like a full document, or just a fragment.

Additionally all parsing functions accept an parser keyword argument that can be set to a custom parser
instance. To create custom parsers you can subclass the HTMLParser and XHTMLParser from the same
module. Note that these are the parser classes provided by html5lib.

146

Part 111

Extending Ixml

147

Chapter 18

Document loading and URL resolving

Lxml has support for custom document loaders in both the parsers and XSL transformations. These
so-called resolvers are subclasses of the etree.Resolver class.

URI Resolvers

Here is an example of a custom resolver:

>>> from lxml import etree

>>> class DTDResolver(etree.Resolver):
def resolve(self, url, id, context):
print ("Resolving URL ’%s’" 7 url)
return self.resolve_string(
’<IENTITY myentity "[resolved text: %s]">’ 7 url, context)

This defines a resolver that always returns a dynamically generated DTD fragment defining an entity.
The url argument passes the system URL of the requested document, the id argument is the public ID.
Note that any of these may be None. The context object is not normally used by client code.

Resolving is based on three methods of the Resolver object that build internal representations of the
result document. The following methods exist:

e resolve_string takes a parsable string as result document

e resolve_filename takes a filename

e resolve_file takes an open file-like object that has at least a read() method
e resolve_empty resolves into an empty document

The resolve() method may choose to return None, in which case the next registered resolver (or the
default resolver) is consulted. Resolving always terminates if resolve() returns the result of any of the
above resolve_x*() methods.

Resolvers are registered local to a parser:

>>> parser = etree.XMLParser(load_dtd=True)
>>> parser.resolvers.add(DTDResolver())

148

CHAPTER 18. DOCUMENT LOADING AND URL RESOLVING

Note that we instantiate a parser that loads the DTD. This is not done by the default parser, which does
no validation. When we use this parser to parse a document that requires resolving a URL, it will call
our custom resolver:

>>> xml = ’<IDOCTYPE doc SYSTEM "MissingDTD.dtd"><doc>&myentity;</doc>’
>>> tree = etree.parse(StringI0(xml), parser)

Resolving URL ’MissingDTD.dtd’

>>> root = tree.getroot()

>>> print(root.text)

[resolved text: MissingDTD.dtdl]

The entity in the document was correctly resolved by the generated DTD fragment.

Document loading in context

XML documents memorise their initial parser (and its resolvers) during their life-time. This means
that a lookup process related to a document will use the resolvers of the document’s parser. We can
demonstrate this with a resolver that only responds to a specific prefix:

>>> class PrefixResolver (etree.Resolver):
def __init__(self, prefix):
self .prefix = prefix
self.result_xml = 7’7\
<xsl:stylesheet
xmlns:xsl="http://www.w3.0org/1999/XSL/Transform">
<test xmlns="testNS">),s-TEST</test>
</xsl:stylesheet>
720 Y prefix
def resolve(self, url, pubid, context):
if url.startswith(self.prefix):
print ("Resolved url %s as prefix %s" 7, (url, self.prefix))
return self.resolve_string(self.result_xml, context)

We demonstrate this in XSLT and use the following stylesheet as an example:

>>> xml_text = """\
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:include href="honk:test"/>
<xsl:template match="/">
<test>
<xsl:value-of select="document(’hoi:test’)/*/*/text("/>
</test>
</xsl:template>
</xsl:stylesheet>

Note that it needs to resolve two URIs: honk:test when compiling the XSLT document (i.e. when
resolving xsl:import and xsl:include elements) and hoi:test at transformation time, when calls to
the document function are resolved. If we now register different resolvers with two different parsers, we
can parse our document twice in different resolver contexts:

>>> hoi_parser = etree.XMLParser()
>>> normal_doc = etree.parse(StringI0(xml_text), hoi_parser)

>>> hoi_parser.resolvers.add(PrefixResolver("hoi"))

149

CHAPTER 18. DOCUMENT LOADING AND URL RESOLVING

>>> hoi_doc = etree.parse(StringI0(xml_text), hoi_parser)

>>> honk_parser = etree.XMLParser ()
>>> honk_parser.resolvers.add(PrefixResolver("honk"))
>>> honk_doc = etree.parse(StringI0(xml_text), honk_parser)

These contexts are important for the further behaviour of the documents. They memorise their original
parser so that the correct set of resolvers is used in subsequent lookups. To compile the stylesheet, XSLT
must resolve the honk:test URI in the xsl:include element. The hoi resolver cannot do that:

>>> transform = etree.XSLT(normal_doc)
Traceback (most recent call last):

1xml.etree.XSLTParseError: Cannot resolve URI honk:test

>>> transform = etree.XSLT(hoi_doc)
Traceback (most recent call last):

1xml.etree.XSLTParseError: Cannot resolve URI honk:test
However, if we use the honk resolver associated with the respective document, everything works fine:

>>> transform = etree.XSLT(honk_doc)
Resolved url honk:test as prefix honk

Running the transform accesses the same parser context again, but since it now needs to resolve the hoi
URI in the call to the document function, its honk resolver will fail to do so:

>>> result = transform(normal_doc)
Traceback (most recent call last):

1xml.etree.XSLTApplyError: Cannot resolve URI hoi:test

>>> result = transform(hoi_doc)
Traceback (most recent call last):

1xml.etree.XSLTApplyError: Cannot resolve URI hoi:test

>>> result = transform(honk_doc)
Traceback (most recent call last):

1xml.etree.XSLTApplyError: Cannot resolve URI hoi:test
This can only be solved by adding a hoi resolver to the original parser:

>>> honk_parser.resolvers.add(PrefixResolver("hoi"))
>>> result = transform(honk_doc)

Resolved url hoi:test as prefix hoi

>>> print(str(result) [:-1])

<?xml version="1.0"7>

<test>hoi-TEST</test>

We can see that the hoi resolver was called to generate a document that was then inserted into the result
document by the XSLT transformation. Note that this is completely independent of the XML file you
transform, as the URI is resolved from within the stylesheet context:

>>> result = transform(normal_doc)
Resolved url hoi:test as prefix hoi

150

CHAPTER 18. DOCUMENT LOADING AND URL RESOLVING

>>> print(str(result) [:-1])
<?xml version="1.0"7>
<test>hoi-TEST</test>

It may be seen as a matter of taste what resolvers the generated document inherits. For XSLT, the
output document inherits the resolvers of the input document and not those of the stylesheet. Therefore,
the last result does not inherit any resolvers at all.

I/O access control in XSLT

By default, XSLT supports all extension functions from libxslt and libexslt as well as Python regular
expressions through EXSLT. Some extensions enable style sheets to read and write files on the local file
system.

XSLT has a mechanism to control the access to certain I/O operations during the transformation process.
This is most interesting where XSL scripts come from potentially insecure sources and must be prevented
from modifying the local file system. Note, however, that there is no way to keep them from eating up
your precious CPU time, so this should not stop you from thinking about what XSLT you execute.

Access control is configured using the XSLTAccessControl class. It can be called with a number of
keyword arguments that allow or deny specific operations:

>>> transform = etree.XSLT (honk_doc)
Resolved url honk:test as prefix honk
>>> result = transform(normal_doc)
Resolved url hoi:test as prefix hoi

>>> ac = etree.XSLTAccessControl(read_network=False)
>>> transform = etree.XSLT(honk_doc, access_control=ac)
Resolved url honk:test as prefix honk

>>> result = transform(normal_doc)

Traceback (most recent call last):

lxr;li:etree.XSLTApplyError: xsltLoadDocument: read rights for hoi:test denied
There are a few things to keep in mind:

e XSL parsing (xsl:import, etc.) is not affected by this mechanism

e read_file=False does not imply write_file=False, all controls are independent.

e read_file only applies to files in the file system. Any other scheme for URLs is controlled by the
*_network keywords.

e If you need more fine-grained control than switching access on and off, you should consider writing
a custom document loader that returns empty documents or raises exceptions if access is denied.

151

Chapter 19

Python extensions for XPath and XSLT

This document describes how to use Python extension functions in XPath and XSLT like this:
<xsl:value-of select="f:myPythonFunction(.//sometag)" />
and extension elements in XSLT as in the following example:

<xsl:template match="*">
<my:python-extension>
<some-content />
</my :python-extension>
</xsl:template>

XPath Extension functions

Here is how an extension function looks like. As the first argument, it always receives a context object
(see below). The other arguments are provided by the respective call in the XPath expression, one in
the following examples. Any number of arguments is allowed:

>>> def hello(dummy, a):
. return "Hello ’s" % a
>>> def ola(dummy, a):
return "Ola %s" % a
>>> def loadsofargs(dummy, *args):
return "Got ’%d arguments." % len(args)

The FunctionNamespace

In order to use a function in XPath or XSLT, it needs to have a (namespaced) name by which it can be
called during evaluation. This is done using the FunctionNamespace class. For simplicity, we choose the
empty namespace (None):

>>> from lxml import etree

>>> ns = etree.FunctionNamespace (None)
>>> ns[’hello’] = hello

>>> ns[’countargs’] = loadsofargs

152

CHAPTER 19. PYTHON EXTENSIONS FOR XPATH AND XSLT

This registers the function hello with the name hello in the default namespace (None), and the function
loadsofargs with the name countargs. Now we’re going to create a document that we can run XPath
expressions against:

>>> root = etree.XML(’<a>Haegar’)
>>> doc = etree.ElementTree(root)

Done. Now we can have XPath expressions call our new function:

>>> print(root.xpath("hello(’world’)"))

Hello world

>>> print(root.xpath(’hello(local-name(*))?’))
Hello b

>>> print(root.xpath(’hello(string(b))’))
Hello Haegar

>>> print(root.xpath(’countargs(., b, ./*)’))
Got 3 arguments.

Note how we call both a Python function (hello) and an XPath built-in function (string) in exactly
the same way. Normally, however, you would want to separate the two in different namespaces. The
FunctionNamespace class allows you to do this:

>>> ns = etree.FunctionNamespace(’http://mydomain.org/myfunctions’)
>>> ns[’hello’] = hello

>>> prefixmap = {’f’ : ’http://mydomain.org/myfunctions’}

>>> print(root.xpath(’f:hello(local-name(*))’, namespaces=prefixmap))
Hello b

Global prefix assignment

In the last example, you had to specify a prefix for the function namespace. If you always use the same
prefix for a function namespace, you can also register it with the namespace:

>>> ns = etree.FunctionNamespace(’http://mydomain.org/myother/functions’)
>>> ns.prefix = ’es’

>>> ns[’hello’] = ola

>>> print(root.xpath(’es:hello(local-name(*))’))

Ola b

This is a global assignment, so take care not to assign the same prefix to more than one namespace. The
resulting behaviour in that case is completely undefined. It is always a good idea to consistently use the
same meaningful prefix for each namespace throughout your application.

The prefix assignment only works with functions and FunctionNamespace objects, not with the general
Namespace object that registers element classes. The reasoning is that elements in lxml do not care
about prefixes anyway, so it would rather complicate things than be of any help.

The XPath context

Functions get a context object as first parameter. In Ixml 1.x, this value was None, but since lxml 2.0 it
provides two properties: eval_context and context_node. The context node is the Element where the
current function is called:

>>> def print_tag(context, nodes):
print("%s: %s" % (context.context_node.tag, [n.tag for n in nodes]))

153

CHAPTER 19. PYTHON EXTENSIONS FOR XPATH AND XSLT

>>> ns = etree.FunctionNamespace(’http://mydomain.org/printtag’)
>>> ns.prefix = "pt"
>>> ns["print_tag"] = print_tag

>>> ignore = root.xpath("//*[pt:print_tag(.//*)1")
a: [’b’]
b: []

The eval_context is a dictionary that is local to the evaluation. It allows functions to keep state:

>>> def print_context(context):
context.eval_context [context.context_node.tag] = "done"
entries = list(context.eval_context.items())
entries.sort()

ce print (entries)

>>> ns["print_context"] = print_context

>>> ignore = root.xpath("//*[pt:print_context()]")
[(’a’, ’done’)]
[(’a’, ’done’), (°b’, ’done’)]

Evaluators and XSLT

Extension functions work for all ways of evaluating XPath expressions and for XSL transformations:

>>> e = etree.XPathEvaluator(doc)
>>> print(e(’es:hello(local-name(/a))’))
Ola a

>>> namespaces = {’f’ : ’http://mydomain.org/myfunctions’}
>>> e = etree.XPathEvaluator(doc, namespaces=namespaces)
>>> print(e(’f:hello(local-name(/a))’))

Hello a

>>> xslt = etree.XSLT(etree.XML(’’’
<stylesheet version="1.0"
xmlns="http://www.w3.0rg/1999/XSL/Transform"
xmlns:es="http://mydomain.org/myother/functions">
<output method="text" encoding="ASCII"/>
<template match="/">
<value-of select="es:hello(string(//b))"/>
</template>
</stylesheet>
V. 7)7))
>>> print (xslt(doc))
Ola Haegar

It is also possible to register namespaces with a single evaluator after its creation. While the following
example involves no functions, the idea should still be clear:

>>> f = StringI0(’’)
>>> ns_doc = etree.parse(f)

>>> e = etree.XPathEvaluator (ns_doc)

>>> e(?/a’)

(]

154

CHAPTER 19. PYTHON EXTENSIONS FOR XPATH AND XSLT

This returns nothing, as we did not ask for the right namespace. When we register the namespace with
the evaluator, however, we can access it via a prefix:

>>> e.register_namespace(’foo’, ’http://mydomain.org/myfunctions’)
>>> e(’/foo:a’)[0].tag
’{http://mydomain.org/myfunctions}a’

Note that this prefix mapping is only known to this evaluator, as opposed to the global mapping of the
FunctionNamespace objects:

>>> e2 = etree.XPathEvaluator(ns_doc)
>>> e2(’/foo:a?)

1xml.etree.XPathEvalError: Undefined namespace prefix

Evaluator-local extensions

Apart from the global registration of extension functions, there is also a way of making extensions
known to a single Evaluator or XSLT. All evaluators and the XSLT object accept a keyword argu-
ment extensions in their constructor. The value is a dictionary mapping (namespace, name) tuples to
functions:

>>> extensions = {(’local-ns’, ’local-hello’) : hello}
>>> namespaces = {’1’ : ’local-ns’}

>>> e = etree.XPathEvaluator(doc, namespaces=namespaces, extensions=extensions)
>>> print(e(’1l:local-hello(string(b))’))
Hello Haegar

For larger numbers of extension functions, you can define classes or modules and use the Extension
helper:

>>> class MyExt:

def functionl(self, _, arg):
return ’1’+arg

def function2(self, _, arg):
return ’2’+arg

def function3(self, _, arg):

return ’3’+arg

>>> ext_module = MyExt ()
>>> functions = (’functionl’, ’function2’)
>>> extensions = etree.Extension(ext_module, functions, ns=’local-ns’)

>>> e = etree.XPathEvaluator(doc, namespaces=namespaces, extensions=extensions)
>>> print(e(’1:functionl(string(b))?’))
1Haegar

The optional second argument to Extension can either be be a sequence of names to select from the
module, a dictionary that explicitly maps function names to their XPath alter-ego or None (explicitly
passed) to take all available functions under their original name (if their name does not start with >).

The additional ns keyword argument takes a namespace URI or None (also if left out) for the default
namespace. The following examples will therefore all do the same thing:

>>> functions = (’functionl’, ’function2’, ’function3?’)
>>> extensions = etree.Extension(ext_module, functions)

155

CHAPTER 19. PYTHON EXTENSIONS FOR XPATH AND XSLT

>>> e = etree.XPathEvaluator(doc, extensions=extensions)
>>> print(e(’functionl (function2(function3(string(b))))’))
123Haegar

>>> extensions = etree.Extension(ext_module, functions, ns=None)
>>> e = etree.XPathEvaluator(doc, extensions=extensions)

>>> print(e(’functionl (function2(function3(string(b))))’))
123Haegar

>>> extensions = etree.Extension(ext_module)

>>> e = etree.XPathEvaluator(doc, extensions=extensions)
>>> print(e(’functionl(function2(function3(string(b))))’))
123Haegar

>>> functions = {

functionl’ : ’functionl’,
function2’ : ’function2’,
’function3’ : ’function3d’

}
>>> extensions = etree.Extension(ext_module, functions)
>>> e = etree.XPathEvaluator(doc, extensions=extensions)
>>> print(e(’functionl(function2(function3(string(b))))’))
123Haegar

For convenience, you can also pass a sequence of extensions:

>>> extensionsl = etree.Extension(ext_module)

>>> extensions2 = etree.Extension(ext_module, ns=’local-ns’)

>>> e = etree.XPathEvaluator(doc, extensions=[extensionsl, extensions2],
... namespaces=namespaces)

>>> print(e(’functionl(1l:function2(function3(string(b))))’))

123Haegar

What to return from a function

Extension functions can return any data type for which there is an XPath equivalent (see the documen-
tation on XPath return values). This includes numbers, boolean values, elements and lists of elements.
Note that integers will also be returned as floats:

>>> def returnsFloat(_):

c.. return 1.7

>>> def returnsInteger(_):

... return 1

>>> def returnsBool(_):

R return True

>>> def returnFirstNode(_, nodes):
return nodes[0]

>>> ns = etree.FunctionNamespace(None)
>>> ns[’float’] returnsFloat

>>> ns[’int’] returnsInteger

>>> ns[’bool’] = returnsBool

>>> ns[’first’] returnFirstNode

>>> e = etree.XPathEvaluator(doc)

156

CHAPTER 19. PYTHON EXTENSIONS FOR XPATH AND XSLT

>>> e("float()")

1.7

>>> e("int()")

1.0

>>> int(e("int()"))

1

>>> e("bool (")

True

>>> e("count (first(//b))")
1.0

As the last example shows, you can pass the results of functions back into the XPath expression. Elements
and sequences of elements are treated as XPath node-sets:

>>> def returnsNodeSet(_):
resultsl = etree.Element (’resultsil’)
etree.SubElement (resultsl, ’result’).text
etree.SubElement (resultsl, ’result’).text

n Alphall
n Betall

results2 = etree.Element (’results2’)
etree.SubElement (results2, ’result’).text = "Gamma"
etree.SubElement (results2, ’result’).text "Delta"

results3 = etree.SubElement(results2, ’subresult’)
return [resultsl, results2, results3]

>>> ns[’new-node-set’] = returnsNodeSet
>>> e = etree.XPathEvaluator(doc)

>>> r = e("new-node-set()/result")
>>> print([t.text for t in r 1)
[’Alpha’, ’Beta’, ’Gamma’, ’Delta’]

>>> r = e("new-node-set()")

>>> print([t.tag for t in r])
[’resultsl’, ’results2’, ’subresult’]
>>> print([len(t) for t in r 1)

[2, 3, 0]

>>> r[0] [0] .text

’Alpha’

>>> etree.tostring(r[0])
b’<resultsi><result>Alpha</result><result>Beta</result></resultsi>’

>>> etree.tostring(r[1])
b’<results2><result>Gamma</result><result>Delta</result><subresult/></results2>’

>>> etree.tostring(r[2])
b’<subresult/>’

The current implementation deep-copies newly created elements in node-sets. Only the elements and
their children are passed on, no outlying parents or tail texts will be available in the result. This also
means that in the above example, the subresult elements in results2 and results3 are no longer identical
within the node-set, they belong to independent trees:

157

CHAPTER 19. PYTHON EXTENSIONS FOR XPATH AND XSLT

>>> print("Ys - %s" % (r[11[-1].tag, r[2].tag))
subresult - subresult

>>> print(r[1][-1] == r[2])

False

>>> print(r[1] [-1].getparent () .tag)
results2

>>> print(r[2].getparent())

None

This is an implementation detail that you should be aware of, but you should avoid relying on it in your
code. Note that elements taken from the source document (the most common case) do not suffer from
this restriction. They will always be passed unchanged.

XSLT extension elements

Just like the XPath extension functions described above, Ixml supports custom extension elements in
XSLT. This means, you can write XSLT code like this:

<xsl:template match="x">
<my:python-extension>
<some-content />
</my:python-extension>
</xsl:template>

And then you can implement the element in Python like this:

>>> class MyExtElement (etree.XSLTExtension):
def execute(self, context, self_node, input_node, output_parent):
print ("Hello from XSLT!")
output_parent.text = "I did it!"
just copy own content input to output
output_parent.extend(list(self_node))

The arguments passed to the .execute() method are

context The opaque evaluation context. You need this when calling back into the XSLT processor.
self node A read-only Element object that represents the extension element in the stylesheet.
input _node The current context Element in the input document (also read-only).

output parent The current insertion point in the output document. You can append elements or set
the text value (not the tail). Apart from that, the Element is read-only.

Declaring extension elements

In XSLT, extension elements can be used like any other XSLT element, except that they must be declared
as extensions using the standard XSLT extension-element-prefixes option:

>>> xslt_ext_tree = etree.XML(’’’

. <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns :my="testns"
extension-element-prefixes="my">
<xsl:template match="/">

158

CHAPTER 19. PYTHON EXTENSIONS FOR XPATH AND XSLT

<foo><my:ext><child>XYZ</child></my:ext></foo>
</xsl:template>
<xsl:template match="child">
<CHILD>--xyz--</CHILD>
</xsl:template>
</xsl:stylesheet>’’’)

To register the extension, add its namespace and name to the extension mapping of the XSLT object:

>>> my_extension = MyExtElement ()
>>> extensions = { (’testns’, ’ext’) : my_extension }
>>> transform = etree.XSLT(xslt_ext_tree, extensions = extensions)

Note how we pass an instance here, not the class of the extension. Now we can run the transformation
and see how our extension is called:

>>> root = etree.XML(’<dummy/>’)

>>> result = transform(root)

Hello from XSLT!

>>> str(result)

’<?xml version="1.0"7?>\n<foo>I did it!<child>XYZ</child></foo>\n’

Applying XSL templates

XSLT extensions are a very powerful feature that allows you to interact directly with the XSLT processor.
You have full read-only access to the input document and the stylesheet, and you can even call back
into the XSLT processor to process templates. Here is an example that passes an Element into the
.apply_templates() method of the XSLTExtension instance:

>>> class MyExtElement (etree.XSLTExtension):
def execute(self, context, self_node, input_node, output_parent):
child = self_node[0]
results = self.apply_templates(context, child)
output_parent.append(results[0])

>>> my_extension = MyExtElement ()
>>> extensions = { (’testns’, ’ext’) : my_extension }
>>> transform = etree.XSLT(xslt_ext_tree, extensions = extensions)

>>> root = etree.XML(’<dummy/>’)

>>> result = transform(root)

>>> str(result)

’<?xml version="1.0"?>\n<foo><CHILD>--xyz--</CHILD></foo>\n’

Note how we applied the templates to a child of the extension element itself, i.e. to an element inside
the stylesheet instead of an element of the input document.

Working with read-only elements

There is one important thing to keep in mind: all Elements that the execute() method gets to deal
with are read-only Elements, so you cannot modify them. They also will not easily work in the API. For
example, you cannot pass them to the tostring() function or wrap them in an ElementTree.

What you can do, however, is to deepcopy them to make them normal Elements, and then modify them
using the normal etree API. So this will work:

159

CHAPTER 19. PYTHON EXTENSIONS FOR XPATH AND XSLT

>>>
>>>

>>>
>>>
>>>

>>>
>>>
>>>

from copy import deepcopy
class MyExtElement (etree.XSLTExtension):
def execute(self, context, self_node, input_node, output_parent):
child = deepcopy(self_node[0])
child.text = "NEW TEXT"
output_parent.append(child)

my_extension = MyExtElement ()
extensions = { (’testns’, ’ext’) : my_extension }
transform = etree.XSLT(xslt_ext_tree, extensions = extensions)

root = etree.XML(’<dummy/>’)
result = transform(root)
str(result)

’<?xml version="1.0"7>\n<foo><child>NEW TEXT</child></foo>\n’

160

Chapter 20

Using custom Element classes in Ixml

Ixml has very sophisticated support for custom Element classes. You can provide your own classes for
Elements and have Ixml use them by default for all elements generated by a specific parser, only for a
specific tag name in a specific namespace or even for an exact element at a specific position in the tree.

Custom Elements must inherit from the 1xml.etree.ElementBase class, which provides the Element
interface for subclasses:

>>> from lxml import etree

>>> class honk(etree.ElementBase) :
def honking(self):
return self.get(’honking’) == ’true’
honking = property(honking)

This defines a new Element class honk with a property honking.

The following document describes how you can make Ixml.etree use these custom Element classes.

Background on Element proxies

Being based on libxml2, Ixml.etree holds the entire XML tree in a C structure. To communicate with
Python code, it creates Python proxy objects for the XML elements on demand.

Python space C space (libxml 2)

>>> chapterl = doc[0 Element
il il proxy [[|——chp chp

>>> print([p.text
for p in chapterl]) H-~58 & i &

The mapping between C elements and Python Element classes is completely configurable. When you
ask Ixml.etree for an Element by using its API, it will instantiate your classes for you. All you have to
do is tell Ixml which class to use for which kind of Element. This is done through a class lookup scheme,
as described in the sections below.

Element initialization

There is one thing to know up front. Element classes must not have an __init or __new__ method.

There should not be any internal state either, except for the data stored in the underlying XML tree.

161

CHAPTER 20. USING CUSTOM ELEMENT CLASSES IN LXML

Element instances are created and garbage collected at need, so there is no way to predict when and
how often a proxy is created for them. Even worse, when the __init__ method is called, the object is
not, even initialized yet to represent the XML tag, so there is not much use in providing an __init__
method in subclasses.

Most use cases will not require any class initialisation, so you can content yourself with skipping to the
next section for now. However, if you really need to set up your element class on instantiation, there is
one possible way to do so. ElementBase classes have an _init () method that can be overridden. It can
be used to modify the XML tree, e.g. to construct special children or verify and update attributes.

The semantics of _init() are as follows:

e It is called once on Element class instantiation time. That is, when a Python representation of the
element is created by Ixml. At that time, the element object is completely initialized to represent
a specific XML element within the tree.

e The method has complete access to the XML tree. Modifications can be done in exactly the same
way as anywhere else in the program.

e Python representations of elements may be created multiple times during the lifetime of an XML
element in the underlying C tree. The _init () code provided by subclasses must take special care
by itself that multiple executions either are harmless or that they are prevented by some kind of
flag in the XML tree. The latter can be achieved by modifying an attribute value or by removing
or adding a specific child node and then verifying this before running through the init process.

e Any exceptions raised in _init () will be propagated throught the API call that lead to the creation
of the Element. So be careful with the code you write here as its exceptions may turn up in various
unexpected places.

Setting up a class lookup scheme

The first thing to do when deploying custom element classes is to register a class lookup scheme on a
parser. lxml.etree provides quite a number of different schemes that also support class lookup based on
namespaces or attribute values. Most lookups support fallback chaining, which allows the next lookup
mechanism to take over when the previous one fails to find a class.

For example, setting the honk Element as a default element class for a parser works as follows:

>>> parser_lookup = etree.ElementDefaultClassLookup(element=honk)
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(parser_lookup)

There is one drawback of the parser based scheme: the Element () factory does not know about your
specialised parser and creates a new document that deploys the default parser:

>>> el = etree.Element("root")
>>> print(isinstance(el, honk))
False

You should therefore avoid using this factory function in code that uses custom classes. The makeelement ()
method of parsers provides a simple replacement:

>>> el = parser.makeelement("root")
>>> print(isinstance(el, honk))
True

If you use a parser at the module level, you can easily redirect a module level Element () factory to the

162

CHAPTER 20. USING CUSTOM ELEMENT CLASSES IN LXML

parser method by adding code like this:

>>> module_level_parser = etree.XMLParser()
>>> Element = module_level_parser.makeelement

While the XML () and HTML() factories also depend on the default parser, you can pass them a different
parser as second argument:

>>> element = etree.XML("<test/>")
>>> print(isinstance(element, honk))
False

>>> element = etree.XML("<test/>", parser)
>>> print(isinstance(element, honk))
True

Whenever you create a document with a parser, it will inherit the lookup scheme and all subsequent
element instantiations for this document will use it:

>>> element = etree.fromstring("<test/>", parser)
>>> print(isinstance(element, honk))

True

>>> el = etree.SubElement(element, "subel")

>>> print(isinstance(el, honk))

True

For testing code in the Python interpreter and for small projects, you may also consider setting a lookup
scheme on the default parser. To avoid interfering with other modules, however, it is usually a better
idea to use a dedicated parser for each module (or a parser pool when using threads) and then register
the required lookup scheme only for this parser.

Default class lookup

This is the most simple lookup mechanism. It always returns the default element class. Consequently, no
further fallbacks are supported, but this scheme is a nice fallback for other custom lookup mechanisms.

Usage:

>>> lookup = etree.ElementDefaultClassLookup()
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

Note that the default for new parsers is to use the global fallback, which is also the default lookup (if
not configured otherwise).

To change the default element implementation, you can pass your new class to the constructor. While it
accepts classes for element, comment and pi nodes, most use cases will only override the element class:

>>> el = parser.makeelement ("myelement")
>>> print(isinstance(el, honk))
False

>>> lookup = etree.ElementDefaultClassLookup(element=honk)
>>> parser.set_element_class_lookup(lookup)

>>> el = parser.makeelement("myelement")
>>> print(isinstance(el, honk))

163

CHAPTER 20. USING CUSTOM ELEMENT CLASSES IN LXML

True

>>> el.honking

False

>>> el = parser.makeelement("myelement", honking=’true’)
>>> etree.tostring(el)

b’<myelement honking="true"/>’

>>> el.honking

True

Namespace class lookup

This is an advanced lookup mechanism that supports namespace/tag-name specific element classes. You
can select it by calling:

>>> lookup = etree.ElementNamespaceClassLookup()
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

See the separate section on implementing namespaces below to learn how to make use of it.

This scheme supports a fallback mechanism that is used in the case where the namespace is not found or
no class was registered for the element name. Normally, the default class lookup is used here. To change
it, pass the desired fallback lookup scheme to the constructor:

>>> fallback = etree.ElementDefaultClassLookup(element=honk)
>>> lookup = etree.ElementNamespaceClassLookup(fallback)
>>> parser.set_element_class_lookup(lookup)

Attribute based lookup

This scheme uses a mapping from attribute values to classes. An attribute name is set at initialisation
time and is then used to find the corresponding value in a dictionary. It is set up as follows:

>>> id_class_mapping = {1234’ : honk} # maps attribute values to classes

>>> lookup = etree.AttributeBasedElementClassLookup(
’id’, id_class_mapping)

>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

This class uses its fallback if the attribute is not found or its value is not in the mapping. Normally, the
default class lookup is used here. If you want to use the namespace lookup, for example, you can use
this code:

>>> fallback = etree.ElementNamespaceClassLookup ()

>>> lookup = etree.AttributeBasedElementClassLookup (

C ’id’, id_class_mapping, fallback)
>>> parser = etree.XMLParser()

>>> parser.set_element_class_lookup(lookup)

Custom element class lookup

This is the most customisable way of finding element classes on a per-element basis. It allows you to
implement a custom lookup scheme in a subclass:

164

CHAPTER 20. USING CUSTOM ELEMENT CLASSES IN LXML

>>> class MyLookup(etree.CustomElementClassLookup) :
def lookup(self, node_type, document, namespace, name):
return honk # be a bit more selective here ...

>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(MyLookup())

The . lookup () method must return either None (which triggers the fallback mechanism) or a subclass of
1xml.etree.ElementBase. It can take any decision it wants based on the node type (one of “element”,
“comment”, “PI”, “entity”), the XML document of the element, or its namespace or tag name.

Tree based element class lookup in Python

Taking more elaborate decisions than allowed by the custom scheme is difficult to achieve in pure Python,
as it results in a chicken-and-egg problem. It would require access to the tree - before the elements in
the tree have been instantiated as Python Element proxies.

Luckily, there is a way to do this. The PythonElementClassLookup works similar to the custom lookup
scheme:

>>> class MyLookup(etree.PythonElementClassLookup) :
def lookup(self, document, element):
return MyElementClass # defined elsewhere

>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup (MyLookup())

As before, the first argument to the lookup() method is the opaque document instance that contains
the Element. The second arguments is a lightweight Element proxy implementation that is only valid
during the lookup. Do not try to keep a reference to it. Once the lookup is finished, the proxy will
become invalid. You will get an AssertionError if you access any of the properties or methods outside
the scope of the lookup call where they were instantiated.

During the lookup, the element object behaves mostly like a normal Element instance. It provides the
properties tag, text, tail etc. and supports indexing, slicing and the getchildren(), getparent ()
etc. methods. It does not support iteration, nor does it support any kind of modification. All of its
properties are read-only and it cannot be removed or inserted into other trees. You can use it as a
starting point to freely traverse the tree and collect any kind of information that its elements provide.
Once you have taken the decision which class to use for this element, you can simply return it and have
Ixml take care of cleaning up the instantiated proxy classes.

Sidenote: this lookup scheme originally lived in a separate module called 1xml.pyclasslookup.

Generating XML with custom classes

Up to Ixml 2.1, you could not instantiate proxy classes yourself. Only Ixml.etree could do that when
creating an object representation of an existing XML element. Since lxml 2.2, however, instantiating
this class will simply create a new Element:

>>> el = honk(honking = ’true’)
>>> el.tag

’honk’

>>> el.honking

True

165

CHAPTER 20. USING CUSTOM ELEMENT CLASSES IN LXML

Note, however, that the proxy you create here will be garbage collected just like any other proxy. You
can therefore not count on Ixml.etree using the same class that you instantiated when you access this
Element a second time after letting its reference go. You should therefore always use a corresponding
class lookup scheme that returns your Element proxy classes for the elements that they create. The
ElementNamespaceClassLookup is generally a good match.

You can use custom Element classes to quickly create XML fragments:

>>> class hale(etree.ElementBase): pass
>>> class bopp(etree.ElementBase): pass

>>> el = hale("some ", honk(honking = ’true’), bopp, " text")

>>> print(etree.tostring(el, encoding=unicode))
<hale>some <honk honking="true"/><bopp/> text</hale>

Implementing namespaces

Ixml allows you to implement namespaces, in a rather literal sense. After setting up the namespace class
lookup mechanism as described above, you can build a new element namespace (or retrieve an existing
one) by calling the get_namespace (uri) method of the lookup:

>>> lookup = etree.ElementNamespaceClassLookup()
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

>>> namespace = lookup.get_namespace(’http://hui.de/honk’)
and then register the new element type with that namespace, say, under the tag name honk:
>>> namespace[’honk’] = honk

If you have many Element classes declared in one module, and they are all named like the elements
they create, you can simply use namespace.update(vars()) at the end of your module to declare them
automatically. The implementation is smart enough to ignore everything that is not an Element class.

After this, you create and use your XML elements through the normal API of Ixml:

>>> xml = ’<honk xmlns="http://hui.de/honk" honking="true"/>’
>>> honk_element = etree.XML(xml, parser)

>>> print (honk_element.honking)

True

The same works when creating elements by hand:

>>> honk_element = parser.makeelement (’{http://hui.de/honk}thonk’,
. honking=’true’)

>>> print (honk_element.honking)
True

Essentially, what this allows you to do, is to give Elements a custom API based on their namespace and
tag name.

A somewhat related topic are extension functions which use a similar mechanism for registering extension
functions in XPath and XSLT.

166

CHAPTER 20. USING CUSTOM ELEMENT CLASSES IN LXML

In the setup example above, we associated the honk Element class only with the 'honk’ element. If an
XML tree contains different elements in the same namespace, they do not pick up the same implemen-
tation:

>>> xml = ’<honk xmlns="http://hui.de/honk" honking="true"><bla/></honk>’
>>> honk_element = etree.XML(xml, parser)

>>> print (honk_element.honking)

True

>>> print (honk_element [0] .honking)

AttributeError: ’lxml.etree._Element’ object has no attribute ’honking’

You can therefore provide one implementation per element name in each namespace and have Ixml
select the right one on the fly. If you want one element implementation per namespace (ignoring the
element name) or prefer having a common class for most elements except a few, you can specify a default
implementation for an entire namespace by registering that class with the empty element name (None).

You may consider following an object oriented approach here. If you build a class hierarchy of element
classes, you can also implement a base class for a namespace that is used if no specific element class is
provided. Again, you can just pass None as an element name:

>>> class HonkNSElement (etree.ElementBase):
def honk(self):
e return "HONK"
>>> namespace [None] = HonkNSElement # default Element for namespace

>>> class HonkElement (HonkNSElement) :
def honking(self):
return self.get(’honking’) == ’true’
honking = property(honking)
>>> namespace[’honk’] = HonkElement # Element for specific tag

Now you can rely on lxml to always return objects of type HonkNSElement or its subclasses for elements
of this namespace:

>>> xml = ’<honk xmlns="http://hui.de/honk" honking="true"><bla/></honk>’
>>> honk_element = etree.XML(xml, parser)

>>> print(type (honk_element))
<class ’HonkElement’>

>>> print (type (honk_element [0]))
<class ’HonkNSElement’>

>>> print (honk_element.honking)
True
>>> print (honk_element.honk())
HONK

>>> print (honk_element [0] .honk())
HONK
>>> print (honk_element [0] .honking)

AttributeError: ’HonkNSElement’ object has no attribute ’honking’

167

Chapter 21

Sax support

In this document we’ll describe Ixml’s SAX support. lxml has support for producing SAX events for an
ElementTree or Element. Ixml can also turn SAX events into an ElementTree. The SAX API used by
Ixml is compatible with that in the Python core (xml.sax), so is useful for interfacing Ixml with code
that uses the Python core SAX facilities.

Building a tree from SAX events

First of all, Ixml has support for building a new tree given SAX events. To do this, we use the special
SAX content handler defined by Ixml named 1xml.sax.ElementTreeContentHandler:

>>> import lxml.sax
>>> handler = 1lxml.sax.ElementTreeContentHandler ()

Now let’s fire some SAX events at it:

>>> handler.startElementNS((None, ’a’), ’a’, {})

>>> handler.startElementNS((None, ’b’), ’b’, {(None, ’foo’): ’bar’})
>>> handler.characters(’Hello world’)

>>> handler.endElementNS((None, ’b’), ’b?)

>>> handler.endElementNS((None, ’a’), ’a’)

This constructs an equivalent tree. You can access it through the etree property of the handler:

>>> tree = handler.etree
>>> 1xml.etree.tostring(tree.getroot())
b’<a><b foo="bar">Hello world’

By passing a makeelement function the constructor of ElementTreeContentHandler, e.g. the one of a
parser you configured, you can determine which element class lookup scheme should be used.

Producing SAX events from an ElementTree or Element
Let’s make a tree we can generate SAX events for:

>>> f = StringI0(’<a>Text’)
>>> tree = lxml.etree.parse(f)

168

CHAPTER 21.

SAX SUPPORT

To see whether the correct SAX events are produced, we’ll write a custom content handler.:

>>> from xml.sax.handler import ContentHandler
>>> class MyContentHandler (ContentHandler) :
def __init__(self):
self.a_amount = O
self.b_amount = 0O
self.text = None

def startElementNS(self, name, gname, attributes):
uri, localname = name

if localname == ’a’:
self.a_amount += 1
if localname == ’b’:

self.b_amount += 1

def characters(self, data):
self.text = data

Note that it only defines the startElementNS() method and not startElement(). The SAX event generator

in Ixml.sax currently only supports namespace-aware processing.

To test the content handler, we can produce SAX events from the tree:

>>> handler = MyContentHandler ()
>>> 1xml.sax.saxify(tree, handler)

This is what we expect:

>>> handler.a_amount
1

>>> handler.b_amount
1

>>> handler.text
’Text’

Interfacing with pulldom/minidom

Ixml.sax is a simple way to interface with the standard XML support in the Python library. Note,
however, that this is a one-way solution, as Python’s DOM implementation connot generate SAX events

from a DOM tree.
You can use xml.dom.pulldom to build a minidom from lxml:

>>> from xml.dom.pulldom import SAX2DOM
>>> handler = SAX2DOM()
>>> 1xml.sax.saxify(tree, handler)

PullDOM makes the result available through the document attribute:

>>> dom = handler.document
>>> print(dom.firstChild.localName)
a

169

Chapter 22

The public C-API of Ixml.etree

As of version 1.1, Ixml.etree provides a public C-API. This allows external C extensions to efficiently
access public functions and classes of Ixml, without going through the Python APIL.

The API is described in the file etreepublic.pxd, which is directly c-importable by extension modules
implemented in Pyrex or Cython.

Writing external modules in Cython

This is the easiest way of extending lxml at the C level. A Cython (or Pyrex) module should start like
this:

My Cython extension

import the public functions and classes of lxml.etree
cimport etreepublic as cetree

import the lxml.etree module in Python
cdef object etree
from 1lxml import etree

initialize the access to the C-API of lxml.etree
cetree.import_lxml__etree()

From this line on, you can access all public functions of Ixml.etree from the cetree namespace like this:

build a tag name from namespace and element name
py_tag = cetree.namespacedNameFromNsName ("http://some/url", "myelement")

Public Ixml classes are easily subclassed. For example, to implement and set a new default element class,
you can write Cython code like the following:

from etreepublic cimport ElementBase
cdef class NewElementClass(ElementBase):
def set_value(self, myval):
self.set("my_attribute", myval)

etree.set_element_class_lookup(
etree.DefaultElementClassLookup(element=NewElementClass))

170

http://codespeak.net/svn/lxml/trunk/src/lxml/etreepublic.pxd
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://www.cython.org
http://www.cython.org
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

CHAPTER 22. THE PUBLIC C-API OF LXML.ETREE

Writing external modules in C

If you really feel like it, you can also interface with Ixml.etree straight from C code. All you have to do
is include the header file for the public API, import the 1xml.etree module and then call the import
function:

/* My C extension */

/* common includes */

#include "Python.h"

#include "stdio.h"

#include "string.h"

#1include "stdarg.h"

#include "libxml /zmlversion.h"
#include "libxml /encoding.h”
#include "libazml /hash.h"
#include "libzml /tree.h"
#include "libazml /zmlI0.h"
#include "libxzml /xzmlsave.h"
#include "libxml /globals.h"
#include "libzml /xzmlstring.h"

/* lzml.etree specific includes */
#include "lzml-version.h"
#1include "etree_defs.h"

#include "etree.h"

/* setup code */
import_lxml__etree()

Note that including etree.h does not automatically include the header files it requires. Note also that
the above list of common includes may not be sufficient.

171

Part IV

Developing Ixml

172

Chapter 23

How to build Ixml from source

To build Ixml from source, you need libxml2 and libxslt properly installed, including the header files.
These are likely shipped in separate -dev or -devel packages like 1ibxml2-dev, which you must install
before trying to build Ixml. The build process also requires setuptools. The Ixml source distribution
comes with a script called ez_setup.py that can be used to install them.

Cython

The Ixml.etree and Ixml.objectify modules are written in Cython. Since we distribute the Cython-
generated .c files with Ixml releases, however, you do not need Cython to build lxml from the normal
release sources. We even encourage you to not install Cython for a normal release build, as the generated
C code can vary quite heavily between Cython versions, which may or may not generate correct code for
Ixml. The pre-generated release sources were tested and therefore are known to work.

So, if you want a reliable build of Ixml, we suggest to a) use a source release of Ixml and b) disable or
uninstall Cython for the build.

Only if you are interested in building lxml from a Subversion checkout (e.g. to test a bug fix that has not
been release yet) or if you want to be an Ixml developer, then you do need a working Cython installation.
You can use Easylnstall to install it:

easy_install Cython==0.11

Ixml currently requires Cython 0.11, later release versions should work as well.

Subversion

The Ixml package is developed in a Subversion repository. You can retrieve the current developer version
by calling:

svn co http://codespeak.net/svn/lxml/trunk lxml

This will create a directory 1xml and download the source into it. You can also browse the Subversion
repository through the web, use your favourite SVN client to access it, or browse the Subversion history.

173

http://peak.telecommunity.com/DevCenter/setuptools
http://www.cython.org
http://peak.telecommunity.com/DevCenter/EasyInstall
http://codespeak.net/svn/lxml/
http://codespeak.net/svn/lxml/
https://codespeak.net/viewvc/lxml/

CHAPTER 23. HOW TO BUILD LXML FROM SOURCE

Setuptools
Usually, building lxml is done through setuptools. Do a Subversion checkout (or download the source
tar-ball and unpack it) and then type:
python setup.py build
or:
python setup.py bdist_egg
If you want to test Ixml from the source directory, it is better to build it in-place like this:
python setup.py build_ext -i
or, in Unix-like environments:
make

If you get errors about missing header files (e.g. 1ibxml/xmlversion.h) then you need to make sure
the development packages of both libxml2 and libxslt are properly installed. Try passing the following
option to setup.py to make sure the right config is found:

python setup.py build --with-xslt-config=/path/to/xslt-config

If this doesn’t help, you may have to add the location of the header files to the include path like:
python setup.py build_ext -i -I /usr/include/libxml2

where the file is in /usr/include/1ibxml2/libxml/xmlversion.h

To use Ixml.etree in-place, you can place Ixml’s src directory on your Python module search path
(PYTHONPATH) and then import 1xml.etree to play with it:

cd 1xml

PYTHONPATH=src python

Python 2.5.1

Type "help", "copyright", "credits" or "license" for more information.
>>> from lxml import etree

>>>

To recompile after changes, note that you may have to run make clean or delete the file src/1xml/etree.c.
Distutils do not automatically pick up changes that affect files other than the main file src/1xml/etree.pyx.

Running the tests and reporting errors

The source distribution (tgz) and the Subversion repository contain a test suite for Ixml. You can run it
from the top-level directory:

python test.py

Note that the test script only tests the in-place build (see distutils building above), as it searches the
src directory. You can use the following one-step command to trigger an in-place build and test it:

make test

This also runs the ElementTree and cElementTree compatibility tests. To call them separately, make
sure you have Ixml on your PYTHONPATH first, then run:

174

CHAPTER 23. HOW TO BUILD LXML FROM SOURCE

python selftest.py
and:
python selftest2.py

If the tests give failures, errors, or worse, segmentation faults, we’d really like to know. Please contact
us on the mailing list, and please specify the version of Ixml, libxml2, libxslt and Python you were using,
as well as your operating system type (Linux, Windows, MacOs, ...).

Building an egg

This is the procedure to make an lxml egg for your platform (assuming that you have setuptools installed):

e Download the Ixml-x.y.tar.gz release. This contains the pregenerated C so that you can be sure
you build exactly from the release sources. Unpack them and cd into the resulting directory.

e python setup.py build

e If you're on a unixy platform, cd into build/1ib.your.platform and strip any .so file you find
there. This reduces the size of the egg considerably.

e python setup.py bdist_egg

This will put the egg into the dist directory.

Building Ixml on MacOS-X

Apple regularly ships new system releases with horribly outdated system libraries. This is specifically
the case for libxml2 and libxslt, where the system provided versions are too old to build lxml.

While the Unix environment in MacOS-X makes it relatively easy to install Unix/Linux style package
management tools and new software, it actually seems to be hard to get libraries set up for exclusive
usage that MacOS-X ships in an older version. Alternative distributions (like macports) install their
libraries in addition to the system libraries, but the compiler and the runtime loader on MacOS still sees
the system libraries before the new libraries. This can lead to undebuggable crashes where the newer
library seems to be loaded but the older system library is used.

Apple discourages static building against libraries, which would help working around this problem. Apple
does not ship static library binaries with its system and several package management systems follow this
decision. Therefore, building static binaries requires building the dependencies first. The setup.py
script does this automatically when you call it like this:

python setup.py build --static-deps

This will download and build the latest versions of libxml2 and libxslt from the official FTP download
site. If you want to use specific versions, or want to prevent any online access, you can download both
tar.gz release files yourself, place them into a subdirectory libs in the lxml distribution, and call
setup.py with the desired target versions like this:

python setup.py build --static-deps \
--1libxml2-version=2.7.3 \
--libxslt-version=1.1.24 \

sudo python setup.py install

175

http://codespeak.net/mailman/listinfo/lxml-dev
http://peak.telecommunity.com/DevCenter/setuptools

CHAPTER 23. HOW TO BUILD LXML FROM SOURCE

Instead of build, you can use any target, like bdist_egg if you want to use setuptools to build an
installable egg.

Note that this also works with Easylnstall. Since you can’t pass command line options in this case, you
have to use an environment variable instead:

STATIC_DEPS=true easy_install 1lxml

Some machines may require an additional run with “sudo” to install the package into the Python package
directory:

STATIC_DEPS=true sudo easy_install 1lxml

Static linking on Windows

Most operating systems have proper package management that makes installing current versions of
libxml2 and libxslt easy. The most famous exception is Microsoft Windows, which entirely lacks these
capabilities. It can therefore be interesting to statically link the external libraries into Ixml.etree to avoid
having to install them separately.

Download lxml and all required libraries to the same directory. The iconv, libxml2, libxslt, and zlib
libraries are all available from the ftp site ftp://ftp.zlatkovic.com/pub/libxml/.

Your directory should now have the following files in it (although most likely different versions):

iconv-1.9.1.win32.zip
1ibxml2-2.6.23.win32.zip
libxslt-1.1.15.win32.zip
1xml-1.0.0.tgz
z1ib-1.2.3.win32.zip

Now extract each of those files in the same directory. This should give you something like this:

iconv-1.9.1.win32/
iconv-1.9.1.win32.zip
1libxml2-2.6.23.win32/
1ibxml2-2.6.23.win32.zip
libxslt-1.1.15.win32/
libxslt-1.1.15.win32.zip
1xml-1.0.0/
1xml-1.0.0.tgz
zlib-1.2.3.win32/
z1lib-1.2.3.win32.zip

Go to the Ixml directory and edit the file setup.py. There should be a section near the top that looks
like this:

STATIC_INCLUDE_DIRS
STATIC_LIBRARY_DIRS
STATIC_CFLAGS = []

l
1

Change this section to something like this, but take care to use the correct version numbers:

STATIC_INCLUDE_DIRS = [
", . \\1libxml2-2.6.23.win32\\include",
", .\\libxslt-1.1.15.win32\\include",
", .\\zlib-1.2.3.win32\\include",

176

http://peak.telecommunity.com/DevCenter/EasyInstall
ftp://ftp.zlatkovic.com/pub/libxml/

CHAPTER 23. HOW TO BUILD LXML FROM SOURCE

", .\\iconv-1.9.1.win32\\include"
]

STATIC_LIBRARY_DIRS = [
", \\libxml2-2.6.23.win32\\1ib",
", \\libxslt-1.1.15.win32\\1ib",
", A\\zlib-1.2.3.win32\\1ib",
", \\iconv-1.9.1.win32\\1ib"
]

STATIC_CFLAGS = []

Add any CFLAGS you might consider useful to the third list. Now you should be able to pass the
--static option to setup.py and everything should work well. Try calling:

python setup.py bdist_wininst --static

This will create a windows installer in the pkg directory.

Building Debian packages from SVIN sources

Andreas Pakulat proposed the following approach.

apt-get source 1lxml

remove the unpacked directory

tar.gz the Ixml SVN version and replace the orig.tar.gz that lies in the directory
check mdbsum of created tar.gz file and place new sum and size in dsc file

do dpkg-source -x lxml-[VERSION].dsc and cd into the newly created directory

run dch -i and add a comment like “use trunk version”, this will increase the debian version number
so apt/dpkg won’t get confused

run dpkg-buildpackage -rfakeroot -us -uc to build the package

In case dpkg-buildpackage tells you that some dependecies are missing, you can either install them
manually or run apt-get build-dep lxml.

That will give you .deb packages in the parent directory which can be installed using dpkg -i.

177

http://codespeak.net/pipermail/lxml-dev/2006-May/001254.html

Chapter 24

How to read the source of Ixml

Author: Stefan Behnel

This document describes how to read the source code of Ixml and how to start working on it. You might
also be interested in the companion document that describes how to build Ixml from sources.

What is Cython?

Cython is the language that Ixml is written in. It is a very Python-like language that was specifically
designed for writing Python extension modules.

The reason why Cython (or actually its predecessor Pyrex at the time) was chosen as an implementation
language for Ixml, is that it makes it very easy to interface with both the Python world and external C
code. Cython generates all the necessary glue code for the Python API, including Python types, calling
conventions and reference counting. On the other side of the table, calling into C code is not more than
declaring the signature of the function and maybe some variables as being C types, pointers or structs,
and then calling it. The rest of the code is just plain Python code.

The Cython language is so close to Python that the Cython compiler can actually compile many, many
Python programs to C without major modifications. But the real speed gains of a C compilation come
from type annotations that were added to the language and that allow Cython to generate very efficient
C code.

Even if you are not familiar with Cython, you should keep in mind that a slow implementation of a
feature is better than none. So, if you want to contribute and have an idea what code you want to
write, feel free to start with a pure Python implementation. Chances are, if you get the change officially
accepted and integrated, others will take the time to optimise it so that it runs fast in Cython.

Where to start?

First of all, read how to build Ixml from sources to learn how to retrieve the source code from the
Subversion repository and how to build it. The source code lives in the subdirectory src of the checkout.

The main extension modules in lxml are 1xml.etree and lxml.objectify. All main modules have
the file extension .pyx, which shows the descendence from Pyrex. As usual in Python, the main files
start with a short description and a couple of imports. Cython distinguishes between the run-time
import statement (as known from Python) and the compile-time cimport statement, which imports C

178

http://codespeak.net/lxml/
http://cython.org/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

CHAPTER 24. HOW TO READ THE SOURCE OF LXML

declarations, either from external libraries or from other Cython modules.

Concepts

Ixml’s tree API is based on proxy objects. That means, every Element object (or rather _Element object)
is a proxy for a libxml2 node structure. The class declaration is (mainly):

cdef class _Element:
cdef _Document _doc
cdef xmlNode* _c_node

It is a naming convention that C variables and C level class members that are passed into libxml2 start
with a prefixed c_ (commonly libxml2 struct pointers), and that C level class members are prefixed
with an underscore. So you will often see names like c_doc for an xmlDoc* variable (or c_node for an
xmlNodex*), or the above _c_node for a class member that points to an xmlNode struct (or _c_doc for
an xmlDoc*).

It is important to know that every proxy in Ixml has a factory function that properly sets up C level
members. Proxy objects must never be instantiated outside of that factory. For example, to instantiate
an _Element object or its subclasses, you must always call its factory function:

cdef xmlNode* c_node
cdef _Document doc
cdef _Element element

element = _elementFactory(doc, c_node)

A good place to see how this factory is used are the Element methods getparent (), getnext() and
getprevious().

The documentation

An important part of Ixml is the documentation that lives in the doc directory. It describes a large part
of the API and comprises a lot of example code in the form of doctests.

The documentation is written in the ReStructured Text format, a very powerful text markup language
that looks almost like plain text. It is part of the docutils package.

The project web site of Ixml is completely generated from these text documents. Even the side menu is
just collected from the table of contents that the ReST processor writes into each HTML page. Obviously,
we use lxml for this.

The easiest way to generate the HTML pages is by calling:
make html

This will call the script doc/mkhtml.py to run the ReST processor on the files. After generating an
HTML page the script parses it back in to build the side menu, and injects the complete menu into each
page at the very end.

Running the make command will also generate the API documentation if you have epydoc installed.
The epydoc package will import and introspect the extension modules and also introspect and parse
the Python modules of Ixml. The aggregated information will then be written out into an HTML
documentation site.

179

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
http://codespeak.net/lxml/
http://epydoc.sourceforge.net/

CHAPTER 24. HOW TO READ THE SOURCE OF LXML

Ixml.etree

The main module, 1xml .etree, is in the file Ixml.etree.pyx. It implements the main functions and types
of the ElementTree API, as well as all the factory functions for proxies. It is the best place to start if
you want to find out how a specific feature is implemented.

At the very end of the file, it contains a series of include statements that merge the rest of the imple-
mentation into the generated C code. Yes, you read right: no importing, no source file namespacing,
just plain good old include and a huge C code result of more than 100,000 lines that we throw right into
the C compiler.

The main include files are:

apihelpers.pxi Private C helper functions. Except for the factory functions, most of the little functions
that are used all over the place are defined here. This includes things like reading out the text
content of a libxml2 tree node, checking input from the API level, creating a new Element node or
handling attribute values. If you want to work on the Ixml code, you should keep these functions
in the back of your head, as they will definitely make your life easier.

classlookup.pxi Element class lookup mechanisms. The main API and engines for those who want to
define custom Element classes and inject them into lxml.

docloader.pxi Support for custom document loaders. Base class and registry for custom document
resolvers.

extensions.pxi Infrastructure for extension functions in XPath/XSLT, including XPath value conver-
sion and function registration.

iterparse.pxi Incremental XML parsing. An iterator class that builds iterparse events while parsing.

nsclasses.pxi Namespace implementation and registry. The registry and engine for Element classes
that use the ElementNamespaceClassLookup scheme.

parser.pxi Parsers for XML and HTML. This is the main parser engine. It’s the reason why you can
parse a document from various sources in two lines of Python code. It’s definitely not the right
place to start reading lxml’s soure code.

parsertarget.pxi An ElementTree compatible parser target implementation based on the SAX2 inter-
face of libxml2.

proxy.pxi Very low-level functions for memory allocation/deallocation and Element proxy handling.
Ignoring this for the beginning will safe your head from exploding.

public-api.pxi The set of C functions that are exported to other extension modules at the C level. For
example, 1xml.objectify makes use of these. See the C-level API documentation.

readonlytree.pxi A separate read-only implementation of the Element API. This is used in places
where non-intrusive access to a tree is required, such as the PythonElementClassLookup or XSLT
extension elements.

saxparser.pxi SAX-like parser interfaces as known from ElementTree’s TreeBuilder.
serializer.pxi XML output functions. Basically everything that creates byte sequences from XML trees.
xinclude.pxi XInclude support.

xmlerror.pxi Error log handling. All error messages that libxml2 generates internally walk through
the code in this file to end up in Ixml’s Python level error logs.

At the end of the file, you will find a long list of named error codes. It is generated from the libxmlI2

180

http://codespeak.net/svn/lxml/trunk/src/lxml/lxml.etree.pyx

CHAPTER 24. HOW TO READ THE SOURCE OF LXML

HTML documentation (using Ixml, of course). See the script update-error-constants.py for this.
xmlid.pxi XMLID and IDDict, a dictionary-like way to find Elements by their XML-ID attribute.
xpath.pxi XPath evaluators.
xslt.pxi XSL transformations, including the XSLT class, document lookup handling and access control.

The different schema languages (DTD, RelaxNG, XML Schema and Schematron) are implemented in
the following include files:

o dtd.pxi
e relaxng.pxi
e schematron.pxi

e xmlschema.pxi

Python modules

The 1xml package also contains a number of pure Python modules:

builder.py The E-factory and the ElementBuilder class. These provide a simple interface to XML tree
generation.

cssselect.py A CSS selector implementation based on XPath. The main class is called CSSSelector.
doctestcompare.py A relaxed comparison scheme for XML /HTML markup in doctest.
ElementInclude.py XlInclude-like document inclusion, compatible with ElementTree.
__elementpath.py XPath-like path language, compatible with ElementTree.

sax.py SAX2 compatible interfaces to copy lxml trees from/to SAX compatible tools.

usedoctest.py Wrapper module for doctestcompare.py that simplifies its usage from inside a doctest.

Ixml.objectify

A Cython implemented extension module that uses the public C-API of Ixml.etree. It provides a Python
object-like interface to XML trees. The implementation resides in the file Ixml.objectify.pyx.

Ixml.html

A specialised toolkit for HTML handling, based on lxml.etree. This is implemented in pure Python.

181

http://codespeak.net/svn/lxml/trunk/src/lxml/lxml.objectify.pyx

Chapter 25

Credits

Main contributors

Stefan Behnel main developer and maintainer

Martijn Faassen creator of Ixml and initial main developer

Ian Bicking creator and maintainer of Ixml.html

Holger Joukl bug reports, feedback and development on lxml.objectify
Sidnei da Silva official MS Windows builds

Marc-Antoine Parent XPath extension function help and patches
Olivier Grisel improved (c)ElementTree compatibility patches, website improvements.
Kasimier Buchcik help with specs and libxml2

Florian Wagner help with copy.deepcopy support, bug reporting
Emil Kroymann help with encoding support, bug reporting

Paul Everitt bug reporting, feedback on API design

Victor Ng Discussions on memory management strategies, vlibxml2
Robert Kern feedback on API design

Andreas Pakulat rpath linking support, doc improvements

David Sankel building statically on Windows

Marcin Kasperski PDF documentation generation

. and lots of other people who contributed to Ixml by reporting bugs, discussing its functionality or
blaming the docs for the bugs in their code. Thank you all, user feedback and discussions form a very
important part of an Open Source project!

182

CHAPTER 25. CREDITS

Special thanks goes to:

Daniel Veillard and the libxml2 project for a great XML library.

Fredrik Lundh for ElementTree, its API, and the competition through cElementTree.

Greg Ewing (Pyrex) and Robert Bradshaw (Cython) for the binding technology.

the codespeak crew, in particular Philipp von Weitershausen and Holger Krekel for hosting lxml
on codespeak.net

183

Appendix A

Changes

2.2.6 (2010-03-02)

Bugs fixed

e Fixed several Python 3 regressions by building with Cython 0.11.3.

2.2.5 (2010-02-28)

Features added

e Support for running XSLT extension elements on the input root node (e.g. in a template matching

on 44/?7) .

Bugs fixed

e Crash in XPath evaluation when reading smart strings from a document other than the original
context document.

e Support recent versions of html5lib by not requiring its XHTMLParser in htmlparser.py anymore.
e Manually instantiating the custom element classes in 1xml.objectify could crash.

e Invalid XML text characters were not rejected by the API when they appeared in unicode strings
directly after non-ASCII characters.

e Ixmlhtml.open http urllib() did not work in Python 3.

e The functions strip_tags() and strip_elements() in 1xml.etree did not remove all occurrences
of a tag in all cases.

e Crash in XSLT extension elements when the XSLT context node is not an element.

184

APPENDIX A. CHANGES

2.2.4 (2009-11-11)

Bugs fixed

e Static build of libxml2/libxslt was broken.

2.2.3 (2009-10-30)

Features added

Bugs fixed

e The resolve_entities option did not work in the incremental feed parser.

e Looking up and deleting attributes without a namespace could hit a namespaced attribute of the
same name instead.

e Late errors during calls to SubElement() (e.g. attribute related ones) could leave a partially
initialised element in the tree.

e Modifying trees that contain parsed entity references could result in an infinite loop.

e ObjectifiedElement.__setattr__ created an empty-string child element when the attribute value
was rejected as a non-unicode/non-ascii string

e Syntax errors in 1xml.cssselect could result in misleading error messages.

e Invalid syntax in CSS expressions could lead to an infinite loop in the parser of 1xml.cssselect.
e (CSS special character escapes were not properly handled in 1xml.cssselect.

e CSS Unicode escapes were not properly decoded in 1xml.cssselect.

e Select options in HTML forms that had no explicit value attribute were not handled correctly. The
HTML standard dictates that their value is defined by their text content. This is now supported
by lxml.html.

e XPath raised a TypeError when finding CDATA sections. This is now fully supported.
e Calling help(1lxml.objectify) didn’t work at the prompt.

e The ElementMaker in Ixml.objectify no longer defines the default namespaces when annotation is
disabled.

e Feed parser failed to honour the 'recover’ option on parse errors.

e Diverting the error logging to Python’s logging system was broken.

185

APPENDIX A. CHANGES

Other changes

2.2.2 (2009-06-21)

Features added

e New helper functions strip_attributes(), strip_elements(), strip_tags() in Ixml.etree to
remove attributes/subtrees/tags from a subtree.

Bugs fixed

e Namespace cleanup on subtree insertions could result in missing namespace declarations (and
potentially crashes) if the element defining a namespace was deleted and the namespace was not
used by the top element of the inserted subtree but only in deeper subtrees.

e Raising an exception from a parser target callback didn’t always terminate the parser.

e Only {true, false, 1, 0} are accepted as the lexical representation for BoolElement ({True, False,
T, F, t, f} not any more), restoring lxml <= 2.0 behaviour.

Other changes

2.2.1 (2009-06-02)

Features added

e Injecting default attributes into a document during XML Schema validation (also at parse time).

e Pass huge_tree parser option to disable parser security restrictions imposed by libxml2 2.7.

Bugs fixed

e The script for statically building libxml2 and libxslt didn’t work in Py3.

e XMLSchema () also passes invalid schema documents on to libxml2 for parsing (which could lead to
a crash before release 2.6.24).

Other changes
2.2 (2009-03—21)

Features added

e Support for standalone flag in XML declaration through tree.docinfo.standalone and by pass-
ing standalone=True/False on serialisation.

186

APPENDIX A. CHANGES

Bugs fixed

e Crash when parsing an XML Schema with external imports from a filename.

2.2betad (2009-02-27)

Features added

e Support strings and instantiable Element classes as child arguments to the constructor of custom
Element classes.

e GZip compression support for serialisation to files and file-like objects.

Bugs fixed

e Deep-copying an ElementTree copied neither its sibling PIs and comments nor its internal /external
DTD subsets.

e Soupparser failed on broken attributes without values.
e Crash in XSLT when overwriting an already defined attribute using xs1l:attribute.

e Crash bug in exception handling code under Python 3. This was due to a problem in Cython, not
Ixml itself.

e 1xml.html.FormElement._name () failed for non top-level forms.

e TAG special attribute in constructor of custom Element classes was evaluated incorrectly.

Other changes

e Official support for Python 3.0.1.

e Element.findtext() now returns an empty string instead of None for Elements without text
content.

2.2beta3 (2009-02-17)
Features added

e XSLT.strparam() class method to wrap quoted string parameters that require escaping.

Bugs fixed

e Memory leak in XPath evaluators.

e Crash when parsing indented XML in one thread and merging it with other documents parsed in
another thread.

187

APPENDIX A. CHANGES

e Setting the base attribute in 1xml.objectify from a unicode string failed.
e Fixes following changes in Python 3.0.1.

e Minor fixes for Python 3.

Other changes

e The global error log (which is copied into the exception log) is now local to a thread, which fixes
some race conditions.

e More robust error handling on serialisation.

2.2beta2 (2009-01-25)

Bugs fixed

e Potential memory leak on exception handling. This was due to a problem in Cython, not lxml
itself.

e iter_links (and related link-rewriting functions) in 1xml.html would interpret CSS like ur1("1link")
incorrectly (treating the quotation marks as part of the link).

e Failing import on systems that have an io module.

2.1.5 (2009-01-06)

Bugs fixed

e Potential memory leak on exception handling. This was due to a problem in Cython, not Ixml
itself.

e Failing import on systems that have an io module.

2.2betal (2008-12-12)

Features added

e Allow 1xml.html.diff.htmldiff to accept Element objects, not just HTML strings.

Bugs fixed

e Crash when using an XPath evaluator in multiple threads.

e Fixed missing whitespace before Link: ... in 1xml.html.diff.

188

APPENDIX A. CHANGES

Other changes

e Export 1xml.html.parse.

2.1.4 (2008-12-12)

Bugs fixed

e Crash when using an XPath evaluator in multiple threads.

2.0.11 (2008-12-12)

Bugs fixed

e Crash when using an XPath evaluator in multiple threads.

2.2alphal (2008-11-23)

Features added

e Support for XSLT result tree fragments in XPath/XSLT extension functions.
e QName objects have new properties namespace and localname.
e New options for exclusive C14N and C14N without comments.

e Instantiating a custom Element classes creates a new Element.

Bugs fixed

e XSLT didn’t inherit the parse options of the input document.
e 0-bytes could slip through the API when used inside of Unicode strings.

e With 1xml.html.clean.autolink, links with balanced parenthesis, that end in a parenthesis, will
be linked in their entirety (typical with Wikipedia links).

189

APPENDIX A. CHANGES

Other changes

2.1.3 (2008-11-17)

Features added

Bugs fixed

e Ref-count leaks when Ixml enters a try-except statement while an outside exception lives in
sys.exc_*(). This was due to a problem in Cython, not Ixml itself.

e Parser Unicode decoding errors could get swallowed by other exceptions.
e Name/import errors in some Python modules.

e Internal DTD subsets that did not specify a system or public ID were not serialised and did not
appear in the docinfo property of ElementTrees.

e Fix a pre-Py3k warning when parsing from a gzip file in Py2.6.

o Test suite fixes for libxml2 2.7.

e Resolver.resolve _string() did not work for non-ASCII byte strings.
e Resolver.resolve _file() was broken.

e Overriding the parser encoding didn’t work for many encodings.

Other changes

2.0.10 (2008-11-17)

Bugs fixed

e Ref-count leaks when Ixml enters a try-except statement while an outside exception lives in
sys.exc_ *(). This was due to a problem in Cython, not Ixml itself.

2.1.2 (2008-09-05)

Features added

e Ixml.etree now tries to find the absolute path name of files when parsing from a file-like object.
This helps custom resolvers when resolving relative URLs, as lixbml2 can prepend them with the
path of the source document.

Bugs fixed

e Memory problem when passing documents between threads.

190

APPENDIX A. CHANGES

e Target parser did not honour the recover option and raised an exception instead of calling
.close() on the target.

Other changes

2.0.9 (2008-09-05)

Bugs fixed

e Memory problem when passing documents between threads.

e Target parser did not honour the recover option and raised an exception instead of calling
.close() on the target.

2.1.1 (2008-07-24)

Features added

Bugs fixed

e Crash when parsing XSLT stylesheets in a thread and using them in another.

e Encoding problem when including text with ElementInclude under Python 3.

Other changes

2.0.8 (2008-07-24)

Features added

e 1xml.html.rewrite_links() strips links to work around documents with whitespace in URL
attributes.

Bugs fixed

e Crash when parsing XSLT stylesheets in a thread and using them in another.

e (CSS selector parser dropped remaining expression after a function with parameters.

191

APPENDIX A. CHANGES

Other changes
2.1 (2008-07-09)

Features added

e Smart strings can be switched off in XPath (smart_strings keyword option).

e 1xml.html.rewrite_links() strips links to work around documents with whitespace in URL
attributes.

Bugs fixed

e Custom resolvers were not used for XMLSchema includes/imports and XInclude processing.

e (CSS selector parser dropped remaining expression after a function with parameters.

Other changes

e objectify.enableRecursiveStr() was removed, use objectify.enable_recursive_str() in-
stead

e Speed-up when running XSLTs on documents from other threads

2.0.7 (2008-06-20)

Features added

e Pickling ElementTree objects in Ixml.objectify.

Bugs fixed

Descending dot-separated classes in CSS selectors were not resolved correctly.

ElementTree.parse() didn’t handle target parser result.

Potential threading problem in XInclude.

Crash in Element class lookup classes when the init () method of the super class is not called
from Python subclasses.

Other changes

e Non-ASCII characters in attribute values are no longer escaped on serialisation.

192

APPENDIX A. CHANGES

2.1beta3 (2008-06-19)

Features added

e Major overhaul of tools/xpathgrep.py script.
e Pickling ElementTree objects in Ixml.objectify.
e Support for parsing from file-like objects that return unicode strings.

e New function etree.cleanup_namespaces(el) that removes unused namespace declarations from
a (sub)tree (experimental).

e XSLT results support the buffer protocol in Python 3.

e Polymorphic functions in 1xml.html that accept either a tree or a parsable string will return either
a UTF-8 encoded byte string, a unicode string or a tree, based on the type of the input. Previously,
the result was always a byte string or a tree.

e Support for Python 2.6 and 3.0 beta.

e File name handling now uses a heuristic to convert between byte strings (usually filenames) and
unicode strings (usually URLs).

e Parsing from a plain file object frees the GIL under Python 2.x.
e Running iterparse() on a plain file (or filename) frees the GIL on reading under Python 2.x.
e Conversion functions html_to_xhtml() and xhtml_to_html () in Ixmlhtml (experimental).

e Most features in Ixml.html work for XHTML namespaced tag names (experimental).

Bugs fixed

e ElementTree.parse() didn’t handle target parser result.

e Crash in Element class lookup classes when the _ init () method of the super class is not called
from Python subclasses.

e A number of problems related to unicode/byte string conversion of filenames and error messages
were fixed.

e Building on MacOS-X now passes the “flat _namespace” option to the C compiler, which reportedly
prevents build quirks and crashes on this platform.

e Windows build was broken.

e Rare crash when serialising to a file object with certain encodings.

Other changes

e Non-ASCII characters in attribute values are no longer escaped on serialisation.

e Passing non-ASCII byte strings or invalid unicode strings as .tag, namespaces, etc. will result in a
ValueError instead of an AssertionError (just like the tag well-formedness check).

e Up to several times faster attribute access (i.e. tree traversal) in lxml.objectify.

193

APPENDIX A. CHANGES

2.0.6 (2008-05-31)

Features added

Bugs fixed

e Incorrect evaluation of el.find("tagl[child]").
e Windows build was broken.

e Moving a subtree from a document created in one thread into a document of another thread could
crash when the rest of the source document is deleted while the subtree is still in use.

e Rare crash when serialising to a file object with certain encodings.

Other changes

e Ixml should now build without problems on MacOS-X.

2.1beta2 (2008-05-02)

Features added

e All parse functions in Ixml.html take a parser keyword argument.

e Ixml.html has a new parser class XHTMLParser and a module attribute xhtml_parser that provide
XML parsers that are pre-configured for the Ixml.html package.

Bugs fixed

e Moving a subtree from a document created in one thread into a document of another thread could
crash when the rest of the source document is deleted while the subtree is still in use.

e Passing an nsmap when creating an Element will no longer strip redundantly defined namespace
URIs. This prevented the definition of more than one prefix for a namespace on the same Element.

Other changes

o If the default namespace is redundantly defined with a prefix on the same Element, the prefix will
now be preferred for subelements and attributes. This allows users to work around a problem in
libxml2 where attributes from the default namespace could serialise without a prefix even when
they appear on an Element with a different namespace (i.e. they would end up in the wrong
namespace).

194

APPENDIX A. CHANGES

2.0.5 (2008-05-01)

Features added

Bugs fixed

e Resolving to a filename in custom resolvers didn’t work.

e Ixml did not honour libxslt’s second error state “STOPPED”, which let some XSLT errors pass
silently.

e Memory leak in Schematron with libxml2 >= 2.6.31.

Other changes

2.1betal (2008-04-15)

Features added

e Error logging in Schematron (requires libxml2 2.6.32 or later).

e Parser option strip_cdata for normalising or keeping CDATA sections. Defaults to True as before,
thus replacing CDATA sections by their text content.

e CDATA() factory to wrap string content as CDATA section.

Bugs fixed

e Resolving to a filename in custom resolvers didn’t work.

e Ixml did not honour libxslt’s second error state “STOPPED”, which let some XSLT errors pass
silently.

e Memory leak in Schematron with libxml2 >= 2.6.31.

e Ixml.etree accepted non well-formed namespace prefix names.

Other changes

e Major cleanup in internal moveNodeToDocument () function, which takes care of namespace cleanup
when moving elements between different namespace contexts.

e New Elements created through the makeelement () method of an HTML parser or through Ixml.html
now end up in a new HTML document (doctype HTML 4.01 Transitional) instead of a generic XML
document. This mostly impacts the serialisation and the availability of a DTD context.

195

APPENDIX A. CHANGES

2.0.4 (2008-04-13)

Features added

Bugs fixed

e Hanging thread in conjunction with GTK threading.
e Crash bug in iterparse when moving elements into other documents.
e HTML elements’ .cssselect() method was broken.

e ElementTree.find*() didn’t accept QName objects.

Other changes

2.1alphal (2008-03-27)

Features added

e New event types 'comment’ and ’pi’ in iterparse().

e XSLTAccessControl instances have a property options that returns a dict of access configuration
options.

e Constant instances DENY_ALL and DENY_WRITE on XSLTAccessControl class.
e Extension elements for XSLT (experimental!)
e Element.base property returns the xml:base or HTML base URL of an Element.

e docinfo.URL property is writable.

Bugs fixed

e Default encoding for plain text serialisation was different from that of XML serialisation (UTF-8
instead of ASCII).

Other changes

e Minor API speed-ups.

e The benchmark suite now uses tail text in the trees, which makes the absolute numbers incompa-
rable to previous results.

e Generating the HTML documentation now requires Pygments, which is used to enable syntax
highlighting for the doctest examples.

Most long-time deprecated functions and methods were removed:
e etree.clearErrorLog(), use etree.clear_error_log()

e etree.useGlobalPythonLog(), use etree.use_global_python_log()

196

http://pygments.org/

APPENDIX A. CHANGES

e etree.ElementClassLookup.setFallback(), use etree.ElementClassLookup.set_fallback()
e etree.getDefaultParser(), use etree.get_default_parser()

e etree.setDefaultParser(), use etree.set_default_parser()

e etree.setElementClassLookup(), use etree.set_element_class_lookup()

Note that parser.setElementClassLookup () has not been removed yet, although parser.set_element_class_lo
should be used instead.

e xpath_evaluator.registerNamespace(), use xpath_evaluator.register_namespace()
e xpath_evaluator.registerNamespaces(), use xpath_evaluator.register_namespaces ()
e objectify.setPytypeAttributeTag, use objectify.set_pytype_attribute_tag

e objectify.setDefaultParser(), use objectify.set_default_parser()

2.0.3 (2008-03-26)

Features added

e soupparser.parse() allows passing keyword arguments on to BeautifulSoup.

e fromstring() method in 1xml.html.soupparser.

Bugs fixed

e 1xml.html.diff didn’t treat empty tags properly (e.g.,
).
e Handle entity replacements correctly in target parser.
e Crash when using iterparse() with XML Schema validation.

e The BeautifulSoup parser (soupparser.py) did not replace entities, which made them turn up in
text content.

e Attribute assignment of custom PyTypes in objectify could fail to correctly serialise the value to a
string.

Other changes

e 1xml.html.ElementSoup was replaced by a new module lxml.html.soupparser with a more
consistent API. The old module remains for compatibility with ElementTree’s own ElementSoup
module.

o Setting the XSLT CONFIG and XML2 CONFIG environment variables at build time will let
setup.py pick up the xm12-config and xslt-config scripts from the supplied path name.

e Passing --with-xml2-config=/path/to/xml2-config to setup.py will override the xm12-config
script that is used to determine the C compiler options. The same applies for the --with-xslt-config
option.

197

APPENDIX A. CHANGES

2.0.2 (2008-02-22)

Features added

e Support passing base_url to file parser functions to override the filename of the file(-like) object.

Bugs fixed

e The prefix for objectify’s pytype namespace was missing from the set of default prefixes.
e Memory leak in Schematron (fixed only for libxml2 2.6.31+).
e Error type names in RelaxNG were reported incorrectly.

e Slice deletion bug fixed in objectify.

Other changes

e Enabled doctests for some Python modules (especially 1xml.html).
e Add a method argument to 1xml.html.tostring() (method="xml" for XHTML output).

e Make it clearer that methods like 1xml.html.fromstring() take a base_url argument.

2.0.1 (2008-02-13)

Features added

e Child iteration in 1xml.pyclasslookup.

e Loads of new docstrings reflect the signature of functions and methods to make them visible in
API docs and help()

Bugs fixed

e The module 1xml.html.builder was duplicated as 1xml.htmlbuilder

e Form elements would return None for form.fields.keys() if there was an unnamed input field.
Now unnamed input fields are completely ignored.

e Setting an element slice in objectify could insert slice-overlapping elements at the wrong position.

Other changes

e The generated API documentation was cleaned up and disburdened from non-public classes etc.

e The previously public module 1xml.html.setmixin was renamed to 1xml.html._setmixin as it
is not an official part of Ixml. If you want to use it, feel free to copy it over to your own source
base.

198

APPENDIX A. CHANGES

e Passing --with-xslt-config=/path/to/xslt-config to setup.py will override the xslt-config
script that is used to determine the C compiler options.

2.0 (2008-02-01)

Features added

o Passing the unicode type as encoding to tostring() will serialise to unicode. The tounicode ()
function is now deprecated.

e XMLSchema() and RelaxNG() can parse from StringlO.
e makeparser () function in 1xml.objectify to create a new parser with the usual objectify setup.

e Plain ASCII XPath string results are no longer forced into unicode objects as in 2.0betal, but are
returned as plain strings as before.

e All XPath string results are ’smart’ objects that have a getparent() method to retrieve their
parent Element.

e with_tail option in serialiser functions.
e More accurate exception messages in validator creation.
e Parse-time XML schema validation (schema parser keyword).

e XPath string results of the text () function and attribute selection make their Element container
accessible through a getparent () method. As a side-effect, they are now always unicode objects
(even ASCII strings).

e XSLT objects are usable in any thread - at the cost of a deep copy if they were not created in that
thread.

e Invalid entity names and character references will be rejected by the Entity() factory.
e entity.text returns the textual representation of the entity, e.g. &.

e New properties position and code on ParseError exception (as in ET 1.3)

e Rich comparison of element.attrib proxies.

e ElementTree compatible TreeBuilder class.

e Use default prefixes for some common XML namespaces.

e 1lxml.html.clean.Cleaner now allows for a host_whitelist, and two overridable methods: allow_embedded_url (
url) and the more general allow_element(el).

e Extended slicing of Elements as in element [1:-1:2], both in etree and in objectify

e Resolvers can now provide a base_url keyword argument when resolving a document as string
data.

e When using 1xml.doctestcompare you can give the doctest option NOPARSE_MARKUP (like # doctest:
+NOPARSE_MARKUP) to suppress the special checking for one test.

e Separate feed_error_log property for the feed parser interface. The normal parser interface and
iterparse continue to use error_log.

199

APPENDIX A. CHANGES

The normal parsers and the feed parser interface are now separated and can be used concurrently
on the same parser instance.

fromstringlist() and tostringlist() functions as in ElementTree 1.3

iterparse() accepts an html boolean keyword argument for parsing with the HTML parser (note
that this interface may be subject to change)

Parsers accept an encoding keyword argument that overrides the encoding of the parsed documents.
New C-API function hasChild () to test for children

annotate() function in objectify can annotate with Python types and XSI types in one step.
Accompanied by xsiannotate() and pyannotate().

ET.write(), tostring() and tounicode() now accept a keyword argument method that can be
one of 'xml’ (or None), ’html’ or ’text’ to serialise as XML, HTML or plain text content.

iterfind () method on Elements returns an iterator equivalent to findall()
itertext () method on Elements

Setting a QName object as value of the .text property or as an attribute will resolve its prefix in
the respective context

ElementTree-like parser target interface as described in http://effbot.org/elementtree/elementtree-
xmlparser.htm

ElementTree-like feed parser interface on XMLParser and HTMLParser (feed() and close()
methods)

Reimplemented objectify.E for better performance and improved integration with objectify. Pro-
vides extended type support based on registered PyTypes.

XSLT objects now support deep copying

New makeSubElement () C-API function that allows creating a new subelement straight with text,
tail and attributes.

XPath extension functions can now access the current context node (context.context_node)
and use a context dictionary (context.eval_context) from the context provided in their first
parameter

HTML tag soup parser based on BeautifulSoup in 1xml.html.ElementSoup

New module 1xml.doctestcompare by lan Bicking for writing simplified doctests based on XML/HTML
output. Use by importing 1xml.usedoctest or 1xml.html.usedoctest from within a doctest.

New module 1xml.cssselect by Ian Bicking for selecting Elements with CSS selectors.
New package 1xml.html written by Ian Bicking for advanced HTML treatment.

Namespace class setup is now local to the ElementNamespaceClassLookup instance and no longer
global.

Schematron validation (incomplete in libxml2)

Additional stringify argument to objectify.PyType () takes a conversion function to strings to
support setting text values from arbitrary types.

Entity support through an Entity factory and element classes. XML parsers now have a resolve_entities
keyword argument that can be set to False to keep entities in the document.

200

http://effbot.org/elementtree/elementtree-xmlparser.htm
http://effbot.org/elementtree/elementtree-xmlparser.htm

APPENDIX A. CHANGES

e column field on error log entries to accompany the line field

e Error specific messages in XPath parsing and evaluation NOTE: for evaluation errors, you will
now get an XPathEvalError instead of an XPathSyntaxError. To catch both, you can except on
XPathError

e The regular expression functions in XPath now support passing a node-set instead of a string

e Extended type annotation in objectify: new xsiannotate() function

e EXSLT RegExp support in standard XPath (not only XSLT)

Bugs fixed

e Missing import in 1xml.html.clean.

e Some Python 2.4-isms prevented lxml from building/running under Python 2.3.

e XPath on ElementTrees could crash when selecting the virtual root node of the ElementTree.
e Compilation --without-threading was buggy in alphab/6.

e Memory leak in the parse() function.

e Minor bugs in XSLT error message formatting.

e Result document memory leak in target parser.

e Target parser failed to report comments.

e In the 1xml.html iter_links method, links in <object> tags weren’t recognized. (Note: plugin-
specific link parameters still aren’t recognized.) Also, the <embed> tag, though not standard, is
now included in 1xml.html.defs.special_inline_tags.

e Using custom resolvers on XSLT stylesheets parsed from a string could request ill-formed URLs.

e With 1xml.doctestcompare if you do <tag xmlns="...">in your output, it will then be namespace-
neutral (before the ellipsis was treated as a real namespace).

e AttributeError in feed parser on parse errors

e XML feed parser setup problem

e Type annotation for unicode strings in DataElement ()

e Ixml failed to serialise namespace declarations of elements other than the root node of a tree
e Race condition in XSLT where the resolver context leaked between concurrent XSLT calls

e Ixml.etree did not check tag/attribute names

e The XML parser did not report undefined entities as error

e The text in exceptions raised by XML parsers, validators and XPath evaluators now reports the
first error that occurred instead of the last

e Passing ” as XPath namespace prefix did not raise an error

e Thread safety in XPath evaluators

201

APPENDIX A. CHANGES

Other changes

e Exceptions carry only the part of the error log that is related to the operation that caused the
€error.

e XMLSchema() and RelaxNG() now enforce passing the source file/filename through the file key-
word argument.

e The test suite now skips most doctests under Python 2.3.

e make clean no longer removes the .c files (use make realclean instead)

e Minor performance tweaks for Element instantiation and subelement creation

e Various places in the XPath, XSLT and iteration APIs now require keyword-only arguments.

e The argument order in element.itersiblings () was changed to match the order used in all other
iteration methods. The second argument ('preceding’) is now a keyword-only argument.

e The getiterator() method on Elements and ElementTrees was reverted to return an iterator as
it did in Ixml 1.x. The ET API specification allows it to return either a sequence or an iterator, and
it traditionally returned a sequence in ET and an iterator in Ixml. However, it is now deprecated
in favour of the iter () method, which should be used in new code wherever possible.

e The ’pretty printed’ serialisation of ElementTree objects now inserts newlines at the root level
between processing instructions, comments and the root tag.

e A ’pretty printed’ serialisation is now terminated with a newline.

e Second argument to 1xml.etree.Extension() helper is no longer required, third argument is now
a keyword-only argument ns.

e 1xml.html.tostring takes an encoding argument.

e The module source files were renamed to “Ixml.*.pyx”, such as “Ixml.etree.pyx”. This was changed
for consistency with the way Pyrex commonly handles package imports. The main effect is that
classes now know about their fully qualified class name, including the package name of their module.

e Keyword-only arguments in some API functions, especially in the parsers and serialisers.

e Tag name validation in Ixml.etree (and lxml.html) now distinguishes between HTML tags and
XML tags based on the parser that was used to parse or create them. HTML tags no longer reject
any non-ASCII characters in tag names but only spaces and the special characters <>&/"’.

e Ixml.etree now emits a warning if you use XPath with libxml2 2.6.27 (which can crash on certain
XPath errors)

e Type annotation in objectify now preserves the already annotated type by default to prevent loosing
type information that is already there.

e clement.getiterator () returns a list, use element.iter() to retrieve an iterator (ElementTree
1.3 compatible behaviour)

e objectify.PyType for None is now called “NoneType”

e el.getiterator() renamed to el.iter(), following ElementTree 1.3 - original name is still avail-
able as alias

e In the public C-API, findOrBuildNodeNs () was replaced by the more generic f indOrBuildNodeNsPrefix

e Major refactoring in XPath/XSLT extension function code

202

APPENDIX A. CHANGES

e Network access in parsers disabled by default

1.3.6 (2007-10-29)

Bugs fixed

e Backported decref crash fix from 2.0

e Well hidden free-while-in-use crash bug in ObjectPath

Other changes

o The test suites now run gc.collect() in the tearDown() methods. While this makes them take
a lot longer to run, it also makes it easier to link a specific test to garbage collection problems that
would otherwise appear in later tests.

1.3.5 (2007-10-22)

Features added

Bugs fixed

e Ixml.etree could crash when adding more than 10000 namespaces to a document

e Ixml failed to serialise namespace declarations of elements other than the root node of a tree

1.3.4 (2007-08-30)

Features added

e The ElementMaker in lxml.builder now accepts the keyword arguments namespace and nsmap
to set a namespace and nsmap for the Elements it creates.

e The docinfo on ElementTree objects has new properties internalDTD and externalDTD that
return a DTD object for the internal or external subset of the document respectively.

e Serialising an ElementTree now includes any internal DTD subsets that are part of the document,
as well as comments and Pls that are siblings of the root node.

Bugs fixed

e Parsing with the no_network option could fail

203

APPENDIX A. CHANGES

Other changes

e Ixml now raises a TagNameWarning about tag names containing ’:’ instead of an Error as 1.3.3 did.
The reason is that a number of projects currently misuse the previous lack of tag name validation
to generate namespace prefixes without declaring namespaces. Apart from the danger of generating
broken XML this way, it also breaks most of the namespace-aware tools in XML, including XPath,
XSLT and validation. Ixml 1.3.x will continue to support this bug with a Warning, while Ixml 2.0
will be strict about well-formed tag names (not only regarding ’.’).

e Serialising an Element no longer includes its comment and PI siblings (only ElementTree serialisa-
tion includes them).

1.3.3 (2007-07-26)

Features added

e ElementTree compatible parser ETCompatXMLParser strips processing instructions and comments
while parsing XML

e Parsers now support stripping PIs (keyword argument 'remove pis’)

e etree.fromstring() now supports parsing both HIML and XML, depending on the parser you
pass.

e Support base_url keyword argument in HTML() and XML ()

Bugs fixed

e Parsing from Python Unicode strings failed on some platforms
e Element () did not raise an exception on tag names containing ’’

e Element.getiterator(tag) did not accept Comment and ProcessingInstruction as tags. It also
accepts Element now.

1.3.2 (2007-07-03)

Features added

Bugs fixed

e “deallocating None” crash bug

204

APPENDIX A. CHANGES

1.3.1 (2007-07-02)

Features added

e objectify.DataElement now supports setting values from existing data elements (not just plain
Python types) and reuses defined namespaces etc.

e E-factory support for Ixml.objectify (objectify.E)

Bugs fixed

e Better way to prevent crashes in Element proxy cleanup code
e objectify.DataFlement didn’t set up None value correctly
e objectify.DataElement didn’t check the value against the provided type hints

o Reference-counting bug in Element.attrib.pop()

1.3 (2007-06-24)

Features added

e Module 1xml.pyclasslookup module implements an Element class lookup scheme that can access
the entire tree in read-only mode to help determining a suitable Element class

e Parsers take a remove_comments keyword argument that skips over comments
e parse() function in objectify, corresponding to XML () etc.

e Element.addnext(el) and Element.addprevious(el) methods to support adding processing in-
structions and comments around the root node

e Element.attrib was missing clear () and pop() methods

e Extended type annotation in objectify: cleaner annotation namespace setup plus new deannotate ()
function

e Support for custom Element class instantiation in Ixml.sax: passing a makeelement function to the
ElementTreeContentHandler will reuse the lookup context of that function

e ' represents empty ObjectPath (identity)

e Element.values() to accompany the existing .keys() and .items()

e collectAttributes() C-function to build a list of attribute keys/values/items for a libxml2 node
e DTD validator class (like RelaxNG and XMLSchema)

e HTML generator helpers by Fredrik Lundh in 1xml.htmlbuilder

e ElementMaker XML generator by Fredrik Lundh in 1xml.builder.E

e Support for pickeling objectify.0bjectifiedElement objects to XML

e update () method on Element.attrib

205

APPENDIX A. CHANGES

e Optimised replacement for libxml2’s xmlReconsiliateNs(). This allows Ixml a better handling of
namespaces when moving elements between documents.

Bugs fixed

e Removing Elements from a tree could make them loose their namespace declarations

e ElementInclude didn’t honour base URL of original document

e Replacing the children slice of an Element would cut off the tails of the original children

e Element.getiterator(tag) did not accept Comment and ProcessingInstruction as tags

e API functions now check incoming strings for XML conformity. Zero bytes or low ASCII characters
are no longer accepted (AssertionError).

e XSLT parsing failed to pass resolver context on to imported documents

e passing ” as namespace prefix in nsmap could be passed through to libxml2

e Objectify couldn’t handle prefixed XSD type names in xsi:type

e More ET compatible behaviour when writing out XML declarations or not

e More robust error handling in iterparse ()

e Documents lost their top-level PIs and comments on serialisation

e Ixml.sax failed on comments and PIs. Comments are now properly ignored and Pls are copied.

e Possible memory leaks in namespace handling when moving elements between documents

Other changes

e major restructuring in the documentation

1.2.1 (2007-02-27)

Bugs fixed

e Build fixes for MS compiler
e Item assignments to special names like element ["text"] failed
e Renamed ObjectifiedDataElement. setText() to _setText() to make it easier to access

e The pattern for attribute names in ObjectPath was too restrictive

1.2 (2007-02-20)

Features added

e Rich comparison of QName objects

206

APPENDIX A. CHANGES

e Support for regular expressions in benchmark selection
e get/set emulation (not .attrib!) for attributes on processing instructions

e ElementInclude Python module for ElementTree compatible XInclude processing that honours
custom resolvers registered with the source document

e ElementTree.parser property holds the parser used to parse the document
e setup.py has been refactored for greater readability and flexibility

e --rpath flag to setup.py to induce automatic linking-in of dynamic library runtime search paths
has been renamed to --auto-rpath. This makes it possible to pass an --rpath directly to distutils;
previously this was being shadowed.

Bugs fixed

e Element instantiation now uses locks to prevent race conditions with threads
e ElementTree.write() did not raise an exception when the file was not writable

e FError handling could crash under Python <= 2.4.1 - fixed by disabling thread support in these
environments

e Element.find*() did not accept QName objects as path

Other changes

e code cleanup: redundant _NodeBase super class merged into _Element class Note: although the
impact should be zero in most cases, this change breaks the compatibiliy of the public C-API

1.1.2 (2006-10-30)

Features added

e Data elements in objectify support repr(), which is now used by dump()

Source distribution now ships with a patched Pyrex

New C-API function makeElement() to create new elements with text, tail, attributes and names-
paces

e Reuse original parser flags for XInclude

Simplified support for handling XSLT processing instructions

Bugs fixed

e Parser resources were not freed before the next parser run
e Open files and XML strings returned by Python resolvers were not closed/freed
e Crash in the IDDict returned by XMLDTDID

207

APPENDIX A. CHANGES

Copying Comments and ProcessingInstructions failed

Memory leak for external URLs in _ XSLTProcessingInstruction.parseXSL()

Memory leak when garbage collecting tailed root elements

HTML script/style content was not propagated to .text

Show text xincluded between text nodes correctly in .text and .tail

e ’integer * objectify.StringElement’ operation was not supported

1.1.1 (2006-09-21)

Features added

e XSLT profiling support (profile_run keyword)
e countchildren() method on objectify.ObjectifiedElement

e Support custom elements for tree nodes in Ixml.objectify

Bugs fixed

e Ixml.objectify failed to support long data values (e.g., “123L")
e Error messages from XSLT did not reach XSLT.error_log

e Factories objectify.Element() and objectify.DataElement() were missing attrib and nsmap keyword
arguments

e Changing the default parser in lxml.objectify did not update the factories Element() and DataEle-
ment()

e Let Ixml.objectify.Element() always generate tree elements (not data elements)

e Build under Windows failed (’0’ bug in patched Pyrex version)

1.1 (2006-09-13)

Features added
e Comments and processing instructions return ’<!-- coment -->’ and ’<7pi-target content?>’ for
repr()

e Parsers are now the preferred (and default) place where element class lookup schemes should be
registered. Namespace lookup is no longer supported by default.

e Support for Python 2.5 beta
e Unlock the GIL for deep copying documents and for XPath()

e New compact keyword argument for parsing read-only documents

208

APPENDIX A. CHANGES

e Support for parser options in iterparse()
e The namespace axis is supported in XPath and returns (prefix, URI) tuples
e The XPath expression “/” now returns an empty list instead of raising an exception
e XML-Object API on top of Ixml (Ixml.objectify)
e Customizable Element class lookup:
— different pre-implemented lookup mechanisms
— support for externally provided lookup functions
e Support for processing instructions (ET-like, not compatible)
e Public C-level API for independent extension modules
e Module level iterwalk() function as ’iterparse’ for trees
e Module level iterparse() function similar to ElementTree (see documentation for differences)

e Element.nsmap property returns a mapping of all namespace prefixes known at the Element to
their namespace URI

e Reentrant threading support in RelaxNG, XMLSchema and XSLT
e Threading support in parsers and serializers:

— All in-memory operations (tostring, parse(StringlO), etc.) free the GIL

File operations (on file names) free the GIL

Reading from file-like objects frees the GIL and reacquires it for reading

Serialisation to file-like objects is single-threaded (high lock overhead)
e Element iteration over XPath axes:
— Element.iterdescendants() iterates over the descendants of an element

— Element.iterancestors() iterates over the ancestors of an element (from parent to parent)

Element.itersiblings() iterates over either the following or preceding siblings of an element

— Element.iterchildren() iterates over the children of an element in either direction

All iterators support the tag keyword argument to restrict the generated elements

e Element.getnext() and Element.getprevious() return the direct siblings of an element

Bugs fixed

filenames with local 8-bit encoding were not supported
e 1l.1beta did not compile under Python 2.3

e ignore unknown ’'pyval’ attribute values in objectify

objectify.ObjectifiedElement.addattr() failed to accept Elements and Lists

objectify.ObjectPath.setattr() failed to accept Elements and Lists

209

APPENDIX A. CHANGES

e XPathSyntaxFError now inherits from XPathError
e Threading race conditions in RelaxNG and XMLSchema

e Crash when mixing elements from XSLT results into other trees, concurrent XSLT is only allowed
when the stylesheet was parsed in the main thread

e The EXSLT regexp:match function now works as defined (except for some differences in the regular
expression syntax)

e Setting element.text to ” returned None on request, not the empty string
e iterparse() could crash on long XML files

e Creating documents no longer copies the parser for later URL resolving. For performance reasons,
only a reference is kept. Resolver updates on the parser will now be reflected by documents that
were parsed before the change. Although this should rarely become visible, it is a behavioral change
from 1.0.

1.0.4 (2006-09-09)
Features added

e List-like Element.extend () method

Bugs fixed

e Crash in tail handling in Element.replace()

1.0.3 (2006-08-08)

Features added

e Element.replace(old, new) method to replace a subelement by another one

Bugs fixed

e Crash when mixing elements from XSLT results into other trees
e Copying/deepcopying did not work for ElementTree objects
e Setting an attribute to a non-string value did not raise an exception

e Element.remove() deleted the tail text from the removed Element

210

APPENDIX A. CHANGES

1.0.2 (2006-06-27)

Features added

e Support for setting a custom default Element class as opposed to namespace specific classes (which
still override the default class)

Bugs fixed

e Rare exceptions in Python list functions were not handled
e Parsing accepted unicode strings with XML encoding declaration in certain cases
e Parsing 8-bit encoded strings from StringlO objects raised an exception

e Module function initThread() was removed - useless (and never worked)

XSLT and parser exception messages include the error line number

1.0.1 (2006-06-09)

Features added

e Repeated calls to Element.attrib now efficiently return the same instance

Bugs fixed

e Document deallocation could crash in certain garbage collection scenarios

e Extension function calls in XSLT variable declarations could break the stylesheet and crash on
repeated calls

e Deep copying Elements could loose namespaces declared in parents

e Deep copying Elements did not copy tail

e Parsing file(-like) objects failed to load external entities

e Parsing 8-bit strings from file(-like) objects raised an exception

e xslinclude failed when the stylesheet was parsed from a file-like object

e Ixml.sax.ElementTreeProducer did not call startDocument() / endDocument()

e MSVC compiler complained about long strings (supports only 2048 bytes)

211

APPENDIX A. CHANGES

1.0 (2006-06-01)

Features added

e Element.getiterator() and the findall() methods support finding arbitrary elements from a names-
pace (pattern {namespacel}*)

e Another speedup in tree iteration code

e General speedup of Python Element object creation and deallocation

e Writing C14N no longer serializes in memory (reduced memory footprint)
e PyErrorLog for error logging through the Python logging module

e Element.getroottree() returns an ElementTree for the root node of the document that contains
the element.

e ElementTree.getpath(element) returns a simple, absolute XPath expression to find the element in
the tree structure

e Error logs have a last_error attribute for convenience

e Comment texts can be changed through the API

e Formatted output via pretty_print keyword in serialization functions

e XSLT can block access to file system and network via XSLTAccessControl

e ElementTree.write() no longer serializes in memory (reduced memory footprint)
e Speedup of Element.findall(tag) and Element.getiterator(tag)

e Support for writing the XML representation of Elements and ElementTrees to Python unicode
strings via etree.tounicode ()

e Support for writing XSLT results to Python unicode strings via unicode ()

e Parsing a unicode string no longer copies the string (reduced memory footprint)

e Parsing file-like objects reads chunks rather than the whole file (reduced memory footprint)

e Parsing StringlO objects from the start avoids copying the string (reduced memory footprint)

e Read-only ’docinfo’ attribute in ElementTree class holds DOCTYPE information, original encoding
and XML version as seen by the parser

e etree module can be compiled without libxslt by commenting out the line include "xslt.pxi"
near the end of the etree.pyx source file

e Better error messages in parser exceptions
e Error reporting also works in XSLT

e Support for custom document loaders (URI resolvers) in parsers and XSLT, resolvers are registered
at parser level

e Implementation of exslt:regexp for XSLT based on the Python 're’ module, enabled by default, can
be switched off with 'regexp=False’ keyword argument

e Support for exslt extensions (libexslt) and libxslt extra functions (node-set, document, write, out-

212

APPENDIX A. CHANGES

put)
e Substantial speedup in XPath.evaluate()
e HTMLParser for parsing (broken) HTML

e XMLDTDID function parses XML into tuple (root node, ID dict) based on xml:id implementation
of libxml2 (as opposed to ET compatible XMLID)

Bugs fixed

e Memory leak in Element. setitem

e Memory leak in Element.attrib.items() and Element.attrib.values()
e Memory leak in XPath extension functions

e Memory leak in unicode related setup code

e Element now raises ValueError on empty tag names

e Namespace fixing after moving elements between documents could fail if the source document was
freed too early

e Setting namespace-less tag names on namespaced elements ("{ns}t’ -> ’t’) didn’t reset the names-
pace

e Unknown constants from newer libxml2 versions could raise exceptions in the error handlers
e Ixml.etree compiles much faster
e On libxml2 <= 2.6.22, parsing strings with encoding declaration could fail in certain cases

e Document reference in ElementTree objects was not updated when the root element was moved to
a different document

e Running absolute XPath expressions on an Element now evaluates against the root tree
e Evaluating absolute XPath expressions (/*) on an ElementTree could fail
e Crashes when calling XSLT, RelaxNG, etc. with uninitialized ElementTree objects

e Removed public function initThreadLogging(), replaced by more general initThread() which
fixes a number of setup problems in threads

e Memory leak when using iconv encoders in tostring/write

e Deep copying Elements and ElementTrees maintains the document information
e Serialization functions raise LookupError for unknown encodings

e Memory deallocation crash resulting from deep copying elements

e Some ElementTree methods could crash if the root node was not initialized (neither file nor element
passed to the constructor)

e Element/SubElement failed to set attribute namespaces from passed attrib dictionary
e tostring() adds an XML declaration for non-ASCII encodings

e tostring() failed to serialize encodings that contain 0-bytes

213

APPENDIX A. CHANGES

e ElementTree.xpath() and XPathDocumentEvaluator were not using the ElementTree root node as
reference point

e Calling document (’’) in XSLT failed to return the stylesheet

0.9.2 (2006-05-10)

Features added

e Speedup for Element.makeelement(): the new element reuses the original libxml2 document instead
of creating a new empty one

e Speedup for reversed() iteration over element children (Py2.4+ only)
e ElementTree compatible QName class

e RelaxNG and XMLSchema accept any Element, not only ElementTrees

Bugs fixed

e str(xslt result) was broken for XSLT output other than UTF-8
e Memory leak if write cl4n fails to write the file after conversion
e Crash in XMLSchema and RelaxNG when passing non-schema documents

e Memory leak in RelaxNG() when RelaxNGParseError is raised

0.9.1 (2006-03-30)

Features added

e Ixml.sax.ElementTreeContentHandler checks closing elements and raises SaxError on mismatch

e Ixml.sax.ElementTreeContentHandler supports namespace-less SAX events (startElement, endEle-
ment) and defaults to empty attributes (keyword argument)

e Speedup for repeatedly accessing element tag names

e Minor API performance improvements

Bugs fixed

e Memory deallocation bug when using XSLT output method “html”
e sax.py was handling UTF-8 encoded tag names where it shouldn’t

e Ixml.tests package will no longer be installed (is still in source tar)

214

APPENDIX A. CHANGES

0.9 (2006-03-20)

Features added

e Error logging API for libxml2 error messages

e Various performance improvements

e Benchmark script for Ixml, ElementTree and cElementTree

e Support for registering extension functions through new FunctionNamespace class (see doc/extensions.txt)
e ETXPath class for XPath expressions in ElementTree notation (’//{ns}tag’)

e Support for variables in XPath expressions (also in XPath class)

e XPath class for compiled XPath expressions

e XMLID module level function (ElementTree compatible)

e XMLParser API for customized libxml2 parser configuration

e Support for custom Element classes through new Namespace APT (see doc/namespace _extensions.txt)
e Common exception base class LxmlError for module exceptions

e real iterator support in iter(Element), Element.getiterator ()

e XSLT objects are callable, result trees support str()

e Added MANIFEST.in for easier creation of RPM files.

e ’getparent’ method on elements allows navigation to an element’s parent element.

e Python core compatible SAX tree builder and SAX event generator. See doc/sax.txt for more
information.

Bugs fixed

e Segfaults and memory leaks in various API functions of Element
e Segfault in XSLT.tostring()

e ElementTree objects no longer interfere, Elements can be root of different ElementTrees at the
same time

e document(”) works in XSLT documents read from files (in-memory documents cannot support this
due to libxslt deficiencies)

0.8 (2005-11-03)

Features added

e Support for copy.deepcopy() on elements. copy.copy() works also, but does the same thing, and
does not create a shallow copy, as that makes no sense in the context of libxml2 trees. This
means a potential incompatibility with ElementTree, but there’s more chance that it works than

215

APPENDIX A. CHANGES

if copy.copy() isn’t supported at all.

e Increased compatibility with (c)ElementTree; .parse() on ElementTree is supported and parsing of
gzipped XML files works.

e implemented index() on elements, allowing one to find the index of a SubElement.

Bugs fixed

e Use xslt-config instead of xml2-config to find out libxml2 directories to take into account a case
where libxslt is installed in a different directory than libxslt.

e Eliminate crash condition in iteration when text nodes are changed.
e Passing 'None’ to tostring() does not result in a segfault anymore, but an AssertionError.
e Some test fixes for Windows.

e Raise XMLSyntaxError and XPathSyntaxError instead of plain python syntax errors. This should
be less confusing.

e Fixed error with uncaught exception in Pyrex code.

e Calling Ixml.etree.fromstring(”) throws XMLSyntaxError instead of a segfault.

e has key() works on attrib. ’in’ tests also work correctly on attrib.

e INSTALL.txt was saying 2.2.16 instead of 2.6.16 as a supported libxml2 version, as it should.

e Passing a UTF-8 encoded string to the XML() function would fail; fixed.

0.7 (2005-06-15)

Features added

e parameters (XPath expressions) can be passed to XSLT using keyword parameters.

e Simple XInclude support. Calling the xinclude() method on a tree will process any XlInclude
statements in the document.

e XMLSchema support. Use the XMLSchema class or the convenience xmlschema() method on a
tree to do XML Schema (XSD) validation.

e Added convenience xslt() method on tree. This is less efficient than the XSLT object, but makes
it easier to write quick code.

e Added convenience relaxng() method on tree. This is less efficient than the RelaxNG object, but
makes it easier to write quick code.

e Make it possible to use XPathEvaluator with elements as well. The XPathEvaluator in this case
will retain the element so multiple XPath queries can be made against one element efficiently. This
replaces the second argument to the .evaluate() method that existed previously.

e Allow registerNamespace() to be called on an XPathEvaluator, after creation, to add additional
namespaces. Also allow registerNamespaces(), which does the same for a namespace dictionary.

e Add ’prefix’ attribute to element to be able to read prefix information. This is entirely read-only.

216

APPENDIX A. CHANGES

e It is possible to supply an extra nsmap keyword parameter to the Element() and SubElement/()
constructors, which supplies a prefix to namespace URI mapping. This will create namespace prefix
declarations on these elements and these prefixes will show up in XML serialization.

Bugs fixed

e Killed yet another memory management related bug: trees created using newDoc would not get
a libxml2-level dictionary, which caused problems when deallocating these documents later if they
contained a node that came from a document with a dictionary.

e Moving namespaced elements between documents was problematic as references to the original
document would remain. This has been fixed by applying xmlReconciliateNs() after each move
operation.

e Can pass None to ’dump()’ without segfaults.
e tostring() works properly for non-root elements as well.
e Cleaned out the tostring() method so it should handle encoding correctly.

e Cleaned out the ElementTree.write() method so it should handle encoding correctly. Writing
directly to a file should also be faster, as there is no need to go through a Python string in that
case. Made sure the test cases test both serializing to StringlO as well as serializing to a real file.

0.6 (2005-05-14)

Features added

e Changed setup.py so that library dirs is also guessed. This should help with compilation on the
Mac OS X platform, where otherwise the wrong library (shipping with the OS) could be picked

up.

e Tweaked setup.py so that it picks up the version from version.txt.

Bugs fixed

e Do the right thing when handling namespaced attributes.

e fix bug where tostring() moved nodes into new documents. tostring() had very nasty side-effects
before this fix, sorry!

0.5.1 (2005-04-09)

e Python 2.2 compatibility fixes.

e unicode fixes in Element() and Comment() as well as XML(); unicode input wasn’t properly being
UTF-8 encoded.

217

APPENDIX A. CHANGES

0.5 (2005-04-08)

Initial public release.

218

Appendix B

Generated API documentation

219

Variables

Package Ixml

B.1 Package Ixml

B.1.

1 Modules

ElementInclude: Limited XInclude support for the ElementTree package.

(Section B.2, p. 221)

builder: The E Element factory for generating XML documents.

(Section B.3, p. 223)

cssselect: CSS Selectors based on XPath.

(Section B.4, p. 226)

doctestcompare: Ixml-based doctest output comparison.

(Section B.5, p. 230)

etree: The 1xml.etree module implements the extended ElementTree API for XML.

(Section B.6, p. 234)

html: The 1xml.html tool set for HTML handling.

(Section B.7, p. 365)

— ElementSoup: Legacy interface to the BeautifulSoup HTML parser.

(Section B.8, p. 370)

— _dictmixin (Section 77, p. 7?7)
— _setmixin (Section 77, p. 7?7)

— builder: A set of HTML generator tags for building HTML documents.

(Section B.9, p. 371)

— clean: A cleanup tool for HTML.

(Section B.10, p. 374)
— defs (Section B.11, p. 378)
— diff (Section B.12, p. 379)

— formfill (Section B.13, p. 380)
— html5parser: An interface to html5lib.

(Section B.14, p. 382)

— soupparser: External interface to the BeautifulSoup HTML parser.

(Section B.15, p. 386)

— usedoctest: Doctest module for HTML comparison.

(Section B.16, p. 387)

objectify: The 1xml.objectify module implements a Python object API for XML. It is based

on lxml.etree.

(Section B.17, p. 388)

e pyclasslookup (Section B.18, p. 421)

e sax: SAX-based adapter to copy trees from/to the Python standard library.

B.1.

(Section B.19, p. 422)

usedoctest: Doctest module for XML comparison.

(Section B.20, p. 429)

2 Variables

Name

Description

___package

Value: None

220

Class FatallncludeError Module Ixml.ElementInclude

B.2 Module Ixml.ElementInclude

Limited XInclude support for the ElementTree package.
While Ixml.etree has full support for XInclude (see etree.ElementTree.xinclude()), this module pro-

vides a simpler, pure Python, ElementTree compatible implementation that supports a simple form of
custom URL resolvers.

B.2.1 Functions

default loader(href, parse, encoding=None)

| include(elem, loader=None, base url=None)

B.2.2 Variables

Name Description
XINCLUDE Value: ’{http://www.w3.0rg/2001/XInclude}’
XINCLUDE INCLUDE Value:
*{http://www.w3.0rg/2001/XInclude}include’
XINCLUDE FALLBACK Value:
*{http://www.w3.0rg/2001/XInclude}fallback’
___package Value: ’1xml’

B.2.3 Class FatallncludeError

object j

exceptions.BaseException j
exceptions.Exception j
Ixml.etree.Error j
Ixml.etree.LxmlError j
object j
exceptions.BaseException j
exceptions.Exception j

exceptions.StandardError j

exceptions.SyntaxError —‘

Ixml.etree.LxmlSyntaxError

Ixml.ElementInclude.FatallncludeError

221

Class FatallncludeError Module Ixml.ElementInclude

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.SyntaxError
~new_ (), str_ ()

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr_ (), __setattr (), __setstate_ (), __unicode_ ()

Inherited from object

__format (), __hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions.SyntazError
filename, lineno, msg, offset, print file and line, text
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

222

Class ElementMaker

Module Ixml.builder

B.3 Module Ixml.builder

The E Element factory for generating XML documents.

B.3.1 Functions

callable(f)

B.3.2 Variables

Name

Description

E

Value: ElementMaker ()

__package

Value: ’1xml’

B.3.3 Class ElementMaker

object

Element generator factory.

Ixml.builder.ElementMaker

Unlike the ordinary Element factory, the E factory allows you to pass in
more than just a tag and some optional attributes; you can also pass in

text and other elements.

The text is added as either text or tail

attributes, and elements are inserted at the right spot. Some small

examples::

>>> from 1lxml import etree as ET
>>> from 1lxml.builder import E

>>> ET.tostring(E("tag"))
*<tag/>’

>>> ET.tostring(E("tag", "text"))

’<tag>text</tag>’

>>> ET.tostring(E("tag", "text", key="value"))

’<tag key="value">text</tag>’

>>> ET.tostring(E("tag", E("subtag", "text"), "tail"))
’<tag><subtag>text</subtag>tail</tag>’

For simple tags, the factory also allows you to write ‘‘E.tag(...)‘‘ instead

of ‘‘E(’tag’,

>>> ET.tostring(E.tag())
)<tag/>)

U I

223

Class ElementMaker Module Ixml.builder

>>> ET.tostring(E.tag("text"))

’<tag>text</tag>’

>>> ET.tostring(E.tag(E.subtag("text"), "tail"))
’<tag><subtag>text</subtag>tail</tag>’

Here’s a somewhat larger example; this shows how to generate HTML
documents, using a mix of prepared factory functions for inline elements,
nested ‘‘E.tag‘‘ calls, and embedded XHTML fragments::

some common inline elements
A =E.a
I =E.1i
B =E.b

def CLASS(v):
helper function, ’class’ is a reserved word
return {’class’: v}

page = (
E.html (
E.head(
E.title("This is a sample document")
)
E.body (
E.hi1("Hello!", CLASS("title")),
E.p("This is a paragraph with ", B("bold"), " text in it!"),
E.p("This is another paragraph, with a ",
A("link", href="http://www.python.org"), "."),
E.p("Here are some reservered characters: <spam&egg>."),
ET.XML("<p>And finally, here is an embedded XHTML fragment.</p>"),
)
)
)

print ET.tostring(page)
Here’s a prettyprinted version of the output from the above script::

<html>

<head>
<title>This is a sample document</title>

</head>

<body>
<hl class="title">Hello!</h1>
<p>This is a paragraph with bold text in it!</p>
<p>This is another paragraph, with link.<
<p>Here are some reservered characters: <spam&egg>.</p>
<p>And finally, here is an embedded XHTML fragment.</p>

224

Class ElementMaker Module Ixml.builder

</body>
</html>

For namespace support, you can pass a namespace map (‘‘nsmap‘‘)
and/or a specific target ‘‘namespace‘‘ to the ElementMaker class::

>>> E = ElementMaker (namespace="http://my.ns/")
>>> print (ET.tostring(E.test))
<test xmlns="http://my.ns/"/>

>>> E = ElementMaker (namespace="http://my.ns/", nsmap={’p’:’http://my.ns/’})

>>> print (ET.tostring(E.test))
<p:test xmlns:p="http://my.ns/"/>

Methods

_init _ (self, typemap=None, namespace=None, nsmap—=None,

makeelement—None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init extit(inherited documentation)

__call (self, tag, *children, **attrib)

__getattr _ (self, tag)

Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
_reduce (), reduce ex (), repr (), setattr (), sizeof (),
str (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

225

Class SelectorSyntaxError Module Ixml.cssselect

B.4 Module Ixml.cssselect

CSS Selectors based on XPath.

This module supports selecting XML/HTML tags based on CSS selectors. See the
CSSSelector class for details.

B.4.1 Class SelectorSyntaxError

object T

exceptions.BaseException T
exceptions.Exception T
exceptions.StandardError T

exceptions.SyntaxError

Ixml.cssselect.SelectorSyntaxError

Methods

Inherited from exceptions.SyntaxError

~_init_ (), new (), _str_ ()

Inherited from exceptions. BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce (), _repr_ (), setattr (), setstate (), _unicode ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print _file and line, text
Inherited from exceptions. BaseEzception
args, message
Inherited from object
__class

226

Class ExpressionError Module Ixml.cssselect

B.4.2 Class ExpressionError

object T

exceptions.BaseException T
exceptions.Exception T
exceptions.StandardError T

exceptions.RuntimeError

Ixml.cssselect.ExpressionError

Methods

Inherited from exceptions. RuntimeError
_ it (), __mew__()
Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__(), __setstate__ (), __str__(), __uni-
code ()

Inherited from object

__format (), _ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzception
args, message
Inherited from object
__class

227

Class CSSSelector Module Ixml.cssselect

B.4.3 Class CSSSelector

object T
Ixml.etree. XPathEvaluatorBase T

Ixml.etree. XPath
Ixml.cssselect.CSSSelector
A CSS selector.
Usage:

>>> from lxml import etree, cssselect
>>> select = cssselect.CSSSelector("a tag > child")

>>> root = etree.XML("<a><c/><tag><child>TEXT</child></tag>")
>>> [el.tag for el in select(root)]
[’child’]

Methods

__init (self, css)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init extit(inherited documentation)

__repr___ (self)

repr(x) Overrides: object. repr extit(inherited documentation)

Inherited from lxml.etree. XPath(Section B.6.63)
call (), mnew ()

Inherited from lxml.etree. XPathEvaluatorBase
evaluate()

Inherited from object

__delattr (), _ format (), _ getattribute (), = _hash (), re-
duce (), reduce ex (), setattr (), sizeof (), str_ (),
__subclasshook ()

Properties

Name \ Description
Inherited from lzml.etree. XPath (Section B.6.63)

continued on next page

228

Class CSSSelector Module Ixml.cssselect

Name \ Description
path
Inherited from lxml.etree. XPathFEvaluatorBase
error_log
Inherited from object
__class

229

Module Ixml.doctestcompare

B.5 Module Ixml.doctestcompare

Ixml-based doctest output comparison.

Note: normally, you should just import the 1xml .usedoctest and 1xml.html.usedoctest
modules from within a doctest, instead of this one:

>>> import lxml.usedoctest # for XML output

>>> import lxml.html.usedoctest # for HTML output

To use this module directly, you must call 1xmldoctest.install(), which will cause
doctest to use this in all subsequent calls.

This changes the way output is checked and comparisons are made for XML or HTML-like
content.

XML or HTML content is noticed because the example starts with < (it’s HTML if
it starts with <html). You can also use the PARSE_HTML and PARSE_XML flags to force
parsing.

Some rough wildcard-like things are allowed. Whitespace is generally ignored (except in
attributes). In text (attributes and text in the body) you can use ... as a wildcard. In
an example it also matches any trailing tags in the element, though it does not match
leading tags. You may create a tag <any> or include an any attribute in the tag. An any
tag matches any tag, while the attribute matches any and all attributes.

When a match fails, the reformatted example and gotten text is displayed (indented),
and a rough diff-like output is given. Anything marked with - is in the output but wasn’t
supposed to be, and similarly + means its in the example but wasn’t in the output.

You can disable parsing on one line with # doctest:+NOPARSE_MARKUP

B.5.1 Functions

install(html—False)

Install doctestcompare for all future doctests.

If html is true, then by default the HTML parser will be used; otherwise
the XML parser is used.

230

Class LXMLOutputChecker Module Ixml.doctestcompare

temp install(htmi=False, del_module=None)

Use this inside a doctest to enable this checker for this doctest only.

If html is true, then by default the HI'ML parser will be used; otherwise
the XML parser is used.

B.5.2 Variables

Name Description
PARSE HTML Value: 1024
PARSE XML Value: 2048
NOPARSE MARKUP Value: 4096

B.5.3 Class LXMLOutputChecker

doctest.OutputChecker
Ixml.doctestcompare. LXMLOutputChecker

Known Subclasses: Ixml.doctestcompare. LHTMLOutputChecker

Methods

get default parser(self)

check output(self, want, got, optionflags)

Return True iff the actual output from an example (got) matches the
expected output (want). These strings are always considered to match if
they are identical; but depending on what option flags the test runner is
using, several non-exact match types are also possible. See the
documentation for TestRunner for more information about option flags.
Overrides: doctest.OutputChecker.check output extit(inherited
documentation)

get parser(self, want, got, optionflags)

compare _docs(self, want, got)

text compare(self, want, got, strip)

231

Class LHTMLOutputChecker Module Ixml.doctestcompare

tag compare(self, want, got)

output difference(self, example, got, optionflags)

Return a string describing the differences between the expected output for
a given example (example) and the actual output (got). optionflags is
the set of option flags used to compare want and got. Overrides:
doctest.OutputChecker.output_ difference extit(inherited documentation)

html empty tag(self, el, htm{=True)

format doc(self, doc, html, indent, prefix=">")

format text(self, text, strip=True)

format tag(self, el)

format end tag(self, el)

collect diff (self, want, got, html, indent)

collect diff tag(self, want, got)

collect diff end tag(self, want, got)

collect diff text(self, want, got, strip=True)

Class Variables

Name Description
empty tags Value: (’param’, ’img’, ’area’, ’br’,
’basefont’, ’input’, ’base...

B.5.4 Class LHTMLOutputChecker

doctest.OutputChecker T

Ixml.doctestcompare. LXMLOutputChecker
Ixml.doctestcompare. LHTMLOutputChecker

232

Class LHTMLOutputChecker Module Ixml.doctestcompare

Methods

get default parser(self)

Overrides: lxml.doctestcompare. LXMLOutputChecker.get default parser

Inherited from lxml.doctestcompare. LX ML OutputChecker(Section B.5.3)

check output(), collect diff(), collect diff end tag(), collect diff tag(), col-

lect diff text(), compare docs(), format doc(), format end tag(), format _tag(),
format text(), get parser(), html empty tag(), output difference(), tag compare(),
text compare()

Class Variables

Name \ Description
Inherited from lzml.doctestcompare. LXML OutputChecker (Section B.5.3)
empty tags

233

Module Ixml.etree

B.6 Module Ixml.etree

The 1xml.etree module implements the extended ElementTree API for XML. Version:
2.2.6

B.6.1 Functions

Comment(text—=None)

Comment element factory. This factory function creates a special element
that will be serialized as an XML comment.

*

Element(tag, attrib=None, nsmap=DNone, ** extra)

Element factory. This function returns an object implementing the
Element interface.

Also look at the _Element .makeelement () and
_BaseParser.makeelement () methods, which provide a faster way to
create an Element within a specific document or parser context.

ElementTree(element—None, file=None, parser—None)

ElementTree wrapper class.

Entity (name)

Entity factory. This factory function creates a special element that will be
serialized as an XML entity reference or character reference. Note, however,
that entities will not be automatically declared in the document. A
document that uses entity references requires a DTD to define the entities.

234

Functions Module Ixml.etree

Extension(module, function mapping—None, ns—None)

Build a dictionary of extension functions from the functions defined in a
module or the methods of an object.

As second argument, you can pass an additional mapping of attribute
names to XPath function names, or a list of function names that should be
taken.

The ns keyword argument accepts a namespace URI for the XPath
functions.

FunctionNamespace(ns_uri)

Retrieve the function namespace object associated with the given URI.

Creates a new one if it does not yet exist. A function namespace can only
be used to register extension functions.

HTMUL(text, parser—None, base_url—None)

Parses an HTML document from a string constant. Returns the root node
(or the result returned by a parser target). This function can be used to
embed “HTML literals” in Python code.

To override the parser with a different HTMLParser you can pass it to the
parser keyword argument.

The base_url keyword argument allows to set the original base URL of

the document to support relative Paths when looking up external entities
(DTD, XlInclude, ...).

PI(target, text=None)

Processinglnstruction element factory. This factory function creates a
special element that will be serialized as an XML processing instruction.

ProcessingInstruction(target, text—None)

Processinglnstruction element factory. This factory function creates a
special element that will be serialized as an XML processing instruction.

235

Functions Module Ixml.etree

%%k

SubElement(parent, tag, attrib=None, nsmap—None, ** extra)

Subelement factory. This function creates an element instance, and
appends it to an existing element.

XML(text, parser=None, base url=None)

Parses an XML document or fragment from a string constant. Returns the
root node (or the result returned by a parser target). This function can be
used to embed “XML literals” in Python code, like in

>>> root = etree.XML ("<root><test/></root>")

To override the parser with a different XMLParser you can pass it to the
parser keyword argument.

The base_url keyword argument allows to set the original base URL of
the document to support relative Paths when looking up external entities
(DTD, XlInclude, ...).

XMLDTDID (text)

Parse the text and return a tuple (root node, ID dictionary). The root
node is the same as returned by the XML() function. The dictionary
contains string-element pairs. The dictionary keys are the values of ID
attributes as defined by the DTD. The elements referenced by the ID are
stored as dictionary values.

Note that you must not modify the XML tree if you use the ID dictionary.
The results are undefined.

XMLID(text)

Parse the text and return a tuple (root node, ID dictionary). The root node
is the same as returned by the XML() function. The dictionary contains
string-element pairs. The dictionary keys are the values of 'id” attributes.
The elements referenced by the ID are stored as dictionary values.

236

Functions Module Ixml.etree

XPathEvaluator(etree or element, namespaces—None,
extensions=None, regexp=True, smart_ strings=True)

Creates an XPath evaluator for an ElementTree or an Element.

The resulting object can be called with an XPath expression as argument
and XPath variables provided as keyword arguments.

Additional namespace declarations can be passed with the 'namespace’
keyword argument. EXSLT regular expression support can be disabled
with the regexp’ boolean keyword (defaults to True). Smart strings will be
returned for string results unless you pass smart_strings=False.

cleanup namespaces(tree_or_element)

Remove all namespace declarations from a subtree that are not used by any
of the elements or attributes in that tree.

clear error log()

Clear the global error log. Note that this log is already bound to a fixed
size.

Note: since Ixml 2.2, the global error log is local to a thread and this
function will only clear the global error log of the current thread.

dump(elem, pretty print=True, with _tail=True)

Writes an element tree or element structure to sys.stdout. This function
should be used for debugging only.

fromstring(text, parser=None, base url=None)

Parses an XML document or fragment from a string. Returns the root
node (or the result returned by a parser target).

To override the default parser with a different parser you can pass it to the
parser keyword argument.

The base_url keyword argument allows to set the original base URL of
the document to support relative Paths when looking up external entities

(DTD, XInclude, ...).

237

Functions Module Ixml.etree

fromstringlist(strings, parser—=None)

Parses an XML document from a sequence of strings. Returns the root
node (or the result returned by a parser target).

To override the default parser with a different parser you can pass it to the
parser keyword argument.

get default parser()

iselement(element)

Checks if an object appears to be a valid element object.

parse(source, parser=None, base url—None)

Return an ElementTree object loaded with source elements. If no parser is
provided as second argument, the default parser is used.

The source can be any of the following:

a file name/path

a file object

a file-like object
e a URL using the HT'TP or FTP protocol
To parse from a string, use the fromstring() function instead.

Note that it is generally faster to parse from a file path or URL than from
an open file object or file-like object. Transparent decompression from gzip
compressed sources is supported (unless explicitly disabled in libxml2).

The base_url keyword allows setting a URL for the document when
parsing from a file-like object. This is needed when looking up external
entities (DTD, XInclude, ...) with relative paths.

238

Functions Module Ixml.etree

parseid(source, parser—None)

Parses the source into a tuple containing an ElementTree object and an ID
dictionary. If no parser is provided as second argument, the default parser
is used.

Note that you must not modify the XML tree if you use the ID dictionary.
The results are undefined.

set default parser(parser=None)

Set a default parser for the current thread. This parser is used globally
whenever no parser is supplied to the various parse functions of the Ixml
API. If this function is called without a parser (or if it is None), the default
parser is reset to the original configuration.

Note that the pre-installed default parser is not thread-safe. Avoid the
default parser in multi-threaded environments. You can create a separate
parser for each thread explicitly or use a parser pool.

set element class lookup(lookup—=None)

Set the global default element class lookup method.

strip attributes(tree_ or_ element, *attribute_ names)

Delete all attributes with the provided attribute names from an Element
(or ElementTree) and its descendants.

Example usage:
strip_attributes(root_element,

’simpleattr’,
>{http://some/ns}tattrname’)

239

Functions

Module Ixml.etree

strip _elements(tree_ or_ element, with_ tail=True, *tag_names)

Delete all elements with the provided tag names from a tree or subtree.
This will remove the elements and their entire subtree, including all their
attributes, text content and descendants. It will also remove the tail text of
the element unless you explicitly set the with_tail option to False.

Note that this will not delete the element (or ElementTree root element)
that you passed even if it matches. It will only treat its descendants. If you
want to include the root element, check its tag name directly before even
calling this function.

Example usage:

strip_elements(some_element,

’simpletagname’, # non-namespaced tag
’{http://some/ns}ttagname’, # namespaced tag
>{http://some/other/ns}x*’ # any tag from a namespace
Comment # comments

)

strip tags(tree_ or_ element, *tag_names)

Delete all elements with the provided tag names from a tree or subtree.
This will remove the elements and their attributes, but not their text/tail
content or descendants. Instead, it will merge the text content and children
of the element into its parent.

Note that this will not delete the element (or ElementTree root element)
that you passed even if it matches. It will only treat its descendants.

Example usage:

strip_tags(some_element,
’simpletagname’, # non-namespaced tag
’{http://some/ns}ttagname’, # namespaced tag
>{http://some/other/ns}x*’ # any tag from a namespace
Comment # comments (including thei]

)

r text!)

240

Functions Module Ixml.etree

tostring(element or_tree, encoding=None, method—"xml1",
xml_ declaration=None, pretty print=False, with tail=True,
standalone=None)

Serialize an element to an encoded string representation of its XML tree.

Defaults to ASCII encoding without XML declaration. This behaviour can
be configured with the keyword arguments ’encoding’ (string) and

'xml _declaration’ (bool). Note that changing the encoding to a non UTF-8
compatible encoding will enable a declaration by default.

You can also serialise to a Unicode string without declaration by passing
the unicode function as encoding (or str in Py3).

The keyword argument ’pretty print’ (bool) enables formatted XML.

The keyword argument 'method’ selects the output method: xml’, "html’
or plain "text’.

Passing a boolean value to the standalone option will output an XML
declaration with the corresponding standalone flag.

You can prevent the tail text of the element from being serialised by
passing the boolean with_tail option. This has no impact on the tail text
of children, which will always be serialised.

tostringlist(element or_tree, *args, **kwargs)

Serialize an element to an encoded string representation of its XML tree,
stored in a list of partial strings.

This is purely for ElementTree 1.3 compatibility. The result is a single
string wrapped in a list.

241

Variables Module Ixml.etree

tounicode(element or _tree, method="xml", pretty print—False,
with_tail=True)

Serialize an element to the Python unicode representation of its XML tree.

Note that the result does not carry an XML encoding declaration and is
therefore not necessarily suited for serialization to byte streams without
further treatment.

The boolean keyword argument "pretty print’ enables formatted XML.

The keyword argument 'method’ selects the output method: xml’, "html’
or plain text’.

You can prevent the tail text of the element from being serialised by
passing the boolean with_tail option. This has no impact on the tail text
of children, which will always be serialised. Deprecated: use
tostring(el, encoding=unicode) instead.

use global python log(log)

Replace the global error log by an etree.PyErrorLog that uses the standard
Python logging package.

Note that this disables access to the global error log from exceptions.
Parsers, XSLT etc. will continue to provide their normal local error log.

Note: prior to Ixml 2.2, this changed the error log globally. Since Ixml 2.2,
the global error log is local to a thread and this function will only set the
global error log of the current thread.

B.6.2 Variables

Name Description

DEBUG Value: 1

LIBXML COMPILED - | Value: (2, 7, 5)

VERSION

LIBXML VERSION Value: (2, 7, 5)

LIBXSLT COMPILED- | Value: (1, 1, 24)

_ VERSION

LIBXSLT VERSION Value: (1, 1, 24)

LXML _VERSION Value: (2, 2, 6, 0)

__package Value: ’1xml’

__pyx_capi_ Value: {’appendChild’: <PyCObject
object at Ox2acd9e4cabe8>, ’at...

242

Class Ancestorslterator Module Ixml.etree

B.6.3 Class Ancestorslterator

object T
Ixml.etree. ElementTagMatcher T

Ixml.etree. Elementlterator
Ixml.etree.Ancestorslterator

Ancestorslterator(self, node, tag=None) Iterates over the ancestors of an element (from
parent to parent).

Methods

__init __ (self, node, tag=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Elementlterator
_iter (), mext (), next()
Inherited from object

__delattr (), _ format (), getattribute (), = hash (), re-

duce (), __reduce ex (), _repr_ (), _setattr (), __Sizeof::(),
_str (), __subclasshook ()

Properties

Name Description
Inherited from object
__class

243

Class AttributeBasedElementClassLookup Module Ixml.etree

B.6.4 Class AttributeBasedElementClassLookup

object T
Ixml.etree. ElementClassLookup T

Ixml.etree.FallbackElementClassLookup
Ixml.etree.AttributeBasedElementClassLookup

AttributeBasedElementClassLookup(self, attribute name, class mapping, fallback=None)
Checks an attribute of an Element and looks up the value in a class dictionary.

Arguments:
e attribute name - '{ns}name’ style string
e class mapping - Python dict mapping attribute values to Element classes
e fallback - optional fallback lookup mechanism

A None key in the class mapping will be checked if the attribute is missing.

Methods

__init_ (self, attribute_name, class_ mapping, fallback=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. FallbackElementClassLookup(Section B.6.29)
set fallback()
Inherited from object

__delattr (), format (), getattribute (), hash (), re-

duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

244

Class C14NError Module Ixml.etree

Name \ Description
Inherited from lxml.etree. FallbackElementClassLookup (Section B.6.29)
fallback
Inherited from object
__class

B.6.5 Class Cl14NError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree. LxmlError
Ixml.etree.C14NError

Error during C14N serialisation.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~init ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce (), __repr_ (), _setattr (), _setstate (), _str__ (), _uni-
code ()

Inherited from object

__format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzception
args, message

continued on next page

245

Class CDATA Module Ixml.etree

Name \ Description
Inherited from object
__class

B.6.6 Class CDATA

object
Ixml.etree. CDATA
CDATA (data)

CDATA factory. This factory creates an opaque data object that can be used to set
Element text. The usual way to use it is:

>>> from lxml import etree
>>> el = etree.Element(’content’)
>>> el.text = etree.CDATA(’a string’)

Methods

_init _ (data)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from object
~_delattr (), format (), getattribute (), ~_hash (), re-

duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

246

Class CommentBase Module Ixml.etree

B.6.7 Class CommentBase

object T
Ixml.etree. FElement T
Ixml.etree. ContentOnlyElement T

Ixml.etree. Comment
Ixml.etree.CommentBase
Known Subclasses: Ixml.html. HtmlComment
All custom Comment classes must inherit from this one.
Note that you cannot (and must not) instantiate this class or its subclasses.

Subclasses must not override __init _ or __new___ as it is absolutely undefined when
these objects will be created or destroyed. All persistent state of Comments must be
stored in the underlying XML. If you really need to initialize the object after creation,
you can implement an _init (self) method that will be called after object creation.

Methods

_ _mnew_ (T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Comment

__repr__()

Inherited from lxml.etree. ContentOnlyElement

~_delitem (), getitem (), len (), setitem (), append(), get(),

insert(), items(), keys(), set(), values()
Inherited from lrml.etree. Element

__contains__ (), _copy (), _deepcopy (), _iter (), _monzero (),
__reversed (), addnext(), addprevious(), clear(), extend(), find(), findall(),
findtext(), getchildren(), getiterator(), getnext(), getparent(), getprevious(),
getroottree(), index(), iter(), iterancestors(), iterchildren(), iterdescendants(),
iterfind(), itersiblings(), itertext(), makeelement(), remove(), replace(), xpath()

Inherited from object
__delattr (), format (), _ getattribute (), _hash (), _init (),

__reduce_ (), _reduce_ex_ (), _setattr__ (), __sizeof (), _str_ (),

247

Class CustomElementClassLookup Module Ixml.etree

__subclasshook ()

Properties
Name \ Description
Inherited from lxml.etree. Comment
tag

Inherited from lezml.etree. ContentOnlyElement
attrib, text

Inherited from lxml.etree. Element

base, nsmap, prefix, sourceline, tail

Inherited from object

__class

B.6.8 Class CustomElementClassLookup

object T
Ixml.etree. ElementClassLookup T

Ixml.etree.FallbackElementClassLookup

Ixml.etree.CustomElementClassLookup
Known Subclasses: Ixml.html. HtmlElementClassLookup

CustomElementClassLookup(self, fallback=None) Element class lookup based on a sub-
class method.

You can inherit from this class and override the method:
lookup(self, type, doc, namespace, name)

to lookup the element class for a node. Arguments of the method: * type: one of
‘element’, ’comment’, 'PI’, ’entity’ * doc: document that the node is in * namespace:
namespace URI of the node (or None for comments/Pls/entities) * name: name of the
element /entity, None for comments, target for Pls

If you return None from this method, the fallback will be called.

Methods

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

248

Class DTD Module Ixml.etree

lookup(self, type, doc, namespace, name)

Inherited from lxml.etree. FallbackElementClassLookup(Section B.6.29)
__init_ (), set_ fallback()

Inherited from object
__delattr (), format (), getattribute (), hash (), re-

duce (), reduce ex (), repr_ (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties
Name \ Description
Inherited from lxml.etree. FallbackElementClassLookup (Section B.6.29)
fallback
Inherited from object
__class

B.6.9 Class DTD

object T
Ixml.etree. Validator
Ixml.etree.DTD
DTD(self, file=None, external id=None) A DTD validator.

Can load from filesystem directly given a filename or file-like object. Alternatively, pass
the keyword parameter external_id to load from a catalog.

Methods

__call (self, etree)

Validate doc using the DTD.

Returns true if the document is valid, false if not.

__init_ (self, file=None, external_id=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

249

Class DTDError Module Ixml.etree

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Validator
assertValid(), assert (), validate()
Inherited from object

__delattr (), _ format (), _ getattribute (), ~_hash (), re-
duce (), reduce ex (), _repr (), _setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name Description
Inherited from leml.etree. Validator
error _log
Inherited from object
__class

B.6.10 Class DTDError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError

Ixml.etree. DTDError
Known Subclasses: Ixml.etree. DT DParseError, Ixml.etree. DTDValidateError
Base class for DTD errors.

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)

__init ()

250

Class DTDParseError Module Ixml.etree

Inherited from exceptions.Exception
~_new_ ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__(), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

__format (), ~ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.11 Class DTDParseError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T

Ixml.etree. DTDError
Ixml.etree. DTDParseError

Error while parsing a DTD.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.Exception

251

Class DTDValidateError Module Ixml.etree

new ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce__()7 __repr__(), __Setattr__()7 __setstate__()a __Stl"__()u ___uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzception
args, message
Inherited from object
__class

B.6.12 Class DTDValidateError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T

Ixml.etree. DTDError
Ixml.etree.DTDValidateError

Error while validating an XML document with a DTD.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
__init_ ()
Inherited from exceptions.Exception

new ()

252

Class Doclnfo Module Ixml.etree

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr_ (), __setstate__ (), __str__(), __uni-
code ()

Inherited from object

__format (), __hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzception
args, message
Inherited from object
__class

B.6.13 Class DoclInfo

object
Ixml.etree.DoclInfo

Document information provided by parser and DTD.

Methods
__init (...
X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from object

__delattr (), format (), getattribute (), hash (), re-
duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
str (), __subclasshook ()

253

Class DocumentInvalid

Module Ixml.etree

Properties

Name Description

URL The source URL of the document (or None if
unknown).

doctype Returns a DOCTYPE declaration string for
the document.

encoding Returns the encoding name as declared by
the document.

externalDTD Returns a DTD validator based on the
external subset of the document.

internal DTD Returns a DTD validator based on the
internal subset of the document.

public_id Returns the public ID of the DOCTYPE.

root name

Returns the name of the root node as defined
by the DOCTYPE.

standalone

Returns the standalone flag as declared by
the document. The possible values are True
(standalone=’yes’), False
(standalone="no’ or flag not provided in
the declaration), and None (unknown or no
declaration found). Note that a normal truth
test on this value will always tell if the
standalone flag was set to ’yes’ or not.

system url

Returns the system ID of the DOCTYPE.

xml _version

Returns the XML version as declared by the
document.

Inherited from object
__class

B.6.14 Class DocumentInvalid

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError

Ixml.etree.DocumentInvalid
Validation error.

Raised by all document validators when their assertValid(tree) method fails.

254

Class ETCompatXMLParser Module Ixml.etree

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
_ _new_ ()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr_ _ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.15 Class ETCompatXMLParser

object T
Ixml.etree. BaseParser T
Ixml.etree. FeedParser T

Ixml.etree. XM LParser
Ixml.etree. ETCompatXMLParser

ETCompatXMLParser(self, encoding=None, attribute defaults=False, dtd validation=False,

load dtd=False, no network=True, ns_clean=False, recover=False, schema=None, re-

move blank text=False, resolve entities=True, remove comments=True, remove pis=True,

strip_cdata=True, target=None, compact=True)
An XML parser with an ElementTree compatible default setup.
See the XMLParser class for details.

255

Class ETCompatXMLParser Module Ixml.etree

This parser has remove_comments and remove_pis enabled by default and thus ignores
comments and processing instructions.

Methods

__init_ (self, encoding=None, attribute_ defaults=False,
dtd_ validation=False, load_ dtd=False, no_network=True,
ns_ clean=False, recover=False, schema=None,

remove_ blank _text=False, resolve entities=True,

remove_ comments=True, remove_ pis=True, strip cdata=True,

target=None, compact=True)

X. _init (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

__mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. FeedParser

close(), feed()
Inherited from lxml.etree. BaseParser

copy/(), makeelement(), setElementClassLookup(), set _element class lookup()
Inherited from object

_delattr (), format (), getattribute (), hash (), re-

duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from lxml.etree. FeedParser
feed error_log
Inherited from lxml.etree. BaseParser
error_log, resolvers, version
Inherited from object
__class

256

Class ETXPath Module Ixml.etree

B.6.16 Class ETXPath

object T
Ixml.etree. XPathEvaluatorBase T

Ixml.etree. XPath
Ixml.etree. ETXPath

ETXPath(self, path, extensions=None, regexp=True) Special XPath class that supports
the ElementTree {uri} notation for namespaces.

Note that this class does not accept the namespace keyword argument. All namespaces
must be passed as part of the path string. Smart strings will be returned for string results
unless you pass smart_strings=False.

Methods

__init__ (self, path, extensions=None, regexp=True)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. X Path(Section B.6.63)
_call (), _repr_ ()

Inherited from lxml.etree. XPathFEvaluatorBase
evaluate()

Inherited from object

~_delattr (), format (), getattribute (), __hash (), re-
duce (), _ reduce ex (), setattr (), sizeof (), str (),
__subclasshook ()

Properties

Name \ Description
Inherited from lzml.etree. XPath (Section B.6.63)

continued on next page

257

Class ElementBase Module Ixml.etree

Name \ Description
path
Inherited from lxml.etree. XPathFEvaluatorBase
error_log
Inherited from object
__class

B.6.17 Class ElementBase

object T

Ixml.etree. Element

Ixml.etree.ElementBase

Known Subclasses: Ixml.objectify.ObjectifiedElement, Ixml.html. HtmlElement

kk

ElementBase(*children, attrib=None, nsmap=None, ** extra)

The public Element class. All custom Element classes must inherit from this one. To
create an Element, use the Element () factory.

BIG FAT WARNING: Subclasses must not override __init __ or new _ as it is
absolutely undefined when these objects will be created or destroyed. All persistent state
of Elements must be stored in the underlying XML. If you really need to initialize the
object after creation, you can implement an _init(self) method that will be called

directly after object creation.

Subclasses of this class can be instantiated to create a new Element. By default, the tag
name will be the class name and the namespace will be empty. You can modify this with
the following class attributes:

e TAG - the tag name, possibly containing a namespace in Clark notation

e NAMESPACE - the default namespace URI, unless provided as part of the TAG
attribute.

e HTML - flag if the class is an HTML tag, as opposed to an XML tag. This only
applies to un-namespaced tags and defaults to false (i.e. XML).

e PARSER - the parser that provides the configuration for the newly created docu-
ment. Providing an HTML parser here will default to creating an HTML element.

In user code, the latter three are commonly inherited in class hierarchies that implement
a common namespace.

258

Class ElementChildIterator Module Ixml.etree

Methods

init (attrib=None, nsmap=None, *children, ** extra)

X. _init (...) initializes x; see x. class . doc_ for signature
Overrides: object. init

__mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Element

__contains_ (), _copy (), _deepcopy (), delitem (), getitem (),
_ iter (), __lem (), _ mnonzero (), repr_ (), reversed (),
__setitem (), addnext(), addprevious(), append(), clear(), extend(), find(),
findall(), findtext(), get(), getchildren(), getiterator(), getnext(), getparent(),
getprevious(), getroottree(), index(), insert(), items(), iter(), iterancestors(),
iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(), keys(), ma-
keelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

~delattr (), format (), getattribute (), ~ _hash (), re-
duce (), reduce ex (), setattr (), sizeof (), str (),
__subclasshook ()

Properties

Name \ Description
Inherited from lxml.etree. Element
attrib, base, nsmap, prefix, sourceline, tag, tail, text
Inherited from object
__class

B.6.18 Class ElementChildIterator

object T
Ixml.etree. ElementTagMatcher T

Ixml.etree. ElementlIterator

Ixml.etree.ElementChildIterator

259

Class ElementClassLookup Module Ixml.etree

ElementChildIterator(self, node, tag=None, reversed=False) Iterates over the children of
an element.

Methods

__init_ (self, node, tag=None, reversed=False)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (T, 5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Elementlterator
_ _iter (), __mnext_ (), next()
Inherited from object

__delattr (), format (), _ getattribute (), ~_hash (), re-
duce (), reduce ex (), _repr (), _setattr (), sizeof (),
_str__ (), __subclasshook ()

Properties

Name Description
Inherited from object
__class

B.6.19 Class ElementClassLookup

object
Ixml.etree.ElementClassLookup

Known Subclasses: Ixml.etree.FallbackElementClassLookup, Ixml.etree.ElementDefaultClassLookup
Ixml.objectify.Objectify ElementClassLookup

ElementClassLookup(self) Superclass of Element class lookups.

260

Class ElementDefaultClassLookup Module Ixml.etree

Methods

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from object

__delattr (), format (), getattribute (), _hash (), _init (),
_reduce (), reduce ex (), _repr (), setattr (), sizeof (),
_ str_ (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

B.6.20 Class ElementDefaultClassLookup

object T
Ixml.etree.Element ClassLookup
Ixml.etree.ElementDefault ClassLookup

ElementDefaultClassLookup(self, element=None, comment=None, pi=None, entity=None)
Element class lookup scheme that always returns the default Element class.

The keyword arguments element, comment, pi and entity accept the respective Element
classes.

Methods

__init __ (self, element=None, comment=None, pi=None, entity=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. _init

261

Class ElementDepthFirstlterator Module Ixml.etree

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from object
~delattr (), format (), getattribute (), ~ _hash (), re-

duce (), reduce ex (), repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name Description
comment _ class
element class
entity class
pi_class
Inherited from object
__class

B.6.21 Class ElementDepthFirstIterator

object T
Ixml.etree. ElementTagMatcher
Ixml.etree.ElementDepthFirstIterator

ElementDepthFirstIterator(self, node, tag=None, inclusive=True) Iterates over an ele-
ment and its sub-elements in document order (depth first pre-order).

Note that this also includes comments, entities and processing instructions. To filter
them out, check if the tag property of the returned element is a string (i.e. not None
and not a factory function), or pass the Element factory for the tag keyword.

If the optional tag argument is not None, the iterator returns only the elements that
match the respective name and namespace.

The optional boolean argument ’inclusive’ defaults to True and can be set to False to
exclude the start element itself.

Note that the behaviour of this iterator is completely undefined if the tree it traverses is
modified during iteration.

262

Class ElementNamespaceClassLookup Module Ixml.etree

Methods

__init _ (self, node, tag=None, inclusive=True)

X. _init (...) initializes x; see x. class . doc_ for signature
Overrides: object. init

__iter (..)

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

_next (...

next(z)

Return Value
the next value, or raise Stoplteration

Inherited from object

__delattr (), _ format (), __getattribute (), ~_hash (), re-
duce (), reduce ex (), repr_ (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

B.6.22 Class ElementNamespaceClassLookup

object T
Ixml.etree. ElementClassLookup T

Ixml.etree.FallbackElementClassLookup
Ixml.etree.ElementNamespaceClassLookup

ElementNamespaceClassLookup(self, fallback=None)

263

Class ElementTextIterator Module Ixml.etree

Element class lookup scheme that searches the Element class in the Namespace registry.

Methods

__init (self, fallback=None)

X. _init __ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. _init

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

get namespace(self, ns_ uri)

Retrieve the namespace object associated with the given URI.

Creates a new one if it does not yet exist.

Inherited from lxml.etree. FallbackElementClassLookup (Section B.6.29)
set fallback()
Inherited from object

__delattr (), format (), getattribute (), hash (), re-
duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties
Name \ Description
Inherited from lzml.etree. FallbackElementClassLookup (Section B.6.29)
fallback
Inherited from object
__class

B.6.23 Class ElementTextlIterator

object

Ixml.etree.ElementTextIterator

264

Class ElementTextIterator Module Ixml.etree

ElementTextIterator(self, element, tag=None, with tail=True) Iterates over the text
content of a subtree.

You can pass the tag keyword argument to restrict text content to a specific tag name.

You can set the with_tail keyword argument to False to skip over tail text.

Methods

__init (self, element, tag=None, with_ tail=True)

X. _init (...) initializes x; see x. _class . doc_ _ for signature
Overrides: object. init

__iter (..)

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

_next (...

next(z)

Return Value
the next value, or raise Stoplteration

Inherited from object
~delattr (), format (), getattribute (), ~ hash (), re-

duce (), reduce ex (), _repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

265

Class EntityBase Module Ixml.etree

B.6.24 Class EntityBase

object T
Ixml.etree. Element T
Ixml.etree. ContentOnlyElement T

Ixml.etree. Entity
Ixml.etree.EntityBase
Known Subclasses: Ixml.html. HtmlEntity
All custom Entity classes must inherit from this one.
Note that you cannot (and must not) instantiate this class or its subclasses.

Subclasses must not override __init _ or __mnew__ as it is absolutely undefined when

these objects will be created or destroyed. All persistent state of Entities must be stored
in the underlying XML. If you really need to initialize the object after creation, you can
implement an _init(self) method that will be called after object creation.

Methods

__mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lzxml.etree. Entity

__repr__()

Inherited from lxml.etree. ContentOnlyElement

__delitem (), getitem (), len (), setitem (), append(), get(),
insert(), items(), keys(), set(), values()

Inherited from lxml.etree. Element

__contains__ (), _copy (), _deepcopy (), _iter (), nonzero (),

~_reversed (), addnext(), addprevious(), clear(), extend(), find(), findall(),
findtext(), getchildren(), getiterator(), getnext(), getparent(), getprevious(),
getroottree(), index(), iter(), iterancestors(), iterchildren(), iterdescendants(),
iterfind(), itersiblings(), itertext(), makeelement(), remove(), replace(), xpath()

Inherited from object
__delattr (), format (), _ getattribute (), _hash (), _init (),

266

Class Error

Module Ixml.etree

reduce (), __reduce_ex_ (), __setattr_ (), _sizeof (), __str__ (),

:_subclasshook__ 0

Properties

Name \ Description

Inherited from lxml.etree. Entity
name, tag, text

Inherited from lxml.etree. ContentOnlyElement
attrib

Inherited from lxml.etree. Element
base, nsmap, prefix, sourceline, tail

Inherited from object
__class

B.6.25 Class Error

object T
exceptions.BaseException T

exceptions.Exception

Ixml.etree.Error

Known Subclasses: Ixml.etree.LxmlError

Methods

Inherited from exceptions.Ezxception

__init (), new ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-

duce_ (), __repr__ (), __setattr_ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object
_ format (), hash (), reduce ex (), _ sizeof (), sub-

classhook ()

Properties

267

Class ErrorDomains

Module Ixml.etree

Name Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.26 Class ErrorDomains
Libxml2 error domains
Class Variables

Name Description
C14N Value: 21
CATALOG Value: 20
CHECK Value: 24
DATATYPE Value: 15
DTD Value: 4
FTP Value: 9
HTML Value: 5
HTTP Value: 10
I18N Value: 27
10 Value: 8
MEMORY Value: 6
MODULE Value: 26
NAMESPACE Value: 3
NONE Value: 0
ouTpPUT Value: 7
PARSER Value: 1
REGEXP Value: 14
RELAXNGP Value: 18
RELAXNGV Value: 19
SCHEMASP Value: 16
SCHEMASV Value: 17
SCHEMATRONV Value: 28
TREE Value: 2
VALID Value: 23
WRITER Value: 25
XINCLUDE Value: 11
XPATH Value: 12
XPOINTER Value: 13
XSLT Value: 22

268

Class ErrorTypes

Module Ixml.etree

B.6.27 Class ErrorLevels

Libxml2 error levels

Class Variables

Name Description
ERROR Value: 2
FATAL Value: 3
NONE Value: 0
WARNING Value: 1
B.6.28 Class ErrorTypes
Libxml2 error types
Class Variables
Name Description
C14N CREATE CTXT | Value: 1950
C14N_CREATE STAC- | Value: 1952
K
C14N _INVALID NOD- | Value: 1953
E
C14N_RELATIVE NA- | Value: 1955
MESPACE
C14N_REQUIRES UT- | Value: 1951
F8
C14N UNKNOW NOD- | Value: 1954
E
CATALOG_ ENTRY B- | Value: 1651
ROKEN
CATALOG_MISSING - | Value: 1650
ATTR
CATALOG_NOT _ CAT- | Value: 1653
ALOG
CATALOG PREFER - | Value: 1652
VALUE
CATALOG _ RECURSIO- | Value: 1654
N
CHECK Value: 6005
CHECK ENTITY TY- | Value: 5012
PE
CHECK FOUND_ ATT- | Value: 5001
RIBUTE

269

continued on next page

Class ErrorTypes Module Ixml.etree

Name Description
CHECK FOUND _CDA- | Value: 5003
TA
CHECK FOUND CO- Value: 5007
MMENT
CHECK FOUND DOC- | Value: 5008
TYPE
CHECK FOUND ELE- | Value: 5000
MENT
CHECK FOUND _ ENT- | Value: 5005
ITY
CHECK FOUND ENT- | Value: 5004
ITYREF
CHECK FOUND FRA- | Value: 5009
GMENT
CHECK FOUND NOT- | Value: 5010
ATION

CHECK FOUND_ PI Value: 5006
CHECK FOUND_ TEX- | Value: 5002
T
CHECK NAME NOT- | Value: 5037
~ NULL
CHECK NOT ATTR Value: 5023
CHECK NOT ATTR_ - | Value: 5024

DECL

CHECK NOT_ DTD Value: 5022
CHECK NOT_ ELEM - | Value: 5025
DECL

CHECK NOT ENTIT- | Value: 5026
Y DECL

CHECK NOT NCNA- | Value: 5034
ME

CHECK NOT NS DE- | Value: 5027
CL

CHECK NOT UTFS Value: 5032
CHECK NO_DICT Value: 5033
CHECK NO_ DOC Value: 5014
CHECK NO ELEM Value: 5016
CHECK NO_ HREF Value: 5028
CHECK NO NAME Value: 5015
CHECK NO_ NEXT Value: 5020
CHECK NO PARENT | Value: 5013
CHECK NO_ PREV Value: 5018
CHECK NS ANCEST- | Value: 5031
OR

CHECK NS SCOPE Value: 5030

continued on next page

270

Class ErrorTypes Module Ixml.etree

Name Description
CHECK OUTSIDE DI- | Value: 5035
CT
CHECK UNKNOWN - | Value: 5011
NODE
CHECK WRONG DO- | Value: 5017
C
CHECK WRONG_ NA- | Value: 5036
ME
CHECK WRONG _ NE- | Value: 5021
XT
CHECK WRONG_PA- | Value: 5029
RENT
CHECK WRONG PR- | Value: 5019
EV
CHECK X Value: 6006
DTD ATTRIBUTE D- | Value: 500
EFAULT
DTD ATTRIBUTE_ R- | Value: 501
EDEFINED
DTD ATTRIBUTE V- | Value: 502
ALUE
DTD CONTENT ERR- | Value: 503
OR
DTD_ CONTENT MO- | Value: 504
DEL
DTD CONTENT NOT- | Value: 505
~ DETERMINIST
DTD DIFFERENT PR- | Value: 506
EFIX
DTD DUP TOKEN Value: 541
DTD ELEM DEFAUL- | Value: 507
T NAMESPACE
DTD ELEM NAMESP- | Value: 508
ACE
DTD_ ELEM REDEFI- | Value: 509
NED
DTD EMPTY NOTA- | Value: 510
TION
DTD ENTITY TYPE Value: 511
DTD ID FIXED Value: 512
DTD ID REDEFINED | Value: 513
DTD ID SUBSET Value: 514
DTD INVALID CHIL- | Value: 515
D
DTD INVALID DEFA- | Value: 516
ULT

continued on next page

271

Class ErrorTypes Module Ixml.etree

Name Description
DTD LOAD_ ERROR Value: 517
DTD MISSING ATTR- | Value: 518
IBUTE
DTD MIXED CORRU- | Value: 519
PT
DTD MULTIPLE ID Value: 520
DTD NOTATION RE- | Value: 526

DEFINED

DTD NOTATION VA- | Value: 527
LUE

DTD NOT EMPTY Value: 528

DTD _NOT PCDATA | Value: 529
DTD NOT_STANDAL- | Value: 530

ONE

DTD NO_ DOC Value: 521
DTD NO_DTD Value: 522
DTD NO_ ELEM NA- | Value: 523
ME

DTD NO_ PREFIX Value: 524
DTD NO_ROOT Value: 525

DTD ROOT NAME Value: 531
DTD STANDALONE - | Value: 538
DEFAULTED
DTD STANDALONE - | Value: 532
WHITE SPACE
DTD UNKNOWN AT- | Value: 533

TRIBUTE

DTD UNKNOWN EL- | Value: 534
EM

DTD UNKNOWN_EN- | Value: 535
TITY

DTD_ UNKNOWN ID Value: 536
DTD UNKNOWN NO- | Value: 537
TATION
DTD XMLID TYPE Value: 540
DTD XMLID VALUE | Value: 539
ERR_ATTLIST NOT - | Value: 51
FINISHED
ERR_ATTLIST NOT - | Value: 50
STARTED
ERR ATTRIBUTE N- | Value: 40
OT_FINISHED
ERR ATTRIBUTE N- | Value: 39
OT_ STARTED
ERR ATTRIBUTE R- | Value: 42
EDEFINED

continued on next page

272

Class ErrorTypes Module Ixml.etree

Name Description
ERR_ATTRIBUTE W- | Value: 41
ITHOUT VALUE
ERR _CDATA NOT _ F- | Value: 63

INISHED

ERR_CHARREF AT - | Value: 10
EOF

ERR CHARREF IN - | Value: 13
DTD

ERR CHARREF IN - | Value: 12
EPILOG

ERR _CHARREF IN - | Value: 11
PROLOG

ERR COMMENT NO- | Value: 45
T FINISHED

ERR CONDSEC INV- | Value: 83
ALID

ERR_CONDSEC INV- | Value: 95
ALID KEYWORD
ERR _CONDSEC NOT- | Value: 59

_ FINISHED
ERR_CONDSEC NOT- | Value: 58
_STARTED
ERR_DOCTYPE NOT- | Value: 61
_ FINISHED

ERR_DOCUMENT E- | Value: 4
MPTY

ERR _DOCUMENT EN- | Value: 5
D

ERR DOCUMENT §ST- | Value: 3
ART

ERR_ELEMCONTENT- | Value: 55
_ NOT_FINISHED
ERR_ELEMCONTENT- | Value: 54
_NOT_STARTED
ERR_ENCODING NA- | Value: 79
ME
ERR _ENTITYREF AT- | Value: 14
_EOF
ERR_ENTITYREF IN- | Value: 17
_DTD
ERR_ENTITYREF IN- | Value: 16
_EPILOG
ERR _ENTITYREF IN- | Value: 15
_PROLOG
ERR_ENTITYREF N- | Value: 22
O_NAME

continued on next page

273

Class ErrorTypes

Module Ixml.etree

Name Description
ERR _ENTITYREF SE- | Value: 23
MICOL _MISSING
ERR_ENTITY BOUN- | Value: 90
DARY
ERR_ENTITY CHAR- | Value: 87
~ ERROR
ERR_ENTITY IS EX- | Value: 29
TERNAL
ERR_ENTITY IS PA- | Value: 30
RAMETER
ERR_ENTITY LOOP Value: 89
ERR_ENTITY NOT - | Value: 37
FINISHED
ERR_ENTITY NOT - | Value: 36
STARTED
ERR_ENTITY PE IN- | Value: 88
TERNAL
ERR_ENTITY PROC- | Value: 104
ESSING
ERR EQUAL REQUI- | Value: 75
RED
ERR_EXTRA CONTE- | Value: 86
NT
ERR_EXT ENTITY S- | Value: 82
TANDALONE
ERR_EXT SUBSET - | Value: 60
NOT FINISHED
ERR GT REQUIRED Value: 73
ERR HYPHEN IN C- | Value: 80
OMMENT
ERR_INTERNAL ERR- | Value: 1
OR
ERR INVALID CHAR | Value: 9
ERR INVALID CHAR- | Value: 8
REF
ERR _INVALID DEC - | Value: 7
CHARREF
ERR_INVALID ENCO- | Value: 81
DING
ERR_INVALID HEX - | Value: 6
CHARREF
ERR_INVALID URI Value: 91
ERR_LITERAL NOT - | Value: 44
FINISHED
ERR_LITERAL NOT - | Value: 43

STARTED

274

continued on next page

Class ErrorTypes Module Ixml.etree

Name Description
ERR_LTSLASH REQU- | Value: 74
IRED
ERR LT IN ATTRIB- | Value: 38
UTE

ERR_LT REQUIRED | Value: 72
ERR_MISPLACED C- | Value: 62

DATA END

ERR_MISSING ENCO- | Value: 101
DING

ERR_MIXED NOT FI- | Value: 53
NISHED

ERR_MIXED NOT S- | Value: 52
TARTED

ERR_NAME REQUIR-~ | Value: 68
ED

ERR NMTOKEN RE- | Value: 67
QUIRED

ERR_NOTATION NO- | Value: 49
T FINISHED
ERR_NOTATION NO- | Value: 48
T STARTED

ERR _NOTATION PR~ | Value: 105
OCESSING

ERR_NOT STANDAL- | Value: 103
ONE

ERR_NOT WELL BA- | Value: 85
LANCED

ERR_NO DTD Value: 94

ERR NO MEMORY Value: 2
ERR NS DECL ERR- | Value: 35

OR

ERR OK Value: 0
ERR PCDATA REQU- | Value: 69
IRED

ERR_PEREF AT EO- | Value: 18
F

ERR PEREF IN EPI- | Value: 20
LOG

ERR_PEREF IN INT- | Value: 21
_ SUBSET

ERR_PEREF IN PRO- | Value: 19
LOG

ERR_PEREF NO _ NA- | Value: 24
ME

ERR_PEREF SEMICO- | Value: 25
L MISSING

continued on next page

275

Class ErrorTypes Module Ixml.etree

Name Description
ERR_PI NOT FINISH- | Value: 47
ED
ERR PI NOT STAR- | Value: 46
TED
ERR_PUBID REQUIR- | Value: 71
ED
ERR_RESERVED XM- | Value: 64
L NAME
ERR_SEPARATOR_ R- | Value: 66
EQUIRED
ERR SPACE REQUIR- | Value: 65
ED
ERR_STANDALONE - | Value: 78
VALUE
ERR STRING NOT - | Value: 34
CLOSED
ERR _STRING NOT S- | Value: 33
TARTED
ERR_ TAG NAME MI- | Value: 76
SMATCH
ERR_TAG NOT FINI- | Value: 77
SHED
ERR_UNDECLARED - | Value: 26
ENTITY
ERR_UNKNOWN EN- | Value: 31
CODING
ERR UNKNOWN VE- | Value: 108
RSION
ERR UNPARSED EN- | Value: 28
TITY
ERR_UNSUPPORTED- | Value: 32
~ ENCODING
ERR_URI FRAGMEN- | Value: 92
T
ERR_URI_REQUIRED | Value: 70
ERR_VALUE REQUI- | Value: 84
RED
ERR_VERSION MISM- | Value: 109
ATCH
ERR_VERSION MISSI- | Value: 96
NG
ERR XMLDECL NOT- | Value: 57
_ FINISHED
ERR XMLDECL NOT- | Value: 56
_STARTED
FTP ACCNT Value: 2002

continued on next page

276

Class ErrorTypes Module Ixml.etree

Name Description

FTP EPSV_ANSWER | Value: 2001
FTP PASV_ANSWER | Value: 2000
FTP URL SYNTAX Value: 2003
HTML STRUCURE E- | Value: 800
RROR

HTML UNKNOWN T- | Value: 801
AG

HTTP UNKNOWN_ H- | Value: 2022
OST

HTTP_ URL_ SYNTAX | Value: 2020
HTTP USE IP Value: 2021
[18N_ CONV _FAILED Value: 6003
[18N EXCESS HAND- | Value: 6002
LER

[18N_ NO HANDLER Value: 6001
[18N_ NO NAME Value: 6000
[18N_NO_ OUTPUT Value: 6004
I0 BUFFER FULL Value: 1548
10 _EACCES Value: 1501
I0 EADDRINUSE Value: 1554
I0 EAFNOSUPPORT Value: 1556
10 EAGAIN Value: 1502
10 EALREADY Value: 1555
10 EBADF Value: 1503
10 _EBADMSG Value: 1504
10 EBUSY Value: 1505
10 _ECANCELED Value: 1506
10 _ECHILD Value: 1507
I0 ECONNREFUSED Value: 1552
10 EDEADLK Value: 1508
10 _EDOM Value: 1509
[0 EEXIST Value: 1510
[0 _EFAULT Value: 1511
10 _EFBIG Value: 1512
10 EINPROGRESS Value: 1513
10 _EINTR Value: 1514
10 _EINVAL Value: 1515
I0_EIO Value: 1516
[0 _EISCONN Value: 1551
10 _EISDIR Value: 1517
10 EMFILE Value: 1518
10 EMLINK Value: 1519
10 EMSGSIZE Value: 1520
[0 ENAMETOOLONG | Value: 1521
10 _ENCODER Value: 1544
I0 ENETUNREACH Value: 1553

continued on next page

277

Class ErrorTypes Module Ixml.etree

Name Description
10 _ENFILE Value: 1522
10 _ENODEV Value: 1523
[0 _ENOENT Value: 1524
[0 _ENOEXEC Value: 1525
I0 ENOLCK Value: 1526
10 ENOMEM Value: 1527
10 _ENOSPC Value: 1528
10 _ENOSYS Value: 1529
I0 _ENOTDIR Value: 1530
[0 _ENOTEMPTY Value: 1531
I0 ENOTSOCK Value: 1550
[0 _ENOTSUP Value: 1532
I0 _ENOTTY Value: 1533
10 ENXIO Value: 1534
10 EPERM Value: 1535
10 EPIPE Value: 1536
[0 ERANGE Value: 1537
10 _EROFS Value: 1538
10 _ESPIPE Value: 1539
10 ESRCH Value: 1540
10 ETIMEDOUT Value: 1541
10 EXDEV Value: 1542
10 FLUSH Value: 1545
I0 LOAD_ ERROR Value: 1549
IO _NETWORK ATTE- | Value: 1543
MPT
[0 _NO_INPUT Value: 1547
[0 UNKNOWN Value: 1500
I0_WRITE Value: 1546
MODULE CLOSE Value: 4901
MODULE OPEN Value: 4900
NS ERR_ATTRIBUTE- | Value: 203
_ REDEFINED
NS ERR_COLON Value: 205
NS ERR_EMPTY Value: 204
NS ERR_ QNAME Value: 202
NS ERR_ UNDEFINED- | Value: 201
~ NAMESPACE
NS ERR XML NAME- | Value: 200
SPACE
REGEXP COMPILE - | Value: 1450
ERROR
RNGP ANYNAME A- | Value: 1000
TTR ANCESTOR
RNGP ATTRIBUTE - | Value: 1002
CHILDREN

continued on next page

278

Class ErrorTypes Module Ixml.etree

Name Description
RNGP_ ATTRIBUTE - | Value: 1003
CONTENT
RNGP_ ATTRIBUTE - | Value: 1004
EMPTY
RNGP ATTRIBUTE - | Value: 1005
NOOP
RNGP ATTR_CONFL- | Value: 1001
ICT
RNGP_CHOICE CON- | Value: 1006
TENT
RNGP_CHOICE EMP- | Value: 1007
TY
RNGP CREATE_ FAIL- | Value: 1008
URE
RNGP DATA CONTE- | Value: 1009
NT
RNGP DEFINE CRE- | Value: 1011
ATE FAILED
RNGP_ DEFINE EMP- | Value: 1012
TY
RNGP_DEFINE MISSI- | Value: 1013
NG
RNGP_ DEFINE NAM- | Value: 1014
E_MISSING

RNGP_ DEF CHOICE- | Value: 1010
_AND_INTERLEAVE
RNGP_ ELEMENT CO- | Value: 1018

NTENT

RNGP ELEMENT EM- | Value: 1017
PTY

RNGP ELEMENT NA- | Value: 1019
ME

RNGP ELEMENT NO- | Value: 1020
_CONTENT

RNGP_ ELEM CONTE- | Value: 1015
NT EMPTY

RNGP ELEM CONTE- | Value: 1016
NT ERROR

RNGP_ ELEM TEXT - | Value: 1021
CONFLICT

RNGP_ EMPTY Value: 1022
RNGP EMPTY CONS- | Value: 1023
TRUCT

RNGP_EMPTY CONT- | Value: 1024
ENT

continued on next page

279

Class ErrorTypes Module Ixml.etree

Name Description
RNGP_EMPTY NOT- | Value: 1025
_EMPTY
RNGP ERROR_ TYPE- | Value: 1026

LIB
RNGP EXCEPT EMP- | Value: 1027
TY
RNGP EXCEPT MISS- | Value: 1028
ING
RNGP_ EXCEPT_ MUL- | Value: 1029
TIPLE
RNGP EXCEPT NO - | Value: 1030
CONTENT
RNGP EXTERNALRE- | Value: 1031
F_EMTPY
RNGP EXTERNALRE- | Value: 1033
F RECURSE
RNGP_ EXTERNAL R- | Value: 1032
EF FAILURE
RNGP_ FORBIDDEN - | Value: 1034
ATTRIBUTE
RNGP FOREIGN ELE- | Value: 1035
MENT
RNGP GRAMMAR C- | Value: 1036
ONTENT
RNGP GRAMMAR E- | Value: 1037
MPTY
RNGP GRAMMAR M- | Value: 1038
ISSING
RNGP _GRAMMAR N- | Value: 1039
O START
RNGP GROUP_ ATTR- | Value: 1040
_ CONFLICT
RNGP_ HREF ERROR | Value: 1041
RNGP INCLUDE EM- | Value: 1042
PTY
RNGP INCLUDE FAI- | Value: 1043
LURE
RNGP INCLUDE RE- | Value: 1044
CURSE
RNGP INTERLEAVE- | Value: 1045
_ADD
RNGP INTERLEAVE- | Value: 1046
_ CREATE_FAILED
RNGP INTERLEAVE- | Value: 1047
_EMPTY

continued on next page

280

Class ErrorTypes Module Ixml.etree

Name Description
RNGP_ INTERLEAVE- Value: 1048
~NO_ CONTENT
RNGP _INVALID DEF- | Value: 1049
INE NAME
RNGP_ INVALID URI Value: 1050
RNGP_ INVALID VAL- | Value: 1051

UE

RNGP_ MISSING HRE- | Value: 1052
F

RNGP_ NAME MISSIN- | Value: 1053
G

RNGP_NEED COMBI- | Value: 1054
NE

RNGP NOTALLOWED- | Value: 1055
NOT EMPTY

RNGP NSNAME ATT- | Value: 1056
R ANCESTOR

RNGP_ NSNAME NO - | Value: 1057
NS

RNGP_ PARAM_ FORB- | Value: 1058
IDDEN

RNGP PARAM NAM- | Value: 1059
E_ MISSING

RNGP PARENTREF - | Value: 1060
CREATE_FAILED
RNGP_PARENTREF - | Value: 1061
NAME INVALID
RNGP PARENTREF - | Value: 1064
NOT EMPTY
RNGP PARENTREF - | Value: 1062
NO NAME
RNGP PARENTREF - | Value: 1063
NO PARENT
RNGP_ PARSE ERRO- | Value: 1065
R
RNGP_PAT ANYNA- Value: 1066
ME EXCEPT ANYNA-

ME

RNGP PAT ATTR _ A- | Value: 1067
TTR

RNGP PAT ATTR E- | Value: 1068
LEM

RNGP_ PAT DATA E- | Value: 1069
XCEPT ATTR

RNGP_ PAT DATA E- | Value: 1070
XCEPT ELEM

continued on next page

281

Class ErrorTypes Module Ixml.etree

Name Description
RNGP_PAT DATA E- | Value: 1071
XCEPT EMPTY
RNGP PAT DATA E- | Value: 1072
XCEPT GROUP
RNGP PAT DATA E- | Value: 1073
XCEPT INTERLEAVE
RNGP_ PAT DATA E- | Value: 1074
XCEPT _LIST
RNGP_ PAT DATA E- | Value: 1075
XCEPT ONEMORE
RNGP PAT DATA E- | Value: 1076

XCEPT REF
RNGP PAT DATA E- | Value: 1077
XCEPT TEXT

RNGP PAT LIST AT- | Value: 1078
TR

RNGP_ PAT LIST EL- | Value: 1079
EM

RNGP_ PAT LIST IN- | Value: 1080
TERLEAVE

RNGP PAT LIST LI- | Value: 1081
ST

RNGP_ PAT LIST RE- | Value: 1082
F

RNGP_ PAT LIST TE- | Value: 1083
XT

RNGP_PAT NSNAME- | Value: 1084
~ EXCEPT ANYNAME
RNGP PAT NSNAME- | Value: 1085
~ EXCEPT NSNAME
RNGP PAT ONEMO- | Value: 1086
RE GROUP_ ATTR
RNGP_ PAT ONEMO- | Value: 1087
RE_INTERLEAVE AT-

TR

RNGP_ PAT START - | Value: 1088
ATTR

RNGP_ PAT START - | Value: 1089
DATA

RNGP_ PAT START - | Value: 1090
EMPTY

RNGP PAT START - | Value: 1091
GROUP

RNGP_PAT START - | Value: 1092
INTERLEAVE

continued on next page

282

Class ErrorTypes Module Ixml.etree

Name Description
RNGP_PAT START - | Value: 1093
LIST
RNGP_PAT START - | Value: 1094
ONEMORE
RNGP_ PAT START - | Value: 1095
TEXT
RNGP_ PAT START - | Value: 1096
VALUE
RNGP_ PREFIX UND- | Value: 1097
EFINED
RNGP REF CREATE- | Value: 1098
_FAILED

RNGP_REF CYCLE Value: 1099
RNGP_ REF NAME I- | Value: 1100
NVALID
RNGP_ REF NOT_ EM- | Value: 1103
PTY
RNGP_REF NO_ DEF | Value: 1101
RNGP REF NO NA- Value: 1102
ME
RNGP_START CHOI- | Value: 1104
CE_AND_ INTERLEA-

VE

RNGP_ START CONT- | Value: 1105
ENT

RNGP_START_ EMPT- | Value: 1106
Y

RNGP_ START MISSI- | Value: 1107
NG

RNGP TEXT EXPEC- | Value: 1108
TED

RNGP_ TEXT HAS C- | Value: 1109
HILD

RNGP_TYPE MISSIN- | Value: 1110
G

RNGP_TYPE NOT F- | Value: 1111
OUND

RNGP_TYPE VALUE | Value: 1112
RNGP_UNKNOWN_A- | Value: 1113

TTRIBUTE

RNGP UNKNOWN C- | Value: 1114
OMBINE

RNGP_ UNKNOWN C- | Value: 1115
ONSTRUCT

RNGP_UNKNOWN T- | Value: 1116
YPE LIB

continued on next page

283

Class ErrorTypes Module Ixml.etree

Name Description
RNGP_ URI FRAGME- | Value: 1117
NT
RNGP URI NOT AB- | Value: 1118
SOLUTE
RNGP_ VALUE EMPT- | Value: 1119
Y
RNGP_ VALUE NO_ C- | Value: 1120
ONTENT
RNGP_ XMLNS NAME | Value: 1121
RNGP_ XML NS Value: 1122
SAVE CHAR INVALI- | Value: 1401
D
SAVE NOT UTFS Value: 1400

SAVE NO_ DOCTYPE | Value: 1402
SAVE UNKNOWN E- | Value: 1403
NCODING
SCHEMAP AG_ PROP- | Value: 3087
S CORRECT
SCHEMAP ATTRFOR- | Value: 1701
MDEFAULT VALUE
SCHEMAP ATTRGRP- | Value: 1702
~ NONAME NOREF
SCHEMAP ATTR _ NO- | Value: 1703
NAME NOREF
SCHEMAP AU PROP- | Value: 3089
S CORRECT
SCHEMAP AU _ PROP- | Value: 3078
S CORRECT 2
SCHEMAP A PROPS- | Value: 3079
~ CORRECT 2
SCHEMAP A PROPS- | Value: 3090
_ CORRECT _3
SCHEMAP COMPLEX- | Value: 1704
TYPE NONAME NO-
REF

SCHEMAP COS _ ALL- | Value: 3091
_LIMITED
SCHEMAP COS_CT - | Value: 3063
EXTENDS 1 1
SCHEMAP COS _CT - | Value: 3088
EXTENDS 1 2
SCHEMAP COS_CT - | Value: 1800
EXTENDS 1 3
SCHEMAP COS ST - | Value: 3031
DERIVED OK 2 1

continued on next page

284

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP COS_ ST - | Value: 3032
DERIVED OK 2 2
SCHEMAP COS ST - | Value: 3011
RESTRICTS 1 1
SCHEMAP COS ST - | Value: 3012
RESTRICTS 1 2
SCHEMAP COS_ST - | Value: 3013
RESTRICTS 1 3 1
SCHEMAP COS_ST - | Value: 3014
RESTRICTS 1 3 2
SCHEMAP COS ST - | Value: 3015
RESTRICTS 2 1
SCHEMAP COS ST - | Value: 3016
RESTRICTS 2 3 1 1
SCHEMAP COS ST - | Value: 3017
RESTRICTS 2 3 1 2
SCHEMAP COS_ ST - | Value: 3018
RESTRICTS 2 3 2 1
SCHEMAP COS ST - | Value: 3019
RESTRICTS 2 3 2 2
SCHEMAP COS_ST - | Value: 3020
RESTRICTS 2 3 2 3
SCHEMAP COS_ST - | Value: 3021
RESTRICTS 2 3 2 4
SCHEMAP COS_ST - | Value: 3022
RESTRICTS 2 3 2 5
SCHEMAP COS_ ST - | Value: 3023
RESTRICTS 3 1
SCHEMAP COS ST - | Value: 3024
RESTRICTS 3 3 1
SCHEMAP COS ST - | Value: 3025
RESTRICTS 3 3 1 2
SCHEMAP COS_ ST - | Value: 3027
RESTRICTS 3 3 2 1
SCHEMAP COS ST - | Value: 3026
RESTRICTS 3 3 2 2
SCHEMAP COS ST - | Value: 3028
RESTRICTS 3 3 2 3
SCHEMAP COS ST - | Value: 3029
RESTRICTS 3 3 2 4
SCHEMAP COS ST - | Value: 3030
RESTRICTS 3 3 2 5
SCHEMAP COS_VALI- | Value: 3058
D DEFAULT 1
SCHEMAP COS_VALI- | Value: 3059

D DEFAULT 2 1

continued on next page

285

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP COS_VALI- | Value: 3060
D DEFAULT 2 2 1
SCHEMAP COS_VALI- | Value: 3061
D DEFAULT 2 2 2
SCHEMAP CT PROP- | Value: 1782
S CORRECT 1
SCHEMAP CT_ PROP- | Value: 1783
S CORRECT 2
SCHEMAP CT PROP- | Value: 1784
S CORRECT 3
SCHEMAP CT_ PROP- | Value: 1785
S CORRECT 4
SCHEMAP CT PROP- | Value: 1786
S CORRECT 5
SCHEMAP CVC_SIM- | Value: 3062

PLE TYPE

SCHEMAP C PROPS- | Value: 3080
_CORRECT

SCHEMAP DEF AND- | Value: 1768
~ PREFIX

SCHEMAP DERIVATI- | Value: 1787
ON_ OK_ RESTRICTIO-
N 1

SCHEMAP DERIVATI- | Value: 1788
ON_OK_RESTRICTIO-
N 211

SCHEMAP DERIVATI- | Value: 1789
ON_ OK RESTRICTIO-
N 212

SCHEMAP DERIVATI- | Value: 3077
ON_ OK_ RESTRICTIO-
N 2 13

SCHEMAP DERIVATI- | Value: 1790
ON_OK_RESTRICTIO-
N 2 2

SCHEMAP DERIVATI- | Value: 1791
ON_ OK_ RESTRICTIO-
N 3

SCHEMAP DERIVATI- | Value: 1797
ON_ OK_ RESTRICTIO-
N 4 1

SCHEMAP DERIVATI- | Value: 1798
ON_OK_ RESTRICTIO-
N 4 2

continued on next page

286

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP DERIVATI- | Value: 1799
ON_ OK RESTRICTIO-
N 4 3
SCHEMAP ELEMFOR- | Value: 1705
MDEFAULT VALUE
SCHEMAP ELEM DE- | Value: 1755
FAULT FIXED
SCHEMAP ELEM NO- | Value: 1706
NAME NOREF
SCHEMAP EXTENSIO- | Value: 1707

N NO_BASE

SCHEMAP E PROPS- | Value: 3045
_ CORRECT 2
SCHEMAP E PROPS- | Value: 3046
_ CORRECT 3
SCHEMAP E_ PROPS- | Value: 3047
_CORRECT 4
SCHEMAP E PROPS- | Value: 3048
_ CORRECT 5
SCHEMAP E PROPS- | Value: 3049
_ CORRECT 6

SCHEMAP FACET N- | Value: 1708
O VALUE

SCHEMAP FAILED B- | Value: 1709
UILD IMPORT
SCHEMAP FAILED L- | Value: 1757
OAD
SCHEMAP FAILED P- | Value: 1766
ARSE
SCHEMAP GROUP _ N- | Value: 1710
ONAME NOREF
SCHEMAP IMPORT - | Value: 1711
NAMESPACE NOT U-
RI

SCHEMAP IMPORT - | Value: 1712
REDEFINE NSNAME
SCHEMAP IMPORT - | Value: 1713
SCHEMA NOT URI
SCHEMAP INCLUDE- | Value: 1770
~SCHEMA NOT URI
SCHEMAP INCLUDE- | Value: 1771
_SCHEMA NO_URI
SCHEMAP INTERNAL | Value: 3069
SCHEMAP INTERSEC- | Value: 1793
TION NOT EXPRESS-
IBLE

continued on next page

287

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP INVALID - | Value: 1777
ATTR__COMBINATIO-
N
SCHEMAP INVALID - | Value: 1778
ATTR_ INLINE COMB-

INATION

SCHEMAP INVALID - | Value: 1780
ATTR_NAME

SCHEMAP INVALID - | Value: 1774
ATTR USE

SCHEMAP INVALID - | Value: 1714
BOOLEAN

SCHEMAP INVALID - | Value: 1715
ENUM

SCHEMAP INVALID - | Value: 1716
FACET

SCHEMAP INVALID - | Value: 1717
FACET VALUE
SCHEMAP INVALID - | Value: 1718
MAXOCCURS
SCHEMAP INVALID - | Value: 1719
MINOCCURS
SCHEMAP INVALID - | Value: 1720
REF AND SUBTYPE
SCHEMAP INVALID - | Value: 1721
WHITE SPACE
SCHEMAP MG _ PROP- | Value: 3074
S CORRECT 1
SCHEMAP MG PROP- | Value: 3075
S CORRECT 2
SCHEMAP MISSING - | Value: 1779
SIMPLETYPE CHILD
SCHEMAP NOATTR - | Value: 1722
NOREF
SCHEMAP NOROOT Value: 1759
SCHEMAP NOTATIO- | Value: 1723
N NO_NAME
SCHEMAP NOTHING- | Value: 1758
~TO_ PARSE
SCHEMAP NOTYPE - | Value: 1724
NOREF
SCHEMAP NOT DET- | Value: 3070
ERMINISTIC
SCHEMAP NOT _ SCH- | Value: 1772
EMA

continued on next page

288

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP NO_ XMLN- | Value: 3056
S
SCHEMAP NO XSI Value: 3057
SCHEMAP PREFIX U- | Value: 1700

NDEFINED

SCHEMAP P PROPS- | Value: 3042
_ CORRECT 1
SCHEMAP P PROPS- | Value: 3043
_CORRECT _2 1

SCHEMAP P PROPS- | Value: 3044
~CORRECT 2 2
SCHEMAP RECURSIV- | Value: 1775
E
SCHEMAP REDEFINE- | Value: 1764
D ATTR
SCHEMAP REDEFINE- | Value: 1763
D ATTRGROUP
SCHEMAP REDEFINE- | Value: 1762

D_ELEMENT

SCHEMAP_ REDEFINE- | Value: 1760
D _GROUP

SCHEMAP REDEFINE- | Value: 1765
D NOTATION

SCHEMAP REDEFINE- | Value: 1761
D TYPE

SCHEMAP REF_AND- | Value: 1781
_CONTENT

SCHEMAP REF_AND- | Value: 1725
_SUBTYPE

SCHEMAP REGEXP - | Value: 1756
INVALID

SCHEMAP RESTRICT- | Value: 1726
ION_NONAME NORE-
F

SCHEMAP S4S ATTR- | Value: 3037
_INVALID VALUE
SCHEMAP S4S ATTR- | Value: 3036
~ MISSING
SCHEMAP S4S ATTR- | Value: 3035
~NOT ALLOWED
SCHEMAP S4S ELEM- | Value: 3034
_ MISSING
SCHEMAP S4S ELEM- | Value: 3033
~NOT ALLOWED
SCHEMAP SIMPLETY- | Value: 1727
PE NONAME

continued on next page

289

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP SRC_ ATT- | Value: 3051
RIBUTE 1
SCHEMAP SRC_ ATT- | Value: 3052
RIBUTE 2
SCHEMAP SRC ATT- | Value: 3053
RIBUTE 3 1
SCHEMAP SRC_ ATT- | Value: 3054
RIBUTE 3 2
SCHEMAP SRC ATT- | Value: 3055
RIBUTE 4

SCHEMAP SRC_ ATT- | Value: 3071
RIBUTE GROUP 1
SCHEMAP SRC ATT- | Value: 3072
RIBUTE GROUP 2
SCHEMAP SRC ATT- | Value: 3073
RIBUTE GROUP _3
SCHEMAP SRC CT - | Value: 3076
1
SCHEMAP SRC ELE- | Value: 3038

MENT 1

SCHEMAP SRC ELE- | Value: 3039
MENT 2 1

SCHEMAP SRC ELE- | Value: 3040
MENT 2 2

SCHEMAP SRC ELE- | Value: 3041
MENT 3

SCHEMAP SRC IMP- | Value: 3082
ORT

SCHEMAP SRC IMP- | Value: 3064
ORT 1 1

SCHEMAP SRC IMP- | Value: 3065
ORT 1 2

SCHEMAP SRC IMP- | Value: 3066
ORT _2

SCHEMAP SRC IMP- | Value: 3067
ORT 2 1

SCHEMAP SRC IMP- | Value: 3068
ORT 2 2

SCHEMAP SRC IMP- | Value: 1795
ORT 3 1

SCHEMAP SRC IMP- | Value: 1796
ORT 3 2

SCHEMAP SRC INCL- | Value: 3050
UDE

continued on next page

290

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP SRC _LIST- | Value: 3006
ITEMTYPE OR_SIM-

PLETYPE

SCHEMAP SRC RED- | Value: 3081
EFINE

SCHEMAP SRC RES- | Value: 3004
OLVE

SCHEMAP SRC_ RES- | Value: 3005
TRICTION BASE OR-
_ SIMPLETYPE
SCHEMAP SRC_SIMP- | Value: 3000
LE TYPE 1
SCHEMAP SRC_ SIMP- | Value: 3001
LE TYPE 2
SCHEMAP SRC SIMP- | Value: 3002
LE TYPE 3
SCHEMAP SRC _SIMP- | Value: 3003
LE TYPE 4
SCHEMAP SRC UNI- | Value: 3007
ON_ MEMBERTYPES -
OR_SIMPLETYPES
SCHEMAP ST PROP- | Value: 3008
S CORRECT 1
SCHEMAP ST PROP- | Value: 3009
S CORRECT 2
SCHEMAP ST PROP- | Value: 3010
S_CORRECT _3
SCHEMAP SUPERNU- | Value: 1776
MEROUS LIST ITEM-
_TYPE

SCHEMAP TYPE AN- | Value: 1728
D SUBTYPE
SCHEMAP UNION N- | Value: 1794
OT _EXPRESSIBLE
SCHEMAP UNKNOW- | Value: 1729
N ALL CHILD
SCHEMAP UNKNOW- | Value: 1730
N ANYATTRIBUTE -
CHILD

SCHEMAP UNKNOW- | Value: 1732
N ATTRGRP_CHILD
SCHEMAP UNKNOW- | Value: 1733
N _ ATTRIBUTE GRO-
UPpP

SCHEMAP UNKNOW- | Value: 1731
N ATTR_CHILD

continued on next page

291

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP UNKNOW- | Value: 1734
N BASE TYPE
SCHEMAP UNKNOW- | Value: 1735
N CHOICE CHILD
SCHEMAP UNKNOW- | Value: 1736
N COMPLEXCONTEN-
T CHILD
SCHEMAP UNKNOW- | Value: 1737
N COMPLEXTYPE C-
HILD
SCHEMAP UNKNOW- | Value: 1738
N ELEM CHILD
SCHEMAP UNKNOW- | Value: 1739
N EXTENSION CHIL-
D
SCHEMAP UNKNOW- | Value: 1740
N FACET _ CHILD
SCHEMAP UNKNOW- | Value: 1741
N FACET_ TYPE
SCHEMAP UNKNOW- | Value: 1742
N GROUP_CHILD
SCHEMAP UNKNOW- | Value: 1743
N IMPORT CHILD
SCHEMAP UNKNOW- | Value: 1769
N INCLUDE CHILD
SCHEMAP UNKNOW- | Value: 1744
N LIST CHILD
SCHEMAP UNKNOW- | Value: 1773
N MEMBER_ TYPE
SCHEMAP UNKNOW- | Value: 1745
N NOTATION CHILD
SCHEMAP UNKNOW- | Value: 1767
N PREFIX
SCHEMAP UNKNOW- | Value: 1746
N PROCESSCONTEN-
T CHILD
SCHEMAP UNKNOW- | Value: 1747
N REF
SCHEMAP UNKNOW- | Value: 1748
N RESTRICTION CH-
ILD
SCHEMAP UNKNOW- | Value: 1749
N SCHEMAS CHILD
SCHEMAP UNKNOW- | Value: 1750
N SEQUENCE CHILD

continued on next page

292

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAP UNKNOW- | Value: 1751
N SIMPLECONTENT-
~ CHILD
SCHEMAP UNKNOW- | Value: 1752
N _ SIMPLETYPE CHI-
LD
SCHEMAP UNKNOW- | Value: 1753
N TYPE
SCHEMAP UNKNOW- | Value: 1754
N_ UNION CHILD
SCHEMAP WARN A- | Value: 3086
TTR_ POINTLESS PR-
OH
SCHEMAP WARN A- | Value: 3085
TTR _REDECL PROH
SCHEMAP WARN SK- | Value: 3083
I[P SCHEMA
SCHEMAP WARN U- | Value: 3084
NLOCATED SCHEMA
SCHEMAP WILDCAR- | Value: 1792
D INVALID NS ME-

MBER

SCHEMATRONV ASS- | Value: 4000
ERT

SCHEMATRONV REP- | Value: 4001
ORT

SCHEMAV ATTRINV- | Value: 1821
ALID

SCHEMAV ATTRUNK- | Value: 1820
NOWN

SCHEMAV CONSTRU- | Value: 1817
CT

SCHEMAV CVC_ATT- | Value: 1861
RIBUTE 1

SCHEMAV CVC_ ATT- | Value: 1862
RIBUTE 2

SCHEMAV CVC_ATT- | Value: 1863
RIBUTE 3

SCHEMAV CVC_ATT- | Value: 1864
RIBUTE 4

SCHEMAV CVC_ AU Value: 1874
SCHEMAV CVC_CO- Value: 1873
MPLEX TYPE 1
SCHEMAV CVC_CO- Value: 1841
MPLEX TYPE 2 1

continued on next page

293

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAV CVC_CO- Value: 1842
MPLEX TYPE 2 2
SCHEMAV CVC_CO- Value: 1843
MPLEX TYPE 2 3
SCHEMAV CVC_CO- Value: 1844
MPLEX TYPE 2 4
SCHEMAV CVC_CO- Value: 1865
MPLEX TYPE 3 1
SCHEMAV CVC_CO- Value: 1866
MPLEX TYPE 3 2 1
SCHEMAV CVC_CO- Value: 1867
MPLEX TYPE 3 2 2
SCHEMAV CVC_CO- Value: 1868
MPLEX TYPE 4
SCHEMAV CVC_CO- Value: 1869
MPLEX TYPE 5 1
SCHEMAV CVC_CO- Value: 1870
MPLEX TYPE 5 2
SCHEMAV CVC_DAT- | Value: 1824
ATYPE _VALID 1 2 -
1
SCHEMAV CVC_DAT- | Value: 1825
ATYPE VALID 1 2 -
2
SCHEMAV CVC_DAT- | Value: 1826
ATYPE VALID 1 2 -
3
SCHEMAV CVC_ELT- | Value: 1845
1
SCHEMAV CVC_ ELT- | Value: 1846
2
SCHEMAV CVC_ELT- | Value: 1847

§§EEMAV_CVC_ELT- Value: 1848

S_cgﬁémlAv_cvc_ELT- Value: 1849

s_gﬁ%MzAv_cvc_ELT- Value: 1850

s_éﬁll«:MAv_cvc_ELT- Value: 1851

s_éﬁéMAv_cvc_ELT- Value: 1852
4 3

SCHEMAV CVC_ELT- | Value: 1853
5 11

continued on next page

294

Class ErrorTypes Module Ixml.etree

Name Description
SCHEMAV CVC_ELT- | Value: 1854
5 1 2
SCHEMAV CVC_ELT- | Value: 1855
5 21
SCHEMAV CVC_ELT- | Value: 1856
5 2 21
SCHEMAV CVC_ELT- | Value: 1857
5 2 2 21
SCHEMAV CVC_ELT- | Value: 1858

5.2 2 2 2

SCHEMAV CVC_ELT- | Value: 1859

6
SCHEMAV CVC_ELT- | Value: 1860

7
SCHEMAV CVC_ ENU- | Value: 1840
MERATION VALID
SCHEMAV CVC_FAC- | Value: 1829
ET_VALID
SCHEMAV CVC_FRA- | Value: 1838
CTIONDIGITS VALID
SCHEMAV CVC _IDC Value: 1877
SCHEMAV CVC_LEN- | Value: 1830
GTH_ VALID
SCHEMAV CVC_MA- | Value: 1836
XEXCLUSIVE _VALID
SCHEMAV CVC_MA- | Value: 1834
XINCLUSIVE _VALID
SCHEMAV CVC_MA- | Value: 1832
XLENGTH_ VALID
SCHEMAV CVC_MIN- | Value: 1835
EXCLUSIVE _VALID
SCHEMAV CVC_MIN- | Value: 1833
INCLUSIVE VALID
SCHEMAV CVC_MIN- | Value: 1831
LENGTH VALID
SCHEMAV CVC_PAT- | Value: 1839
TERN _VALID
SCHEMAV CVC_TOT- | Value: 1837
ALDIGITS VALID
SCHEMAV CVC_TYP- | Value: 1875

E 1

SCHEMAV CVC_TYP- | Value: 1876
E 2

SCHEMAV CVC_TYP- | Value: 1827
E 3 11

continued on next page

295

Class ErrorTypes

Module Ixml.etree

Name Description
SCHEMAV CVC_TYP- | Value: 1828
E 3 12
SCHEMAV CVC_WIL- | Value: 1878
DCARD
SCHEMAV DOCUME- | Value: 1872
NT ELEMENT MISSI-

NG

SCHEMAV ELEMCON- | Value: 1810
T

SCHEMAV ELEMENT- | Value: 1871
_ CONTENT

SCHEMAV EXTRACO- | Value: 1813
NTENT

SCHEMAV FACET Value: 1823
SCHEMAV HAVEDEF- | Value: 1811
AULT

SCHEMAV INTERNA- | Value: 1818
L

SCHEMAV INVALIDA- | Value: 1814
TTR

SCHEMAV INVALIDE- | Value: 1815
LEM

SCHEMAV ISABSTRA- | Value: 1808
CT

SCHEMAV MISC Value: 1879
SCHEMAYV _MISSING Value: 1804
SCHEMAV NOROLLB- | Value: 1807
ACK

SCHEMAV NOROOT Value: 1801
SCHEMAV NOTDETE- | Value: 1816
RMINIST

SCHEMAV NOTEMPT- | Value: 1809
Y

SCHEMAV NOTNILL- | Value: 1812
ABLE

SCHEMAV NOTSIMP- | Value: 1819
LE

SCHEMAV NOTTOPL- | Value: 1803
EVEL

SCHEMAV NOTYPE Value: 1806
SCHEMAV UNDECLA- | Value: 1802
REDELEM

SCHEMAV VALUE Value: 1822
SCHEMAV WRONGE- | Value: 1805
LEM

TREE INVALID DEC | Value: 1301

296

continued on next page

Class ErrorTypes Module Ixml.etree

Name Description
TREE INVALID HEX | Value: 1300
TREE NOT UTFS Value: 1303
TREE UNTERMINAT- | Value: 1302
ED_ ENTITY

WAR CATALOG PI Value: 93
WAR_ ENTITY REDE- | Value: 107
FINED
WAR LANG_ VALUE Value: 98
WAR NS COLUMN Value: 106

WAR NS URI Value: 99
WAR NS URI RELA- | Value: 100
TIVE

WAR SPACE VALUE | Value: 102
WAR_ UNDECLARED- Value: 27
_ENTITY
WAR_ UNKNOWN VE- | Value: 97
RSION
XINCLUDE BUILD F- | Value: 1609
AILED
XINCLUDE DEPRECA- | Value: 1617
TED NS
XINCLUDE ENTITY - | Value: 1602
DEF MISMATCH
XINCLUDE FALLBAC- | Value: 1615
KS IN INCLUDE
XINCLUDE FALLBAC- | Value: 1616
K NOT IN INCLUDE
XINCLUDE FRAGME- | Value: 1618

NT ID
XINCLUDE_HREF_U- | Value: 1605
RI

XINCLUDE INCLUDE- | Value: 1614
_IN_INCLUDE

XINCLUDE INVALID- | Value: 1608
_CHAR

XINCLUDE_MULTIPL- | Value: 1611
E_ROOT

XINCLUDE_NO_FALL- | Value: 1604
BACK

XINCLUDE_NO_HRE- | Value: 1603
F

XINCLUDE PARSE V- | Value: 1601
ALUE

XINCLUDE_RECURSI- | Value: 1600
ON

continued on next page

297

Class ErrorTypes Module Ixml.etree

Name Description
XINCLUDE TEXT D- | Value: 1607
OCUMENT
XINCLUDE TEXT FR- | Value: 1606
AGMENT
XINCLUDE UNKNOW- | Value: 1610
N _ ENCODING
XINCLUDE XPTR_F- | Value: 1612
AILED
XINCLUDE XPTR_R- | Value: 1613
ESULT
XPATH ENCODING - | Value: 1220
ERROR
XPATH EXPRESSION- | Value: 1200

OK
XPATH EXPR_ERRO- | Value: 1207
R
XPATH INVALID AR- | Value: 1212
ITY
XPATH INVALID CH- | Value: 1221
AR ERROR

XPATH INVALID CT- | Value: 1214
XT_POSITION
XPATH _INVALID CT- | Value: 1213
XT SIZE
XPATH INVALID OD- | Value: 1210
ERAND
XPATH INVALID PR- | Value: 1206
EDICATE ERROR
XPATH INVALID TY- | Value: 1211

PE
XPATH MEMORY E- | Value: 1215
RROR

XPATH NUMBER _ER- | Value: 1201
ROR

XPATH START LITE- | Value: 1203
RAL_ERROR

XPATH _UNCLOSED - | Value: 1208
ERROR

XPATH UNDEF PRE- | Value: 1219
FIX ERROR

XPATH UNDEF VAR- | Value: 1205
IABLE ERROR
XPATH UNFINISHED- | Value: 1202
_LITERAL ERROR
XPATH_UNKNOWN_- | Value: 1209
FUNC_ERROR

continued on next page

298

Class FallbackElementClassLookup Module Ixml.etree

Name Description
XPATH VARIABLE - | Value: 1204
REF ERROR
XPTR_CHILDSEQ ST- | Value: 1901

ART
XPTR_EVAL_ FAILED | Value: 1902
XPTR,_EXTRA OBJE- | Value: 1903
CTS
XPTR_RESOURCE_E- | Value: 1217
RROR
XPTR_SUB_RESOUR- | Value: 1218
CE_ERROR
XPTR_SYNTAX_ ERR- | Value: 1216
OR
XPTR,_ UNKNOWN_S- | Value: 1900
CHEME

B.6.29 Class FallbackElementClassLookup

object T
Ixml.etree. ElementClassLookup
Ixml.etree.FallbackElementClassLookup

Known Subclasses: Ixml.etree. AttributeBasedElementClassLookup, Ixml.etree. CustomElementClass
Ixml.etree. ElementNamespaceClassLookup, Ixml.etree. ParserBased Element ClassLookup,
Ixml.etree.PythonElementClassLookup

FallbackElementClassLookup(self, fallback=None)

Superclass of Element class lookups with additional fallback.

Methods

__init _ (self, fallback=None)

X. _init (...) initializes x; see x. _class . doc_ for signature
Overrides: object. init

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

299

Class HTMLParser Module Ixml.etree

set fallback(self, lookup)

Sets the fallback scheme for this lookup method.

Inherited from object
~_delattr (), format (), getattribute (), ~_hash (), re-

duce (), reduce ex (), _repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name Description

fallback
Inherited from object
__class

B.6.30 Class HTMLParser

object T
Ixml.etree. BaseParser T

Ixml.etree. FeedParser

Ixml.etree. HTMLParser
Known Subclasses: Ixml.html. HTMLParser

HTMLParser(self, encoding=None, remove blank text=False, remove comments=False,
remove pis=False, strip cdata=True, no network=True, target=None, XMLSchema
schema—=None, recover=True, compact=True)

The HTML parser.

This parser allows reading HTML into a normal XML tree. By default, it can read
broken (non well-formed) HTML, depending on the capabilities of libxml2. Use the
‘recover’ option to switch this off.

Available boolean keyword arguments:
e recover - try hard to parse through broken HTML (default: True)

e no_ network - prevent network access for related files (default: True)

remove blank text - discard empty text nodes

e remove comments - discard comments

300

Class HTMLParser Module Ixml.etree

e remove_pis - discard processing instructions
e strip cdata - replace CDATA sections by normal text content (default: True)
e compact - safe memory for short text content (default: True)
Other keyword arguments:
e encoding - override the document encoding
e target - a parser target object that will receive the parse events
e schema - an XMLSchema to validate against

Note that you should avoid sharing parsers between threads for performance reasons.

Methods

__init_ (self, encoding=None, remove_ blank_ text=False,
remove__ comments=False, remove_ pis=False, strip_cdata=True,
no_ network=True, target=None, XMLSchema schema=None,
recover=True, compact=True)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. _init

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. _new_

Inherited from lxml.etree. FeedParser

close(), feed()
Inherited from lxml.etree. BaseParser

copy(), makeelement(), setElementClassLookup(), set _element class lookup()
Inherited from object

__delattr (), format (), __ getattribute (), hash (), re-
duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
str (), __subclasshook ()

Properties

Name \ Description
Inherited from lxml.etree. FeedParser

continued on next page

301

Class LxmlError Module Ixml.etree

Name \ Description
feed error log
Inherited from lxml.etree. BaseParser
error__log, resolvers, version
Inherited from object
__class

B.6.31 Class LxmlError

object T
exceptions.BaseException T
exceptions.Exception T

Ixml.etree.Error
Ixml.etree.LxmlError

Known Subclasses: Ixml.etree.LxmlSyntaxError, Ixml.sax.SaxError, Ixml.etree. C14NError,
Ixml.etree. DTDError, Ixml.etree. DocumentInvalid, Ixml.etree. LxmlRegistryError, Ixml.etree. ParserErrc
Ixml.etree.RelaxNGError, Ixml.etree.SchematronError, Ixml.etree.SerialisationError, Ixml.etree. XIncluc
Ixml.etree. XMLSchemakError, Ixml.etree. XPathError, Ixml.etree. XSLT Error

Main exception base class for Ixml. All other exceptions inherit from this one.

Methods
__init (...
X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init extit(inherited documentation)

Inherited from exceptions.Ezxception
__new_ ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr_ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

302

Class LxmlRegistryError Module Ixml.etree

Properties

Name \ Description
Inherited from exceptions. BaseEzception
args, message
Inherited from object
_class

B.6.32 Class LxmlRegistryError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError
Ixml.etree.LxmlRegistryError
Known Subclasses: Ixml.etree.NamespaceRegistryError

Base class of Ixml registry errors.

Methods

Inherited from lxml.etree. LvmlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
_ _new_ ()

Inherited from exceptions. BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), _ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

303

Class LxmlSyntaxError Module Ixml.etree

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.33 Class LxmlSyntaxError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T
object T
exceptions.BaseException T
exceptions.Exception T
exceptions.StandardError T

exceptions.SyntaxError

Ixml.etree.LxmlSyntaxError
Known Subclasses: Ixml.ElementInclude.FatallncludeError, Ixml.etree.ParseError, Ixml.etree. XPath;

Base class for all syntax errors.

Methods

Inherited from lxml.etree. LvmlError(Section B.6.31)
__init ()

Inherited from exceptions.SyntaxError
new (), _str_ ()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__ (), __setstate_ (), __unicode_ _()

304

Class NamespaceRegistryError Module Ixml.etree

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print file and line, text
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.34 Class NamespaceRegistryError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree. LxmlError T

Ixml.etree.LxmlRegistryError
Ixml.etree.NamespaceRegistryError

Error registering a namespace extension.

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
_ _new_ ()

Inherited from exceptions. BaseException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

305

Class PIBase Module Ixml.etree

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class

B.6.35 Class PIBase

object T

Ixml.etree. Element T
Ixml.etree. ContentOnlyElement T

Ixml.etree. ProcessingInstruction

Ixml.etree.PIBase
Known Subclasses: Ixml.etree. XSLTProcessinglnstruction, Ixml.html.HtmlProcessingInstruction
All custom Processing Instruction classes must inherit from this one.
Note that you cannot (and must not) instantiate this class or its subclasses.

Subclasses must not override ~ init ~ or new _ as it is absolutely undefined when
these objects will be created or destroyed. All persistent state of PIs must be stored in
the underlying XML. If you really need to initialize the object after creation, you can
implement an _init(self) method that will be called after object creation.

Methods

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. ProcessinglInstruction

__repr__ ()

306

Class PIBase Module Ixml.etree

Inherited from lxml.etree. ContentOnlyElement

~_delitem (), getitem (), len (), setitem (), append(), get(),
insert(), items(), keys(), set(), values()

Inherited from lrml.etree. Element

__contains__ (), _copy (), _deepcopy (), _iter (), monzero (),
__reversed (), addnext(), addprevious(), clear(), extend(), find(), findall(),
findtext(), getchildren(), getiterator(), getnext(), getparent(), getprevious(),
getroottree(), index(), iter(), iterancestors(), iterchildren(), iterdescendants(),
iterfind(), itersiblings(), itertext(), makeelement(), remove(), replace(), xpath()

Inherited from object
__delattr (), _format (), _ getattribute (), _hash (), _init (),

__reduce_ (), _reduce_ex_ (), _setattr__ (), __sizeof (), _str_ (),

__subclasshook ()

Properties
Name \ Description
Inherited from lzml.etree. ProcessingInstruction
tag, target

Inherited from lxml.etree. ContentOnlyElement
attrib, text

Inherited from lxml.etree. Element

base, nsmap, prefix, sourceline, tail

Inherited from object

__class

307

Class ParseError Module Ixml.etree

B.6.36 Class ParseError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree. LxmlError T
object T
exceptions.BaseException T
exceptions.Exception T

exceptions.StandardError T

exceptions.SyntaxError T

Ixml.etree. LxmlSyntaxError
Ixml.etree.ParseError
Known Subclasses: lxml.etree. XMLSyntaxError
Syntax error while parsing an XML document.

For compatibility with ElementTree 1.3 and later.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
__init ()

Inherited from exceptions.SyntaxError
~new_ (), _str_ ()

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce__ (), __repr__(), __setattr__ (), __setstate__ (), __unicode__ ()

Inherited from object
~ _format (), hash (), _ reduce ex (), _ sizeof (), _ sub-

classhook ()

308

Class ParserBasedElementClassLookup Module Ixml.etree

Properties

Name \ Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print file and line, text
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.37 Class ParserBasedElementClassLookup

object T
Ixml.etree.ElementClassLookup T

Ixml.etree.FallbackElementClassLookup

Ixml.etree.ParserBased ElementClassLookup

ParserBasedElementClassLookup(self, fallback=None) Element class lookup based on the
XML parser.

Methods

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. FallbackElementClassLookup(Section B.6.29)
__init_ (), set_ fallback()
Inherited from object

__delattr (), _ format (), __getattribute (), ~_hash (), re-
duce (), reduce ex (), _repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties
Name \ Description
Inherited from lxml.etree. FallbackElementClassLookup (Section B.6.29)
fallback
Inherited from object

continued on next page

309

Class ParserError Module Ixml.etree

Name Description
__class

B.6.38 Class ParserError

object T

exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError
Ixml.etree.ParserError

Internal Ixml parser error.

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
_ _new_ ()

Inherited from exceptions. BaseException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr_ (), __setattr__ (), _setstate_ (), _str__(), __ uni-
code ()

Inherited from object

_ format (), ~ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

310

Class PyErrorLog Module Ixml.etree

B.6.39 Class PyErrorLog

object T
Ixml.etree. BaseErrorLog
Ixml.etree.PyErrorLog

PyErrorLog(self, logger name—=None) A global error log that connects to the Python
stdlib logging package.

The constructor accepts an optional logger name.

If you want to change the mapping between libxml2’s ErrorLevels and Python logging
levels, you can modify the level map dictionary from a subclass.

The default mapping is:

ErrorLevels.WARNING
ErrorLevels.ERROR
ErrorLevels.FATAL

logging.WARNING
logging.ERROR
logging.CRITICAL

You can also override the method receive() that takes a LogEntry object and calls

self.log(log_entry, format_string, argl, arg2, ...) with appropriate data.
Methods

__init __ (self, logger_name=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature

Overrides: object. init

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. _new_

copy(...)

Dummy method that returns an empty error log. Overrides:
Ixml.etree. BaseErrorLog.copy

311

Class PyErrorLog Module Ixml.etree

log(self, log entry, message, *args)

Called by the .receive() method to log a LogEntry instance to the Python
logging system. This handles the error level mapping.

In the default implementation, the message argument receives a complete
log line, and there are no further args. To change the message format, it is
best to override the .receive() method instead of this one.

receive(self, log entry)

Receive a _LogEntry instance from the logging system. Calls the .log()
method with appropriate parameters:

self.log(log_entry, repr(log_entry))

You can override this method to provide your own log output format.

Inherited from lxml.etree. BaseErrorLog
__repr__()
Inherited from object
__delattr (), format (), getattribute (), hash (), re-

duce (), _ reduce ex (), setattr (), sizeof (), str (),
__subclasshook ()

Properties

Name Description
level map
Inherited from lxml.etree. BaseFErrorLog
last _error
Inherited from object
__class

312

Class PythonElementClassLookup Module Ixml.etree

B.6.40 Class PythonElementClassLookup

object T
Ixml.etree. ElementClassLookup T

Ixml.etree.FallbackElementClassLookup
Ixml.etree.PythonElementClassLookup

PythonElementClassLookup(self, fallback=None) Element class lookup based on a sub-
class method.

This class lookup scheme allows access to the entire XML tree in read-only mode. To use
it, re-implement the lookup(self, doc, root) method in a subclass:

>>> from lxml import etree, pyclasslookup

>>>

>>> class MyElementClass(etree.ElementBase):
honkey = True

>>> class MyLookup(pyclasslookup.PythonElementClassLookup) :
def lookup(self, doc, root):

if root.tag == "sometag":

return MyElementClass
else:

for child in root:

if child.tag == "someothertag":
return MyElementClass

delegate to default
return None

If you return None from this method, the fallback will be called.

The first argument is the opaque document instance that contains the Element. The
second argument is a lightweight Element proxy implementation that is only valid during
the lookup. Do not try to keep a reference to it. Once the lookup is done, the proxy will
be invalid.

Also, you cannot wrap such a read-only Element in an ElementTree, and you must take
care not to keep a reference to them outside of the lookup () method.

Note that the API of the Element objects is not complete. It is purely read-only and
does not support all features of the normal 1xml.etree API (such as XPath, extended
slicing or some iteration methods).

See http://codespeak.net /Ixml/element _classes.html

313

http://codespeak.net/lxml/element_classes.html

Class QName Module Ixml.etree

Methods

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

lookup(self, doc, element)

Override this method to implement your own lookup scheme.

Inherited from lxml.etree. FallbackElementClassLookup(Section B.6.29)
__init_ (), set_ fallback()
Inherited from object

__delattr (), _ format (), __getattribute (), ~_hash (), re-
duce (), reduce ex (), repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties
Name Description
Inherited from lxml.etree. FallbackElementClassLookup (Section B.6.29)
fallback
Inherited from object
__class

B.6.41 Class QName

object
Ixml.etree.QName
QName(text or uri, tag=None)
QName wrapper for qualified XML names.
Pass a tag name by itself or a namespace URI and a tag name to create a qualified name.

The text property holds the qualified name in {namespace}tagname notation. The
namespace and localname properties hold the respective parts of the tag name.

You can pass QQName objects wherever a tag name is expected. Also, setting Element
text from a QName will resolve the namespace prefix and set a qualified text value.

314

Class QName Module Ixml.etree

Methods
__eq__(zy)
X::y
__ge__(zy)
X>=y
__st_ (% y)
x>y

_hash (z)

hash(x) Overrides: object. hash

__init (teat_or_uri, tag=None)

X. _init__ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. _init

__le__(zy)

X<=y

__It__(zy)

X<y

__ne__(z,y)

315

Class RelaxNG Module Ixml.etree

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new
_str (..)
str(x) Overrides: object. str extit(inherited documentation)

Inherited from object

__delattr (), format (), _ getattribute (), reduce (), re-
duce ex (), repr (), setattr (), sizeof (), subclasshook ()

Properties

Name Description

localname
namespace

text

Inherited from object
__class

B.6.42 Class RelaxNG

object T
Ixml.etree. Validator
Ixml.etree.RelaxNG
RelaxNG(self, etree=None, file=None) Turn a document into a Relax NG validator.

Either pass a schema as Element or ElementTree, or pass a file or filename through the
file keyword argument.

Methods

__call (self, etree)

Validate doc using Relax NG.

Returns true if document is valid, false if not.

316

Class RelaxNGError Module Ixml.etree

__init __ (self, etree=None, file=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Validator
assertValid(), assert (), validate()
Inherited from object
__delattr (), format (), getattribute (), hash (), re-

duce (), reduce ex (), repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from lxml.etree. Validator
error log
Inherited from object
__class

B.6.43 Class RelaxNGError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError
Ixml.etree.RelaxNGError
Known Subclasses: Ixml.etree.RelaxNGParseError, Ixml.etree.RelaxNGValidateError

Base class for RelaxNG errors.

317

Class RelaxNGErrorTypes Module Ixml.etree

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
_ _new_ ()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr_ _ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.44 Class RelaxNGErrorTypes

Libxml2 RelaxNG error types

Class Variables

Name Description
RELAXNG ERR_ATT- | Value: 20
REXTRANS
RELAXNG ERR_ATT- | Value: 14
RNAME
RELAXNG ERR_ATT- | Value: 16
RNONS
RELAXNG ERR_ATT- | Value: 24
RVALID
RELAXNG ERR_ATT- | Value: 18
RWRONGNS
RELAXNG ERR_ CON- | Value: 25
TENTVALID

continued on next page

318

Class RelaxNGErrorTypes Module Ixml.etree

Name Description
RELAXNG ERR_DAT- | Value: 28
AELEM
RELAXNG ERR_DAT- | Value: 31
ATYPE
RELAXNG ERR DUP- | Value: 4
ID
RELAXNG ERR ELE- | Value: 19
MEXTRANS
RELAXNG ERR_ELE- | Value: 13
MNAME
RELAXNG ERR_ELE- | Value: 15
MNONS
RELAXNG ERR_ELE- | Value: 21
MNOTEMPTY
RELAXNG ERR_ ELE- | Value: 38
MWRONG
RELAXNG ERR_ELE- | Value: 17
MWRONGNS
RELAXNG ERR_ EXT- | Value: 26
RACONTENT
RELAXNG ERR_ EXT- | Value: 35
RADATA
RELAXNG ERR INT- | Value: 12
EREXTRA
RELAXNG ERR_INT- | Value: 37
ERNAL
RELAXNG ERR _INT- | Value: 10
ERNODATA
RELAXNG ERR_INT- | Value: 11
ERSEQ
RELAXNG ERR INV- | Value: 27
ALIDATTR
RELAXNG ERR LAC- | Value: 36
KDATA
RELAXNG ERR_LIST | Value: 33
RELAXNG ERR_LIST- | Value: 30
ELEM
RELAXNG ERR_LIST- | Value: 9
EMPTY
RELAXNG ERR _ LIST- | Value: 8
EXTRA
RELAXNG ERR ME- Value: 1
MORY
RELAXNG ERR NOD- | Value: 7
EFINE

continued on next page

319

Class RelaxNGParseError

Module Ixml.etree

Name Description
RELAXNG ERR_NOE- | Value: 22
LEM
RELAXNG ERR NOG- | Value: 34
RAMMAR
RELAXNG ERR NOS- | Value: 6
TATE
RELAXNG ERR_NOT- | Value: 23
ELEM
RELAXNG ERR_TEX- | Value: 39
TWRONG
RELAXNG ERR TYP- | Value: 2
E
RELAXNG ERR TYP- | Value: 5
ECMP
RELAXNG ERR_ TYP- | Value: 3
EVAL
RELAXNG ERR_VAL- | Value: 29
ELEM
RELAXNG ERR_ VAL- | Value: 32
UE
RELAXNG OK Value: 0

B.6.45 Class RelaxNGParseError

object T
exceptions.BaseException T
exceptions.Exception T

Ixml.etree.Error T

Ixml.etree.LxmlError T

Ixml.etree.RelaxNGError

Error while parsing an XML document as RelaxNG.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)

__init_ ()

320

Ixml.etree.RelaxNGParseError

Class RelaxNG ValidateError Module Ixml.etree

Inherited from exceptions.Exception
~_new_ ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__(), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

__format (), ~ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.46 Class RelaxNGValidateError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T

Ixml.etree.RelaxNGError
Ixml.etree.RelaxN G ValidateError

Error while validating an XML document with a RelaxNG schema.
Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.Exception

321

Class Resolver Module Ixml.etree

new ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce__()7 __repr__(), __Setattr__()7 __setstate__()a __Stl"__()v ___uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzception
args, message
Inherited from object
__class

B.6.47 Class Resolver

object
Ixml.etree.Resolver

This is the base class of all resolvers.

Methods

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

resolve(self, system_ url, public_id, context)

Override this method to resolve an external source by system_url and
public_id. The third argument is an opaque context object.

Return the result of one of the resolve_*() methods.

322

Class Resolver Module Ixml.etree

resolve empty(self, context)

Return an empty input document.

Pass context as parameter.

resolve file(self, f, conteat, base_ url=None)

Return an open file-like object as input document.

Pass open file and context as parameters. You can pass the base URL or
filename of the file through the base_url keyword argument.

Note that using .resolve_filename () is more efficient, especially in
threaded environments.

resolve filename(self, filename, context)

Return the name of a parsable file as input document.

Pass filename and context as parameters. You can also pass a URL with an
HTTP, FTP or file target.

resolve _string(self, string, context, base_ url=None)

Return a parsable string as input document.

Pass data string and context as parameters. You can pass the source URL
or filename through the base_url keyword argument.

Inherited from object

__delattr (), format (), getattribute (), _hash (), _init (),
~ _reduce (), reduce ex (), _repr (), setattr (), sizeof (),

__str_ (), __subclasshook ()

Properties

Name Description
Inherited from object
__class

323

Class Schematron Module Ixml.etree

B.6.48 Class Schematron

object T

Ixml.etree. Validator

Ixml.etree.Schematron
Schematron(self, etree=None, file=None) A Schematron validator.

Pass a root Element or an ElementTree to turn it into a validator. Alternatively, pass a
filename as keyword argument ’file’ to parse from the file system.

Schematron is a less well known, but very powerful schema language. The main idea is
to use the capabilities of XPath to put restrictions on the structure and the content of
XML documents. Here is a simple example:

>>> schematron = etree.Schematron(etree.XML(’?’
. <schema xmlns="http://www.ascc.net/xml/schematron" >
<pattern name="id is the only permited attribute name">
<rule context="x*">
<report test="@x*[not(name()=’id’)]">Attribute
<name path="@x[not(name()=’id’)]"/> is forbidden<name/>
</report>
</rule>
</pattern>
. </schema>

)77))

>>> xml = etree.XML(’?’
. <AAA name="aaa'">
<BBB id="bbb"/>
.. <CCC color="ccc"/>
. </AAA>
)))

>>> schematron.validate (xml)

>>> xml = etree.XML(’?’
. <AAA id="aaa">
<BBB id="bbb"/>
.. <Ccc/>
. </AAA>
)7})

>>> schematron.validate (xml)
1

Schematron was added to libxml2 in version 2.6.21. Before version 2.6.32, however,

324

Class Schematron Module Ixml.etree

Schematron lacked support for error reporting other than to stderr. This version is
therefore required to retrieve validation warnings and errors in lxml.

Methods

__call (self, etree)

Validate doc using Schematron.

Returns true if document is valid, false if not.

__init __ (self, etree=None, file=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Validator
assertValid(), assert (), validate()
Inherited from object
__delattr (), format (), _ getattribute (), ~ hash (), re-

duce (), reduce ex (), repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from lxml.etree. Validator
error log
Inherited from object
__class

325

Class SchematronError Module Ixml.etree

B.6.49 Class SchematronError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError
Ixml.etree.SchematronError
Known Subclasses: Ixml.etree.SchematronParseError, Ixml.etree.SchematronValidateError

Base class of all Schematron errors.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr_ (), __setstate__ (), __str__(), __uni-
code ()

Inherited from object

_format (), _ _hash (), reduce ex (), _ sizeof (), _ sub-

classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

326

Class SchematronParseError Module Ixml.etree

B.6.50 Class SchematronParseError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree. LxmlError T

Ixml.etree.SchematronError
Ixml.etree.SchematronParseError

Error while parsing an XML document as Schematron schema.

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

327

Class SchematronValidateError Module Ixml.etree

B.6.51 Class SchematronValidateError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree. LxmlError T

Ixml.etree.SchematronError
Ixml.etree.SchematronValidateError

Error while validating an XML document with a Schematron schema.

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

328

Class SerialisationError Module Ixml.etree

B.6.52 Class SerialisationError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError
Ixml.etree.SerialisationError

A libxml2 error that occurred during serialisation.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce (), repr (), setattr (), setstate (), str (), _ uni-
code ()

Inherited from object

__format (), _ _hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

329

Class Siblingslterator Module Ixml.etree

B.6.53 Class SiblingslIterator

object T
Ixml.etree. ElementTagMatcher T
Ixml.etree. ElementlIterator
Ixml.etree.SiblingsIterator

Siblingslterator(self, node, tag=None, preceding=False) Iterates over the siblings of an
element.

You can pass the boolean keyword preceding to specify the direction.

Methods

__init _ (self, node, tag=None, preceding—False)

X. _init (...) initializes x; see x. _class . doc_ for signature
Overrides: object. init

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Elementlterator
~dter (), __mext_ (), next()
Inherited from object

__delattr (), format (), getattribute (), hash (), re-
duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

330

Class TreeBuilder Module Ixml.etree

B.6.54 Class TreeBuilder

object T
Ixml.etree. SaxParserTarget
Ixml.etree.TreeBuilder

TreeBuilder(self, element factory=None, parser=None) Parser target that builds a tree.

The final tree is returned by the close() method.

Methods
__init (self, element_ factory=None, parser=None)
X. _init (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

close(self)

Flushes the builder buffers, and returns the toplevel document element.

comment(self, comment)

data(self, data)

Adds text to the current element. The value should be either an 8-bit
string containing ASCII text, or a Unicode string.

end(self, tag)

Closes the current element.

pi(self, target, data)

331

Class XInclude Module Ixml.etree

start(self, tag, attrs, nsmap=DNone)

Opens a new element.

Inherited from object
~_delattr (), format (), getattribute (), ~_hash (), re-

duce (), reduce ex (), repr_ (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

B.6.55 Class XInclude

object
Ixml.etree.XInclude
XlInclude(self) XInclude processor.

Create an instance and call it on an Element to run XInclude processing.

Methods

__call (self, node)

__init (self)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from object
__delattr (), _ format (), __getattribute (), ~_hash (), re-

332

Class XIncludeError

Module Ixml.etree

duce (), reduce ex (), _repr_ (),

str (), __subclasshook ()

Properties

__setattr__ (), __sizeof __ (),

Name

Description

error_log

Inherited from object
__class

B.6.56 Class XIncludeError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError

Ixml.etree.XIncludeError

Error during XInclude processing.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)

~_init_ ()
Inherited from exceptions.Exception

new ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-

duce_ (), __repr_ (), __setattr__ (),

code ()
Inherited from object

_ _format (), _ hash (), _ reduce ex (),

classhook ()

Properties

333

__setstate (),

str (), __Tlni—

__sizeof (), __sub-

Class XMLParser Module Ixml.etree

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.57 Class XMLParser

object T
Ixml.etree. BaseParser T

Ixml.etree. FeedParser

Ixml.etree. XMLParser
Known Subclasses: Ixml.etree. ETCompatXMLParser, Ixml.html. XHTMLParser

XMLParser(self, encoding=None, attribute defaults=False, dtd validation=False, load dtd=False,
no_network=True, ns_clean=False, recover=False, XMLSchema schema=None, remove _blank text=
resolve entities="True, remove comments=False, remove pis=False, strip cdata=True,
target=None, compact="True)

The XML parser.

Parsers can be supplied as additional argument to various parse functions of the lxml
API. A default parser is always available and can be replaced by a call to the global
function ’set default parser’. New parsers can be created at any time without a major
run-time overhead.

The keyword arguments in the constructor are mainly based on the libxml2 parser con-
figuration. A DTD will also be loaded if DTD validation or attribute default values
are requested (unless you additionally provide an XMLSchema from which the default
attributes can be read).

Available boolean keyword arguments:
e attribute defaults - inject default attributes from DTD or XMLSchema

e dtd wvalidation - validate against a DTD referenced by the document

load dtd - use DTD for parsing

e no_network - prevent network access for related files (default: True)
e ns_clean - clean up redundant namespace declarations

e recover - try hard to parse through broken XML

e remove blank text - discard blank text nodes

e remove comments - discard comments

334

Class XMLParser

remove pis - discard processing instructions

strip_cdata - replace CDATA sections by normal text content (default: True)

compact - safe memory for short text content (default: True)

resolve _entities - replace entities by their text value (default: True)

huge tree - disable security restrictions and support very deep trees and

very long text content (only affects libxml2 2.7-+)

Other keyword arguments:

Note that you should avoid sharing parsers between threads. While this is not harmful,
it is more efficient to use separate parsers. This does not apply to the default parser.

encoding - override the document encoding
target - a parser target object that will receive the parse events

schema - an XMLSchema to validate against

Methods

__init_ (self, encoding=None, attribute_ defaults=False,
dtd_ validation=False, load_ dtd=False, no_network=True,

ns_ clean=False, recover=False, XMLSchema schema=None,
remove_ blank _text=False, resolve entities=True,

remove__ comments=False, remove_ pis=False, strip_cdata=True,

target=None, compact=True)

Module Ixml.etree

X. _init__ (...) initializes x; see x. _class . doc_ _ for signature
Overrides: object. init

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lrml.etree. FeedParser

close(), feed()

Inherited from lxml.etree. BaseParser

copy(), makeelement/(), setElementClassLookup(), set _element class lookup()

Inherited from object

__delattr (), _ format (), __getattribute (), = hash (),

335

Class XMLSchema Module Ixml.etree

duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
str (), __subclasshook ()

Properties

Name \ Description
Inherited from lxml.etree. FeedParser
feed error log
Inherited from lxml.etree. BaseParser
error_log, resolvers, version
Inherited from object
__class

B.6.58 Class XMLSchema

object T
Ixml.etree. Validator
Ixml.etree. XMLSchema

XMLSchema(self, etree=None, file=None) Turn a document into an XML Schema val-
idator.

Either pass a schema as Element or ElementTree, or pass a file or filename through the
file keyword argument.

Passing the attribute_defaults boolean option will make the schema insert default /fixed
attributes into validated documents.

Methods

__call (self, etree)

Validate doc using XML Schema.

Returns true if document is valid, false if not.

__init _ (self, etree=None, file=None)

X. _init__ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

336

Class XMLSchemaFError Module Ixml.etree

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. Validator
assertValid(), assert (), validate()
Inherited from object

__delattr (), _ format (), _ getattribute (), ~_hash (), re-
duce (), reduce ex (), _repr (), _setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name Description
Inherited from leml.etree. Validator
error _log
Inherited from object
__class

B.6.59 Class XMLSchemaError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError
Ixml.etree. XMLSchemaError
Known Subclasses: Ixml.etree. XMLSchemaParseError, Ixml.etree. XMLSchemaValidateError

Base class of all XML Schema errors

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)

__init ()

337

Class XMLSchemaParseError Module Ixml.etree

Inherited from exceptions.Exception
~_new_ ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__(), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

__format (), ~ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.60 Class XMLSchemaParseError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T

Ixml.etree. XMLSchemaError

Ixml.etree. XMLSchemaParseError
Error while parsing an XML document as XML Schema.
Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.Exception

338

Class XMLSchemaValidateError Module Ixml.etree

new ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce__()7 __repr__(), __Setattr__()7 __setstate__()a __Stl"__()u ___uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzception
args, message
Inherited from object
__class

B.6.61 Class XMLSchemaValidateError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T

Ixml.etree. XMLSchemaFError
Ixml.etree. XMLSchemaValidateError
Error while validating an XML document with an XML Schema.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
__init_ ()
Inherited from exceptions.Exception

new ()

339

Class XMLSyntaxError Module Ixml.etree

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__(), __setstate__ (), __str__(), __uni-
code ()

Inherited from object

__format (), __hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzception
args, message
Inherited from object
__class

B.6.62 Class XMLSyntaxError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T
object T
exceptions.BaseException T
exceptions.Exception T

exceptions.StandardError T

exceptions.SyntaxError T
Ixml.etree. LxmlSyntaxError T

Ixml.etree.ParseError

Ixml.etree. XMLSyntaxError

Syntax error while parsing an XML document.

340

Class XPath Module Ixml.etree

Methods
__init_ (...)
X. _init (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init extit(inherited documentation)

Inherited from exceptions.SyntaxError
__mew__ (), __str__()

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__ (), __setstate_ (), __unicode__()

Inherited from object

~ _format (), hash (), _ reduce ex (), _ sizeof (), _ sub-

classhook ()

Properties

Name \ Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print file and line, text
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.6.63 Class XPath

object T
Ixml.etree. XPathEvaluatorBase
Ixml.etree.XPath
Known Subclasses: Ixml.cssselect.CSSSelector, Ixml.etree. ETXPath

XPath(self, path, namespaces=None, extensions=None, regexp=True, smart_ strings=True)
A compiled XPath expression that can be called on Elements and ElementTrees.

Besides the XPath expression, you can pass prefix-namespace mappings and extension
functions to the constructor through the keyword arguments namespaces and extensions.
EXSLT regular expression support can be disabled with the 'regexp’ boolean keyword
(defaults to True). Smart strings will be returned for string results unless you pass
smart_strings=False.

341

Class XPath Module Ixml.etree

Methods

__call (self, _etree_or_element, **_wvariables)

__init_ (self, path, namespaces=None, extensions—=None, regexp=True,
smart_strings=True)

X. _init (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (T, 5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new_

__repr__ (...)

repr(x) Overrides: object. repr extit(inherited documentation)

Inherited from lxml.etree. XPathEvaluatorBase
evaluate()
Inherited from object

__delattr (), format (), getattribute (), hash (), re-
duce (), reduce ex (), setattr (), sizeof (), str_ (),

__subclasshook ()

Properties

Name Description

path
Inherited from lxml.etree. XPathEvaluatorBase
error_log

Inherited from object

__class

342

Class XPathDocumentEvaluator Module Ixml.etree

B.6.64 Class XPathDocumentEvaluator

object T
Ixml.etree. XPathEvaluatorBase T

Ixml.etree. XPathElementEvaluator

Ixml.etree. XPathDocumentEvaluator

XPathDocumentEvaluator(self, etree, namespaces=None, extensions—None, regexp—"True,
smart _strings=True) Create an XPath evaluator for an ElementTree.

Additional namespace declarations can be passed with the 'namespace’ keyword argu-
ment. EXSLT regular expression support can be disabled with the 'regexp’ boolean
keyword (defaults to True). Smart strings will be returned for string results unless you
pass smart_strings=False.

Methods

__call (self, _path, **_wvariables)

Evaluate an XPath expression on the document.

Variables may be provided as keyword arguments. Note that namespaces
are currently not supported for variables. Overrides:
Ixml.etree. XPathElementEvaluator. call

init (self, etree, namespaces—None, extensions—=None, regerp=True,
smart_ strings—True)

X. _init _ (...) initializes x; see x. _class . doc_ _ for signature
Overrides: object. init

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.etree. X PathElementEvaluator(Section B.6.65)
register namespace(), register namespaces|()
Inherited from lxml.etree. XPathEvaluatorBase

evaluate()

343

Class XPathElementEvaluator Module Ixml.etree

Inherited from object

__delattr (), format (), getattribute (), hash (), re-
duce (), reduce ex (), repr (), setattr (), sizeof (),

_str (), __subclasshook ()

Properties
Name \ Description
Inherited from lxml.etree. XPathEvaluatorBase
error_log
Inherited from object
__class

B.6.65 Class XPathElementEvaluator

object T
Ixml.etree. XPathEvaluatorBase
Ixml.etree. XPathElement Evaluator

Known Subclasses: Ixml.etree. XPathDocumentEvaluator

XPathElementEvaluator(self, element, namespaces=None, extensions=None, regexp="True,
smart_strings=True) Create an XPath evaluator for an element.

Absolute XPath expressions (starting with ’/’) will be evaluated against the ElementTree
as returned by getroottree().

Additional namespace declarations can be passed with the 'namespace’ keyword argu-
ment. EXSLT regular expression support can be disabled with the 'regexp’ boolean
keyword (defaults to True). Smart strings will be returned for string results unless you
pass smart_strings=False.

Methods

__call _ (self, _path, **_wvariables)

Evaluate an XPath expression on the document.

Variables may be provided as keyword arguments. Note that namespaces
are currently not supported for variables.

Absolute XPath expressions (starting with ’/’) will be evaluated against
the ElementTree as returned by getroottree().

344

Class XPathElementEvaluator

Module Ixml.etree

init (self, element, namespaces=None, extensions—=None,
regerp=True, smart_strings=True)

Overrides: object. init

X. _init__ (...) initializes x; see x. _class . doc_ _ for signature

__mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

register namespace(...)

Register a namespace with the XPath context.

register namespaces...)

Register a prefix -> uri dict.

Inherited from lxml.etree. XPathEvaluatorBase
evaluate()

Inherited from object

__delattr (), format (), getattribute (), = _hash (), re-

duce_ _ (), __reduce_ex__ (), __repr__(), __setattr__(),
str (), __subclasshook ()

__sizeof (),

Properties
Name \ Description
Inherited from leml.etree. XPathEvaluatorBase
error_log
Inherited from object
__class

345

Class XPathError Module Ixml.etree

B.6.66 Class XPathError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError
Ixml.etree. XPathError
Known Subclasses: Ixml.etree. XPathEvalError, Ixml.etree. XPathSyntaxError

Base class of all XPath errors.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr_ (), __setstate__ (), __str__(), __uni-
code ()

Inherited from object

_format (), _ _hash (), reduce ex (), _ sizeof (), _ sub-

classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

346

Class XPathEvalError Module Ixml.etree

B.6.67 Class XPathEvalError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree. LxmlError T

Ixml.etree. XPathError
Ixml.etree. XPathEvalError
Known Subclasses: Ixml.etree. XPathFunctionError, Ixml.etree. XPathResultError

Error during XPath evaluation.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
__init_ ()

Inherited from exceptions.Exception
_ _new_ ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

347

Class XPathFunctionError Module Ixml.etree

B.6.68 Class XPathFunctionError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T
Ixml.etree. XPathError T

Ixml.etree. XPathEvalError
Ixml.etree. XPathFunctionError

Internal error looking up an XPath extension function.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions. BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), ~ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzrception
args, message
Inherited from object
__class

348

Class XPathResultError Module Ixml.etree

B.6.69 Class XPathResultError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T
Ixml.etree. XPathError T

Ixml.etree. XPathEvalError
Ixml.etree.XPathResultError
Error handling an XPath result.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions. BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), ~ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseEzrception
args, message
Inherited from object
__class

349

Class XPathSyntaxError Module Ixml.etree

B.6.70 Class XPathSyntaxError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T
object T
exceptions.BaseException T
exceptions.Exception T

exceptions.StandardError T

exceptions.SyntaxError T
Ixml.etree. LxmlSyntaxError T
object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T

Ixml.etree. XPathError

Ixml.etree. XPathSyntaxError

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()
Inherited from exceptions.SyntaxError

new (), _str_ ()

350

Class XSLT Module Ixml.etree

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce__ (), __repr__(), __setattr__ (), __setstate_ (), __unicode_ _ ()

Inherited from object

__format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print file and line, text
Inherited from exceptions. BaseException
args, message
Inherited from object
__class_

B.6.71 Class XSLT

object
Ixml.etree. XSLT
XSLT (self, xslt_input, extensions=None, regexp=True, access _control=None)
Turn an XSL document into an XSLT object.
Calling this object on a tree or Element will execute the XSLT:

>>> transform = etree.XSLT(xsl_tree)
>>> result = transform(xml_tree)

Keyword arguments of the constructor:

e cxtensions: a dict mapping (namespace, name) pairs to extension functions or ex-
tension elements

e regexp: enable exslt regular expression support in XPath (default: True)

e access_control: access restrictions for network or file system (see XSLTAccessControl)
Keyword arguments of the XSLT call:

e profile run: enable XSLT profiling (default: False)

Other keyword arguments of the call are passed to the stylesheet as parameters.

351

Class XSLT Module Ixml.etree

Methods

__call (self, _input, profile_run=False, **kw)

Execute the XSL transformation on a tree or Element.

Pass the profile_run option to get profile information about the XSLT.
The result of the XSLT will have a property xslt profile that holds an
XML tree with profiling data.

__copy (...

__deepcopy (...

__init (self, zslt_input, extensions—None, regexp—True,
access_ control=None)

X. _init (...) initializes x; see x. _class . doc_ _ for signature
Overrides: object. init

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

apply (self, _input, profile_run=False, **kw)

Deprecated: call the object, not this method.

strparam(strval)

Mark an XSLT string parameter that requires quote escaping before
passing it into the transformation. Use it like this:

result = transform(doc, some_strval = XSLT.strparam(
>72i¢’s "Monty Python’s" ...’%7))

Escaped string parameters can be reused without restriction.

352

Class XSLTAccessControl Module Ixml.etree

tostring(self, result tree)

Save result doc to string based on stylesheet output method.
Deprecated: use str(result tree) instead.

Inherited from object

__delattr (), _ format (), __getattribute (), ~_hash (), re-
duce (), reduce ex (), _repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name Description
error_log The log of errors and warnings of an XSLT
execution.

Inherited from object
__class

B.6.72 Class XSLTAccessControl

object
Ixml.etree. XSLTAccessControl

XSLTAccessControl(self, read _file=True, write file=True, create dir=True, read network=True,
write network=True)

Access control for XSLT: reading/writing files, directories and network 1/0. Access to a
type of resource is granted or denied by passing any of the following boolean keyword
arguments. All of them default to True to allow access.

e read file

e write file

e create dir

e read network
e write network

For convenience, there is also a class member DENY_ALL that provides an XSLTAccess-
Control instance that is readily configured to deny everything, and a DENY_WRITE member
that denies all write access but allows read access.

See XSLT.

353

Class XSLTAccessControl Module Ixml.etree

Methods

__init (self, read_ file=True, write_ file=True, create_ dir=True,
read_ network=True, write_ network—True)

X. _init (...) initializes x; see x. _class . doc_ _ for signature
Overrides: object. init

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__repr__ (..)

repr(x) Overrides: object. repr extit(inherited documentation)

Inherited from object
__delattr (), format (), getattribute (), ~ hash (), re-

duce (), _ reduce ex (), _ setattr (), sizeof (), _ str__ (),

__subclasshook ()

Properties

Name Description
options The access control configuration as a map of
options.

Inherited from object
__class

Class Variables

Name Description
DENY ALL Value:
XSLTAccessControl (create_dir=False,
read_file=False, read...
DENY WRITE Value:
XSLTAccessControl (create_dir=False,
read_file=True, read_...

354

Class XSLTApplyError Module Ixml.etree

B.6.73 Class XSLTApplyError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree.LxmlError T

Ixml.etree. XSLTError
Ixml.etree. XSLTApplyError

Error running an XSL transformation.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.Exception
__mew__()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr_ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_format (), _ _hash (), reduce ex (), _ sizeof (), _ sub-

classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

355

Class XSLTError Module Ixml.etree

B.6.74 Class XSLTError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError
Ixml.etree. XSLTError

Known Subclasses: Ixml.etree. XSLTApplyError, Ixml.etree. XSLTExtensionError, Ixml.etree. XSLTP:
Ixml.etree. XSLTSaveError

Base class of all XSLT errors.

Methods

Inherited from lxml.etree. LtmlError(Section B.6.31)
~_init_ ()

Inherited from exceptions.Exception
_ _new_ ()

Inherited from exceptions.BaseFException

__delattr (), getattribute (), getitem (), getslice (), _re-
duce__ (), __repr__ (), __setattr__(), __setstate__(), __str__(), __uni-
code ()

Inherited from object

~ _format (), hash (), _ reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

356

Class XSLTExtension Module Ixml.etree

B.6.75 Class XSLTExtension

object
Ixml.etree. XSLTExtension

Base class of an XSLT extension element.

Methods

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

apply templates(self, context, node)

Call this method to retrieve the result of applying templates to an element.

The return value is a list of elements or text strings that were generated by
the XSLT processor.

execute(self, context, self node, input_node, output parent)

Execute this extension element.

Subclasses must override this method. They may append elements to the
output_parent element here, or set its text content. To this end, the
input_node provides read-only access to the current node in the input
document, and the self_node points to the extension element in the
stylesheet.

Inherited from object

__delattr (), format (), getattribute (), _hash (), _init (),
~_reduce (), reduce ex (), repr (), setattr (), sizeof (),
_ str_ (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

357

Class XSLTExtensionError Module Ixml.etree

B.6.76 Class XSLTExtensionError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree. LxmlError T

Ixml.etree. XSLTError
Ixml.etree. XSLTExtensionError

Error registering an XSLT extension.

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

358

Class XSLTParseError Module Ixml.etree

B.6.77 Class XSLTParseError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree. LxmlError T

Ixml.etree. XSLTError
Ixml.etree. XSLTParseError

Error parsing a stylesheet document.

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

359

Class XSLTSaveError Module Ixml.etree

B.6.78 Class XSLTSaveError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T
Ixml.etree. LxmlError T

Ixml.etree. XSLTError
Ixml.etree. XSLTSaveError

Error serialising an XSLT result.

Methods

Inherited from lzml.etree. LemlError(Section B.6.31)
__init ()

Inherited from exceptions.Exception
__new_ ()

Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr__ (), __setattr__ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

_ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

360

Class iterparse Module Ixml.etree

B.6.79 Class iterparse

object T
Ixml.etree. BaseParser
Ixml.etree.iterparse

iterparse(self, source, events=(“end”)), tag=None, attribute defaults=False, dtd validation=False,
load dtd=False, no network=True, remove blank text=False, remove comments=False,
remove pis=False, encoding=None, html=False, huge tree=False, schema—=None)

Incremental parser.

Parses XML into a tree and generates tuples (event, element) in a SAX-like fashion.
event is any of 'start’, ’end’, ’start-ns’, ’end-ns’.

For ’start’ and ’end’, element is the Element that the parser just found opening or closing.
For ’start-ns’, it is a tuple (prefix, URI) of a new namespace declaration. For ’end-ns’; it
is simply None. Note that all start and end events are guaranteed to be properly nested.

The keyword argument events specifies a sequence of event type names that should be
generated. By default, only ’end’ events will be generated.

The additional tag argument restricts the 'start’ and ’end’ events to those elements that
match the given tag. By default, events are generated for all elements. Note that the
‘start-ns’ and ’end-ns’ events are not impacted by this restriction.

The other keyword arguments in the constructor are mainly based on the libxml2 parser
configuration. A DTD will also be loaded if validation or attribute default values are
requested.

Available boolean keyword arguments:
e attribute defaults: read default attributes from DTD
e dtd_validation: validate (if DTD is available)

load dtd: use DTD for parsing

e no network: prevent network access for related files

e remove blank text: discard blank text nodes

e remove comments: discard comments

e remove pis: discard processing instructions

e strip_cdata: replace CDATA sections by normal text content (default: True)
e compact: safe memory for short text content (default: True)

e resolve entities: replace entities by their text value (default: True)

huge tree: disable security restrictions and support very deep trees

361

Class iterparse Module Ixml.etree

and very long text content (only affects libxml2 2.7+)
Other keyword arguments:
e encoding: override the document encoding

e schema: an XMLSchema to validate against

Methods

__init (self, source, events=("end",), tag=None,

attribute defaults=False, dtd wvalidation=False, load_dtd=False,
no_network=True, remove_ blank text=False,

remove_ comments—=False, remove_pis=False, encoding—None,

html—=False, huge tree=False, schema=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

_iter (..)

__mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

_mnext (...

copy (self)

Create a new parser with the same configuration. Overrides:
Ixml.etree. BaseParser.copy extit(inherited documentation)

next(z)

Return Value
the next value, or raise Stoplteration

Inherited from lxml.etree. BaseParser

makeelement(), setElementClassLookup(), set _element class lookup()
Inherited from object

_delattr (), format (), getattribute (), hash (), re-

duce (), reduce ex (), _repr (), setattr (), sizeof (),
_str (), __subclasshook ()

362

Class iterwalk Module Ixml.etree

Properties
Name Description
error_log The error log of the last (or current) parser
run.
root

Inherited from lxml.etree. BaseParser
resolvers, version

Inherited from object

__class

B.6.80 Class iterwalk

object
Ixml.etree.iterwalk
iterwalk(self, element or tree, events=(“end”,), tag=None)

A tree walker that generates events from an existing tree as if it was parsing XML data
with iterparse().

Methods

__init (self, element_or_tree, events=("end",), tag—=None)

X. _init (...) initializes x; see x. _class . doc_ _ for signature
Overrides: object. init

__iter (..)

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

_next (...

next(z)

Return Value
the next value, or raise Stoplteration

Inherited from object

363

Class iterwalk Module Ixml.etree

__delattr (), _ format (), __ getattribute (), ~_hash (), re-
duce (), reduce ex (), _repr (), _setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name Description
Inherited from object
__class

364

Package Ixml.html

B.7 Package Ixml.html

The 1xml.html tool set for HTML handling.

B.7.1 Modules

e ElementSoup: Legacy interface to the BeautifulSoup HTML parser.
(Section B.8, p. 370)

e dictmixin (Section 7?7, p. 7?)

e setmixin (Section 7?7, p. 77)

e builder: A set of HTML generator tags for building HTML documents.
(Section B.9, p. 371)

e clean: A cleanup tool for HTML.
(Section B.10, p. 374)

e defs (Section B.11, p. 378)

o diff (Section B.12, p. 379)

e formfill (Section B.13, p. 380)

e html5parser: An interface to htmlblib.
(Section B.14, p. 382)

e soupparser: External interface to the BeautifulSoup HTML parser.
(Section B.15, p. 386)

e usedoctest: Doctest module for HTML comparison.
(Section B.16, p. 387)

B.7.2 Functions

document fromstring(html, parser=None, **kw)

fragments fromstring(html, no leading tert—=False, base wurl—None,

parser=None, **kw)

Parses several HTML elements, returning a list of elements.

The first item in the list may be a string (though leading whitespace is
removed). If no leading text is true, then it will be an error if there is
leading text, and it will always be a list of only elements.

base url will set the document’s base url attribute (and the tree’s
docinfo.URL)

365

Functions Package Ixml.html

fragment fromstring(html, create_ parent=False, base_ url=None,
parser=None, **kw)

Parses a single HI'ML element; it is an error if there is more than one
element, or if anything but whitespace precedes or follows the element.

If create parent is true (or is a tag name) then a parent node will be
created to encapsulate the HTML in a single element.

base url will set the document’s base url attribute (and the tree’s

docinfo.URL)

fromstring(html, base url=None, parser=None, **kw)

Parse the html, returning a single element/document.

This tries to minimally parse the chunk of text, without knowing if it is a
fragment or a document.

base url will set the document’s base url attribute (and the tree’s
docinfo.URL)

parse(filename_ or_url, parser=None, base url=None, **kw)

Parse a filename, URL, or file-like object into an HTML document tree.
Note: this returns a tree, not an element. Use parse(...).getroot() to
get the document root.

You can override the base URL with the base_url keyword. This is most
useful when parsing from a file-like object.

366

Functions Package Ixml.html

submit form(form, extra_values=None, open_ http=None)

Helper function to submit a form. Returns a file-like object, as from
urllib.urlopen(). This object also has a .geturl() function, which
shows the URL if there were any redirects.

You can use this like:

form = doc.forms[0]

form.inputs[’foo’] .value = ’bar’ # etc
response = form.submit()

doc = parse(response)
doc.make_links_absolute(response.geturl())

To change the HTTP requester, pass a function as open_http keyword
argument that opens the URL for you. The function must have the
following signature:

open_http(method, URL, values)

The action is one of '"GET’ or 'POST’, the URL is the target URL as a
string, and the values are a sequence of (name, value) tuples with the
form data.

367

Functions Package Ixml.html

tostring(doc, pretty print=False, include meta_content type—False,
encoding—None, method—=html”)

Return an HTML string representation of the document.

Note: if include meta content type is true this will create a <meta

http-equiv="Content-Type" ...> tag in the head; regardless of the value
of include meta content type any existing <meta
http-equiv="Content-Type" ...> tag will be removed

The encoding argument controls the output encoding (defauts to ASCII,
with &7...; character references for any characters outside of ASCII).

The method argument defines the output method. It defaults to 'html’, but
can also be 'xml’ for xhtml output, or ’text’ to serialise to plain text
without markup. Note that you can pass the builtin unicode type as
encoding argument to serialise to a unicode string.

Example:

>>> from 1lxml import html
>>> root = html.fragment_fromstring(’<p>Hello
world!</p>()

>>> html.tostring(root)
’<p>Hello
world!</p>’

>>> html.tostring(root, method=’html’)
’<p>Hello
world!</p>’

>>> html.tostring(root, method=’xml’)
’<p>Hello
world!</p>’

>>> html.tostring(root, method=’text’)
’Helloworld!’

>>> html.tostring(root, method=’text’, encoding=unicode)
u’Helloworld!’

open_in_browser(doc)

Open the HTML document in a web browser (saving it to a temporary file
to open it).

368

Variables Package Ixml.html

Element(*args, **kw)

Create a new HTML Element.

This can also be used for XHTML documents.

B.7.3 Variables

Name Description

find rel links Value: _MethodFunc(’find_rel_links’,
copy= False)

find class Value: _MethodFunc(’find_class’, copy=
False)

make links absolute Value:
_MethodFunc(’make_links_absolute’,
copy= True)

resolve base href Value:
_MethodFunc(’resolve_base_href’, copy=
True)

iterlinks Value: _MethodFunc(’iterlinks’, copy=
False)

rewrite links Value: _MethodFunc(’rewrite_links’,
copy= True)

369

Module Ixml html. ElementSoup

B.8 Module Ixml.html.ElementSoup

Legacy interface to the BeautifulSoup HTML parser.

B.8.1 Functions

convert tree(beautiful _soup_ tree, makeelement—=None)

Convert a BeautifulSoup tree to a list of Element trees.

Returns a list instead of a single root Element to support HTML-like soup
with more than one root element.

You can pass a different Element factory through the makeelement
keyword.

parse(file, beautifulsoup—=None, makeelement—None)

370

Module Ixml. html.builder

B.9 Module Ixml.html.builder

A set of HTML generator tags for building HTML documents.
Usage:

>>> from lxml.html.builder import *
>>> html = HTML(
HEAD(TITLE("Hello World")),
BODY(CLASS("main"),
H1("Hello World !")
)

>>> import lxml.etree
>>> print lxml.etree.tostring(html, pretty_print=True)
<html>
<head>
<title>Hello World</title>
</head>
<body class="main">
<h1>Hello World !</hi1>
</body>
</html>

B.9.1 Functions

CLASS(v)

FOR(v)

B.9.2 Variables

Name Description
E Value: ElementMaker (makeelement=
html_parser.makeelement)
A Value: E.a
ABBR Value: E.abbr
ACRONYM Value: E.acronym
ADDRESS Value: E.address
APPLET Value: E.applet
AREA Value: E.area
B Value: E.b
BASE Value: E.base
BASEFONT Value: E.basefont

continued on next page

371

Variables

Module Ixml. html.builder

Name Description
BDO Value: E.bdo
BIG Value: E.big
BLOCKQUOTE Value: E.blockquote
BODY Value: E.body
BR Value: E.br
BUTTON Value: E.button
CAPTION Value: E.caption
CENTER Value: E.center
CITE Value: E.cite
CODE Value: E.code
COL Value: E.col
COLGROUP Value: E.colgroup
DD Value: E.dd
DEL Value: getattr(E, ’del’)
DFN Value: E.dfn
DIR Value: E.dir
DIV Value: E.div
DL Value: E.d1
DT Value: E.dt
EM Value: E.em
FIELDSET Value: E.fieldset
FONT Value: E.font
FORM Value: E.form
FRAME Value: E.frame
FRAMESET Value: E.frameset
H1 Value: E.h1
H2 Value: E.h2
H3 Value: E.h3
H4 Value: E.h4
H5 Value: E.h5
H6 Value: E.h6
HEAD Value: E.head
HR Value: E.hr
HTML Value: E.html
I Value: E.i
IFRAME Value: E.iframe
IMG Value: E.img
INPUT Value: E.input
INS Value: E.ins
ISINDEX Value: E.isindex
KBD Value: E.kbd
LABEL Value: E.label
LEGEND Value: E.legend
LI Value: E.1i
LINK Value: E.1link
MAP Value: E.map

372

continued on next page

Variables Module Ixml. html.builder

Name Description
MENU Value: E.menu
META Value: E.meta
NOFRAMES Value: E.noframes
NOSCRIPT Value: E.noscript
OBJECT Value: E.object
OL Value: E.ol
OPTGROUP Value: E.optgroup
OPTION Value: E.option
P Value: E.p
PARAM Value: E.param
PRE Value: E.pre
Q Value: E.q
S Value: E.s
SAMP Value: E.samp
SCRIPT Value: E.script
SELECT Value: E.select
SMALL Value: E.small
SPAN Value: E.span
STRIKE Value: E.strike
STRONG Value: E.strong
STYLE Value: E.style
SUB Value: E.sub
SUP Value: E.sup
TABLE Value: E.table
TBODY Value: E.tbody
TD Value: E.td
TEXTAREA Value: E.textarea
TFOOT Value: E.tfoot
TH Value: E.th
THEAD Value: E.thead
TITLE Value: E.title
TR Value: E.tr
TT Value: E.tt
U Value: E.u
UL Value: E.ul
VAR Value: E.var
__package Value: ’1xml.html’

373

Module Ixml. html.clean

B.10 Module Ixml.html.clean

A cleanup tool for HTML.

Removes unwanted tags and content. See the Cleaner class for details.

B.10.1 Functions

autolink(el, link regezes—_link_regexes,
avoid_elements—_avoid_elements, avoid_hosts—_avoid_hosts,
avoid_ classes—_avoid_classes)

Turn any URLs into links.

It will search for links identified by the given regular expressions (by
default mailto and http(s) links).

It won’t link text in an element in avoid elements, or an element with a
class in avoid _classes. It won’t link to anything with a host that matches
one of the regular expressions in avoid hosts (default localhost and
127.0.0.1).

If you pass in an element, the element’s tail will not be substituted, only
the contents of the element.

autolink html(html, *args, **kw)

word _break(el, max_ width—=40,
avoid_ elements—_avoid_word_break_elements,
avoid_ classes=_avoid_word_break_classes,

break character=unichr (0x200b))

Breaks any long words found in the body of the text (not attributes).

Doesn’t effect any of the tags in avoid elements, by default <textarea>
and <pre>

Breaks words by inserting ​, which is a unicode character for Zero
Width Space character. This generally takes up no space in rendering, but
does copy as a space, and in monospace contexts usually takes up space.

See http://www.cs.tut.fi/~jkorpela/html/nobr.html for a discussion

word break html(html, *args, **kw)

374

http://www.cs.tut.fi/~jkorpela/html/nobr.html

Class Cleaner Module Ixml. html.clean

B.10.2 Variables

Name Description
clean Value: Cleaner ()
clean html Value: clean.clean_html

B.10.3 Class Cleaner

object
Ixml.html.clean.Cleaner

Instances cleans the document of each of the possible offending elements. The cleaning
is controlled by attributes; you can override attributes in a subclass, or set them in the
constructor.

scripts: Removes any <script> tags.

javascript: Removes any Javascript, like an onclick attribute.

comments: Removes any comments.

style: Removes any style tags or attributes.

links: Removes any <link> tags

meta: Removes any <meta> tags

page_structure: Structural parts of a page: <head>, <html>, <title>.
processing_instructions: Removes any processing instructions.

embedded: Removes any embedded objects (flash, iframes)

frames: Removes any frame-related tags

forms: Removes any form tags

annoying_tags: Tags that aren’t wrong, but are annoying. <blink> and <marque>
remove_tags: A list of tags to remove.

allow_tags: A list of tags to include (default include all).
remove_unknown_tags: Remove any tags that aren’t standard parts of HTML.

safe_attrs_only: If true, only include ’safe’ attributes (specifically the list from feed-
parser).

add_nofollow: If true, then any <a> tags will have rel="nofollow" added to them.

host_whitelist: A list or set of hosts that you can use for embedded content (for content
like <object>, <link rel="stylesheet">, etc). You can also implement/override
the method allow_embedded_url(el, url) or allow_element(el) to implement

375

http://feedparser.org/docs/html-sanitization.html
http://feedparser.org/docs/html-sanitization.html

Class Cleaner Module Ixml. html.clean

more complex rules for what can be embedded. Anything that passes this test will
be shown, regardless of the value of (for instance) embedded.

Note that this parameter might not work as intended if you do not make the links
absolute before doing the cleaning.

whitelist_tags: A set of tags that can be included with host_whitelist. The default
is iframe and embed; you may wish to include other tags like script, or you may
want to implement allow_embedded_url for more control. Set to None to include
all tags.

This modifies the document in place.

Methods

__init (self, **kw)

X. _init_ (...) initializes x; see x. class . doc__ for signature
Overrides: object. init extit(inherited documentation)

__call (self, doc)

Cleans the document.

allow follow(self, anchor)

Override to suppress rel="nofollow” on some anchors.

allow element(self, el)

allow embedded url(self, el, url)

kill conditional comments(self, doc)

IE conditional comments basically embed HTML that the parser doesn’t
normally see. We can’t allow anything like that, so we’ll kill any comments
that could be conditional.

clean html(self, html)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_reduce (), reduce ex (), repr (), setattr (), sizeof (),

376

Class Cleaner

Module Ixml. html.clean

__str_ (), __subclasshook

0

Properties
Name Description
Inherited from object
__class
Class Variables
Name Description
scripts Value: True
javascript Value: True
comments Value: True
style Value: False
links Value: True
meta Value: True
page structure Value: True
processing instructions Value: True
embedded Value: True
frames Value: True
forms Value: True
annoying tags Value: True
remove tags Value: None
allow tags Value: None
remove unknown tags Value: True
safe attrs only Value: True
add nofollow Value: False
host whitelist Value: ()
whitelist _tags Value: set([’iframe’, ’embed’])

377

Variables Module Ixml. html.defs

B.11 Module Ixml.html.defs

B.11.1 Variables

Name Description

empty tags Value: frozenset([’area’, ’base’,
’basefont’, ’br’, ’col’, ’fram...

deprecated tags Value: frozenset([’applet’,
’basefont’, ’center’, ’dir’,
’font?, ...

link attrs Value: frozenset([’action’, ’archive’,
’background’, ’cite’, ’cl...

event attrs Value: frozenset([’onblur’,
’onchange’, ’onclick’,
’ondblclick’, ...

safe attrs Value: frozenset([’abbr’, ’accept’,
’accept-charset’, ’accesskey...

top_level tags Value: frozenset([’body’, ’frameset’,
’head’, ’html’])

head tags Value: frozenset([’base’, ’isindex’,

’link’, ’meta’, ’script’, ’...

general block tags

Value: frozenset([’address’,

’blockquote’, ’center’, ’del’, ’div...

list tags Value: frozenset([’dd’, ’dir’, ’dl’,
’dt’, ’1i’, ’menu’, ’0l’, ...

table tags Value: frozenset([’caption’, ’col’,
’colgroup’, ’table’, ’tbody’...

block tags Value: frozenset([’address’,
’blockquote’, ’caption’, ’center’,

form tags Value: frozenset([’button’,
’fieldset’, ’form’, ’input’,
’label’. ..

special inline tags Value: frozenset([’a’, ’applet’,
area’, ’basefont’, ’bdo’, ’br’...

phrase tags Value: frozenset([’abbr’, ’acronym’,

’cite’, ’code’, ’del’, ’dfn...

font style tags

Value: frozenset([’b’, ’big’, ’i’,

’s?, ’small’, ’strike’, ’tt’,...
frame_tags Value: frozenset([’frame’, ’frameset’,
’noframes’])
nonstandard tags Value: frozenset([’blink’, ’marque’])
tags Value: frozenset([’a’, ’abbr’,
acronym’, ’address’, ’applet’, ...

__package

Value: None

378

Module Ixml.html.diff

B.12 Module Ixml.html.diff

B.12.1 Functions

html annotate(doclist, markup=<function default_markup at
0x3010230>)

doclist should be ordered from oldest to newest, like:

>>> yversionl = ’Hello World’

>>> version2 = ’Goodbye World’

>>> print (html_annotate([(versionl, ’version 1°),
(version2, ’version 27)]))
Goodbye World

The documents must be fragments (str/UTF8 or unicode), not complete
documents

The markup argument is a function to markup the spans of words. This
function is called like markup("Hello’, 'version 2’), and returns HTML. The
first argument is text and never includes any markup. The default uses a
span with a title:

>>> (default_markup(’Some Text’, ’by Joe’))

Some Text

htmldiff (old_ html, new html)

Do a diff of the old and new document. The documents are HTML
fragments (str/UTF8 or unicode), they are not complete documents (i.e.,
no <html> tag).

Returns HTML with <ins> and tags added around the appropriate
text.

Markup is generally ignored, with the markup from new html preserved,
and possibly some markup from old html (though it is considered
acceptable to lose some of the old markup). Only the words in the HTML
are diffed. The exception is tags, which are treated like words, and
the href attribute of <a> tags, which are noted inside the tag itself when
there are changes.

379

Module Ixml. html.formfill

B.13 Module Ixml.html.formfill

B.13.1 Functions

fill form(el, values, form_id=None, form_indez—None)

fill form html(html, values, form_id=None, form_index=None)

insert errors(el, errors, form_id=None, form_indexr—None,
error_ class=’error’, error_creator—default_error_creator)

insert errors html(html, values, **kw)

B.13.2 Class FormNotFound

object T

exceptions.BaseException T
exceptions.Exception T
exceptions.StandardError T

exceptions.LookupError
Ixml.html.formfill. FormNotFound

Raised when no form can be found

Methods

Inherited from exceptions.LookupError
__init__()a __HGW__()
Inherited from exceptions. BaseFException

__delattr (), getattribute (), getitem (), getslice (), re-
duce_ (), __repr_ (), __setattr_ (), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

~ format (), hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

380

Class DefaultErrorCreator

Module Ixml. html.formfill

Properties

Name

Description

args, message

Inherited from exceptions. BaseEzception

Inherited from object
_class

B.13.3 Class DefaultErrorCreator

object

Ixml.html.formfill.DefaultErrorCreator

Methods

__init_ (self, **kw)

X. _init_ (...) initializes x; see x. _class .
Overrides: object. init extit(inherited documentation)

doc__ for signature

__call _ (self, el, is_block, message)

Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
_reduce (), reduce ex (), _repr (), setattr (), sizeof (),
_ str_ (), __subclasshook ()
Properties
Name Description
Inherited from object
__class
Class Variables
Name Description
insert before Value: True
block inside Value: True
error _container _tag Value: ’div’
error _message class Value: ’error-message’
error block class Value: ’error-block’
default message Value: ’Invalid’

381

Module Ixml html html5parser

B.14 Module Ixml.html.html5parser

An interface to htmlblib.

B.14.1 Functions

document fromstring(html, guess_ charset=True, parser—=None)

Parse a whole document into a string.

fragments fromstring(html, no_leading_text=False,
guess_ charset=False, parser—None)

Parses several HTML elements, returning a list of elements.

The first item in the list may be a string. If no_leading text is true, then
it will be an error if there is leading text, and it will always be a list of only
elements.

If guess_charset is True and the text was not unicode but a bytestring,
the chardet library will perform charset guessing on the string.

fragment fromstring(html, create_ parent=False,
guess_ charset=False, parser—=None)

Parses a single HI'ML element; it is an error if there is more than one
element, or if anything but whitespace precedes or follows the element.

If create parent is true (or is a tag name) then a parent node will be
created to encapsulate the HTML in a single element.

fromstring(html, guess charset=True, parser=None)

Parse the html, returning a single element/document.

This tries to minimally parse the chunk of text, without knowing if it is a
fragment or a document.

base url will set the document’s base url attribute (and the tree’s
docinfo.URL)

382

Class HTMLParser Module Ixml html html5parser

parse(filename_url_or_file, guess charset=True, parser—=None)

Parse a filename, URL, or file-like object into an HTML document tree.
Note: this returns a tree, not an element. Use parse(...).getroot() to
get the document root.

B.14.2 Variables

Name Description
xhtml parser Value: XHTMLParser ()
html parser Value: HTMLParser ()
__package Value: ’1xml.html’

B.14.3 Class HTMLParser

object T

html5lib.html5parser. HTMLParser
Ixml.html.html5parser. HTMLParser
An html5lib HTML parser with Ixml as tree.

Methods

init (self, strict=False)
strict - raise an exception when a parse error is encountered

tree - a treebuilder class controlling the type of tree that will be returned.
Built in treebuilders can be accessed through
html5lib.treebuilders.get TreeBuilder(treeType)

tokenizer - a class that provides a stream of tokens to the treebuilder. This
may be replaced for e.g. a sanitizer which converts some tags to text
Overrides: object. init extit(inherited documentation)

Inherited from html5lib.html5parser. HTMLParser

normalizeToken(), normalized Tokens(), parse(), parseError(), parseFragment(),
parseRCDataCData(), resetInsertionMode()

Inherited from object

__delattr (), format (), _ getattribute (), _hash (), new (),
__reduce (), reduce ex (), _repr (), _setattr (), sizeof (),

383

Class XHTMLParser Module Ixml html html5parser

__str__ (), __subclasshook ()

Properties

Name Description
Inherited from object
__class

B.14.4 Class XHTMULParser

object T
html5lib.html5parser. HTMLParser T
html5lib.liberalxmlparser. XMLParser T

htmlblib.liberalxmlparser. XHTMLParser
Ixml.html.html5parser. XHTMLParser
An html5lib XHTML Parser with 1xml as tree.

Methods

__init (self, strict=False)
strict - raise an exception when a parse error is encountered

tree - a treebuilder class controlling the type of tree that will be returned.
Built in treebuilders can be accessed through
html5lib.treebuilders.get TreeBuilder(treeType)

tokenizer - a class that provides a stream of tokens to the treebuilder. This
may be replaced for e.g. a sanitizer which converts some tags to text
Overrides: object. init extit(inherited documentation)

Inherited from html5lib.liberalexmlparser. XHTMLParser
normalizeToken()
Inherited from html5lib.liberalemlparser. XML Parser
parseRCDataCDatal()
Inherited from html5lib.html5parser. HTMLParser
normalized Tokens(), parse(), parseError(), parseFragment(), resetInsertionMode()

Inherited from object

384

Class XHTMLParser Module Ixml html html5parser

__delattr (), format (), getattribute (), _hash (), new (),
~reduce (), reduce ex (), repr (), setattr (), sizeof (),
~str (), __subclasshook ()

Properties

Name Description
Inherited from object
__class

385

Module Ixml.html.soupparser

B.15 Module Ixml.html.soupparser

External interface to the BeautifulSoup HTML parser.

B.15.1 Functions

fromstring(data, beautifulsoup=None, makeelement=None, **bsargs)

Parse a string of HTML data into an Element tree using the BeautifulSoup
parser.

Returns the root <html> Element of the tree.

You can pass a different BeautifulSoup parser through the beautifulsoup
keyword, and a diffent Element factory function through the makeelement
keyword. By default, the standard BeautifulSoup class and the default
factory of 1xml.html are used.

parse(file, beautifulsoup=None, makeelement—=None, **bsargs)

Parse a file into an ElemenTree using the BeautifulSoup parser.

You can pass a different BeautifulSoup parser through the beautifulsoup
keyword, and a diffent Element factory function through the makeelement
keyword. By default, the standard BeautifulSoup class and the default
factory of 1xml.html are used.

convert tree(beautiful _soup_ tree, makeelement—None)

Convert a BeautifulSoup tree to a list of Element trees.

Returns a list instead of a single root Element to support HTML-like soup
with more than one root element.

You can pass a different Element factory through the makeelement
keyword.

386

Module Ixml. html.usedoctest

B.16 Module Ixml.html.usedoctest

Doctest module for HTML comparison.
Usage:

>>> import lxml.html.usedoctest
>>> # now do your HTML doctests ...

See 1xml.doctestcompare.

387

Module Ixml.objectify

B.17 Module Ixml.objectify

The 1xml.objectify module implements a Python object API for XML. It is based on
1xml.etree. Version: 2.2.6

B.17.1 Functions

DataElement(wvalue, attrib=None, nsmap=None, pytype—None,
_zsi=None, ** attributes)

Create a new element from a Python value and XML attributes taken from
keyword arguments or a dictionary passed as second argument.

Automatically adds a 'pytype’ attribute for the Python type of the value, if
the type can be identified. If ° pytype’ or °_ xsi’ are among the keyword
arguments, they will be used instead.

If the value argument is an ObjectifiedDataElement instance, its
py:pytype, xsi:type and other attributes and nsmap are reused unless they
are redefined in attrib and/or keyword arguments.

*

Element(_tag, attrib=None, nsmap—=None, pytype—None, ** attributes)

Objectify specific version of the Ixml.etree Element() factory that always
creates a structural (tree) element.

NOTE: requires parser based element class lookup activated in lxml.etree!

XML(zml, parser=None, base url=None)

Objectify specific version of the Ixml.etree XML() literal factory that uses
the objectify parser.

You can pass a different parser as second argument.

The base_url keyword argument allows to set the original base URL of

the document to support relative Paths when looking up external entities
(DTD, XlInclude, ...).

388

Functions Module Ixml.objectify

annotate(element _or_tree, ignore old=True, ignore xsi—False,
empty pytype=None, empty type—=None, annotate x51=0,
annotate _ pytype=1)

Recursively annotates the elements of an XML tree with 'xsi:type’ and/or
'py:pytype’ attributes.

If the ’ignore old” keyword argument is True (the default), current
'py:pytype’ attributes will be ignored for the type annotation. Set to False
if you want reuse existing 'py:pytype’ information (iff appropriate for the
element text value).

If the ’ignore xsi’ keyword argument is False (the default), existing
'xsi:type’ attributes will be used for the type annotation, if they fit the
element text values.

Note that the mapping from Python types to XSI types is usually
ambiguous. Currently, only the first XSI type name in the corresponding
PyType definition will be used for annotation. Thus, you should consider
naming the widest type first if you define additional types.

The default py:pytype’ annotation of empty elements can be set with the
empty_pytype keyword argument. Pass ’str’, for example, to make string
values the default.

The default 'xsi:type’ annotation of empty elements can be set with the
empty_type keyword argument. The default is not to annotate empty
elements. Pass ’string’, for example, to make string values the default.

The keyword arguments 'annotate xsi’ (default: 0) and ’annotate pytype’
(default: 1) control which kind(s) of annotation to use.

deannotate(element or_tree, pytype=True, xsi=True, xsi_nil=False)

Recursively de-annotate the elements of an XML tree by removing
'py:pytype’ and/or ’xsi:type’ attributes and/or 'xsi:nil” attributes.

If the 'pytype’ keyword argument is True (the default), "py:pytype’
attributes will be removed. If the 'xsi’ keyword argument is True (the
default), "xsi:type’ attributes will be removed. If the 'xsi nil” keyword
argument is True (default: False), 'xsi:nil’ attributes will be removed.

Note that this does not touch the namespace declarations. If you want to
remove unused namespace declarations from the tree, use
1xml.etree.cleanup_namespaces().

389

Functions Module Ixml.objectify

dump(...)

dump(_ Element element not None)

Return a recursively generated string representation of an element.

enable recursive str(on=True)

Enable a recursively generated tree representation for str(element), based
on objectify.dump(element).

fromstring(xml, parser—None, base_url—None)

Objectify specific version of the Ixml.etree fromstring() function that uses
the objectify parser.

You can pass a different parser as second argument.

The base_url keyword argument allows to set the original base URL of
the document to support relative Paths when looking up external entities
(DTD, XlInclude, ...).

getRegisteredTypes()

Returns a list of the currently registered PyType objects.

To add a new type, retrieve this list and call unregister() for all entries.
Then add the new type at a suitable position (possibly replacing an
existing one) and call register() for all entries.

This is necessary if the new type interferes with the type check functions of
existing ones (normally only int/float/bool) and must the tried before
other types. To add a type that is not yet parsable by the current type
check functions, you can simply register() it, which will append it to the
end of the type list.

390

Functions Module Ixml.objectify

makeparser(remove_blank_text=True, **kw)

Create a new XML parser for objectify trees.

You can pass all keyword arguments that are supported by
etree.XMLParser (). Note that this parser defaults to removing blank
text. You can disable this by passing the remove_blank_text boolean
keyword option yourself.

parse(f, parser=None, base url=None)

Parse a file or file-like object with the objectify parser.
You can pass a different parser as second argument.

The base_url keyword allows setting a URL for the document when
parsing from a file-like object. This is needed when looking up external
entities (DTD, XInclude, ...) with relative paths.

pyannotate(element or_tree, ignore old=False, ignore zsi—False,
empty pytype—None)

Recursively annotates the elements of an XML tree with "pytype’
attributes.

If the ’ignore old’ keyword argument is True (the default), current
‘pytype’ attributes will be ignored and replaced. Otherwise, they will be
checked and only replaced if they no longer fit the current text value.

Setting the keyword argument ignore_xsi to True makes the function
additionally ignore existing xsi:type annotations. The default is to use
them as a type hint.

The default annotation of empty elements can be set with the
empty_pytype keyword argument. The default is not to annotate empty
elements. Pass ’str’; for example, to make string values the default.

pytypename(obj)

Find the name of the corresponding PyType for a Python object.

391

Variables Module Ixml.objectify

set default parser(new_parser=None)

Replace the default parser used by objectify’s Element() and fromstring()
functions.

The new parser must be an etree. XMLParser.

Call without arguments to reset to the original parser.

set pytype attribute tag(attribute_tag—None)

Change name and namespace of the XML attribute that holds Python type
information.

Do not use this unless you know what you are doing.
Reset by calling without argument.

Default: “{http://codespeak.net/lxml/objectify/pytype}pytype”

xsiannotate(element_or_tree, ignore_ old—False, ignore_pylype—False,
empty _type=None)

Recursively annotates the elements of an XML tree with ’xsi:type’
attributes.

If the ’ignore old’ keyword argument is True (the default), current
'xsi:type’ attributes will be ignored and replaced. Otherwise, they will be
checked and only replaced if they no longer fit the current text value.

Note that the mapping from Python types to XSI types is usually
ambiguous. Currently, only the first XSI type name in the corresponding
PyType definition will be used for annotation. Thus, you should consider
naming the widest type first if you define additional types.

Setting the keyword argument ignore_pytype to True makes the function
additionally ignore existing pytype annotations. The default is to use them
as a type hint.

The default annotation of empty elements can be set with the empty_type
keyword argument. The default is not to annotate empty elements. Pass
'string’, for example, to make string values the default.

B.17.2 Variables

392

http://codespeak.net/lxml/objectify/pytype

Class BoolElement

Module Ixml.objectify

Name Description
E Value: <1xml.objectify.ElementMaker

object at 0x2abb5960>
PYTYPE ATTRIBUTE | Value:

>{http://codespeak.net/lxml/objectify/p

ytypelpytype’
B.17.3 Class BoolElement
object T
Ixml.etree. Element T
Ixml.etree.ElementBase T
Ixml.objectify.Objectified Element T
Ixml.objectify.ObjectifiedDataElement T
Ixml.objectify. NumberElement T
Ixml.objectify.IntElement

Ixml.objectify.BoolElement
Boolean type base on string values: 'true’ or 'false’.

Note that this inherits from IntElement to mimic the behaviour of Python’s bool type.

Methods

__eq__(zy)

x==y Overrides: Ixml.objectify.NumberElement. eq

__ge__ (% y)

x>=y Overrides: Ixml.objectify. NumberElement. ge

__gt__(zvy)

x>y Overrides: Ixml.objectify.NumberElement. gt

393

Class BoolElement Module Ixml.objectify

_le__(z,9)

x<=y Overrides: Ixml.objectify.NumberElement. le

It__(z,9)

x<y Overrides: Ixml.objectify.NumberElement. It

ne_ _(z, y)

x!=y Overrides: Ixml.objectify.NumberElement. ne

__mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

nonzero (1)

x =0 Overrides: Ixml.etree. FElement. nonzero

_repr___ (self)

repr(x) Overrides: object. repr extit(inherited documentation)

str (..)

str(x) Overrides: object. str extit(inherited documentation)

Inherited from lzml.objectify. NumberElement(Section B.17.9)
abs (), add__()7 __and__(), __complex__ (), __div__(), _float__(),

hex 0, (), _invert (), long (), lIshift (), mod (),
“mul__ (), __neg (), _oct_ (), _or_ (), _pos_ (), __pow__(),
radd__() rand 0, xrdiv_ (), _rlshift (), rmod (), _rmul (),

), rpow__(), ~rrshift (), rshift (), rsub_ (), _ rtrue-
d1V _(), __rxor__(), ~ sub_ (), truediv. (), _xor_ ()

Inherited from lzml.objectify. Objectified Element(Section B.17.12)

__delattr (), _delitem (), getattr (), getattribute (), getitem (),
_iter (), __len_ (), _setattr (), __setitem (), addattr(), countchil-

394

Class ElementMaker Module Ixml.objectify

dren(), descendantpaths(), find(), findall(), findtext(), getchildren(), iterfind()
Inherited from lxml.etree. ElementBase(Section B.6.17)

~init ()
Inherited from lxml.etree. Element

__contains__ (), __copy_ (), _deepcopy (), reversed (), addnext(),
addprevious(), append(), clear(), extend(), get(), getiterator(), getnext(), get-
parent(), getprevious(), getroottree(), index(), insert(), items(), iter(), iter-
ancestors(), iterchildren(), iterdescendants(), itersiblings(), itertext(), keys(),
makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format (), _hash (), _reduce (), __reduce_ex__ (), _sizeof (),
__subclasshook ()

Properties
Name Description
pyval
Inherited from lzml.objectify. ObjectifiedElement (Section B.17.12)
text

Inherited from lxml.etree. FElement

attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object

__class

B.17.4 Class ElementMaker

object
Ixml.objectify.ElementMaker
ElementMaker (self, namespace=None, nsmap=None, annotate=True, makeelement—None)
An ElementMaker that can be used for constructing trees.
Example:

>>> M = ElementMaker (annotate=False)
>>> html = M.html(M.body(M.p(’hello’, M.br, ’objectify’)))

>>> from lxml.etree import tostring
>>> print(tostring(html, method=’html’).decode(’ASCII’))
<html><body><p>hello
objectify</p></body></html>

Note that this module has a predefined ElementMaker instance called E.

395

Class ElementMaker Module Ixml.objectify

Methods

__getattr (...

__getattribute (...)

X. _getattribute ('mame’) <==> x.name Overrides:
object. getattribute

__init _ (self, namespace=None, nsmap=None, annotate=True,
makeelement—=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from object

_ delattr (), format (), _hash (), _reduce (), reduce ex (),
_ repr_ (), _setattr (), sizeof (), str_ (), subclasshook ()

Properties

Name \ Description
Inherited from object
__class

396

Class FloatElement Module Ixml.objectify

B.17.5 Class FloatElement

object T

Ixml.etree. FElement T

Ixml.etree. ElementBase T
Ixml.objectify.Objectified Element T
Ixml.objectify.ObjectifiedDataElement T

Ixml.objectify.NumberElement
Ixml.objectify.FloatElement

Methods

_ _new_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lxml.objectify. NumberElement(Section B.17.9)

~_abs (), add (), —and (), complex (), div. (), _eq (),

_ float . (), ge (), gt (), _hex (), _int_ (), _invert (),
~le_ (), __long_ (), _Ishift (), 1t (), _mod (), _mul (),
~mne_ (), mneg (), nonzero_ (), __oc‘F__(), ~or__ (), _pos__ (),

_ pow_ (), radd (), rand (), _rdiv_ (), _repr (), rl-

shift (), rmod (), rmul (), ror (), rpow_ (), _rrshift (),
rshift (), rsub (), rtruediv._ (), _rxor (), _str_ (), _sub (),
__truediv_ (), _xor_ ()

Inherited from lzml.objectify. Objectified Element(Section B.17.12)

__delattr (), delitem (), getattr (), getattribute (), getitem (),
_ iter_ (), __len_ (), _setattr (), _setitem (), addattr(), countchil-
dren(), descendantpaths(), find(), findall(), findtext(), getchildren(), iterfind()

Inherited from lxml.etree. ElementBase(Section B.6.17)
~_init_ ()
Inherited from lxml.etree. Element

__contains__ (), _copy_ (), _deepcopy (), _reversed (), addnext(),
addprevious(), append(), clear(), extend(), get(), getiterator(), getnext(), get-
parent(), getprevious(), getroottree(), index(), insert(), items(), iter(), iter-

397

Class IntElement Module Ixml.objectify

ancestors(), iterchildren(), iterdescendants(), itersiblings(), itertext(), keys(),
makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format (), _hash (), _reduce (), _reduce_ex__ (), _sizeof (),
__subclasshook ()

Properties

Name \ Description
Inherited from lzml.objectify. NumberElement (Section B.17.9)
pyval
Inherited from lxml.objectify. ObjectifiedElement (Section B.17.12)
text
Inherited from lxml.etree. Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class

B.17.6 Class IntElement

object
T
Ixml.etree. Element T
Ixml.etree. ElementBase T
Ixml.objectify.Objectified Element T
Ixml.objectify.ObjectifiedDataElement T

Ixml.objectify. NumberElement
Ixml.objectify.IntElement

Known Subclasses: Ixml.objectify.BoolElement

Methods

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lzml.objectify. NumberElement(Section B.17.9)

398

Class IntElement Module Ixml.objectify

abs (), _add_ (), _and (), _complex (), div. (), _eq (),
_ float . (), ge (), gt (), _hex (), _int_ (), _invert (),
le (), __long_ (), _Ishift (), 1t (), _mod (), _mul (),
__me__(), __meg__(), __nonzero__(), __oct__(), __or__(), __pos__(),

_ pow_ (), radd (), rand (), _rdiv_ (), _repr (), 1l

shift (), rmod (), rmul (), ror_ (), rpow_ (), _rrshift (),
~rshift (), rsub_ (), rtruediv_ (), _rxor (), _str_ (), _sub (),

__truediv__ (), __xor__()
Inherited from lzml.objectify. Objectified Element(Section B.17.12)
__delattr (), delitem (), getattr (), getattribute (), getitem (),

__iter_ (), __len_ (), _setattr (), _setitem_ (), addattr(), countchil-
dren(), descendantpaths(), find(), findall(), findtext(), getchildren(), iterfind()

Inherited from lxml.etree. ElementBase(Section B.6.17)
~_init_ ()
Inherited from lxml.etree. Element

__contains__ (), _copy (), _deepcopy (), reversed (), addnext(),
addprevious(), append(), clear(), extend(), get(), getiterator(), getnext(), get-
parent(), getprevious(), getroottree(), index(), insert(), items(), iter(), iter-
ancestors(), iterchildren(), iterdescendants(), itersiblings(), itertext(), keys(),
makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__ (), __hash__ (), __reduce__(), __reduce_ex__(), __sizeof _ (),
__subclasshook ()

Properties

Name Description
Inherited from lzml.objectify. NumberElement (Section B.17.9)
pyval
Inherited from lzml.objectify. ObjectifiedElement (Section B.17.12)
text
Inherited from lxml.etree. FElement
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class

399

Class LongFElement Module Ixml.objectify

B.17.7 Class LongElement

object
T
Ixml.etree. Element T
Ixml.etree.ElementBase T
Ixml.objectify.Objectified Element T
Ixml.objectify.Objectified DataElement T

Ixml.objectify. NumberElement
Ixml.objectify.LongElement

Methods

_ _mew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from lzml.objectify. NumberElement(Section B.17.9)

abs (), add (), and (), _complex (), div. (), _eq (),

_ float (), ge (), gt (O, _hex (), _int (), _invert (),
e (), long (), _Ishift (), 1t (), mod (), mul (),
mne (), meg (), _monzero (), _oct (), _or_ (), _pos__ (),
pow (), _radd (), rand (), rdiv. (), _repr_ (), rl-

shift (), rmod (), rmul (), ror (), rpow (), rrshift (),
__rwshift_ (), __rsub__ (), __rtruediv__(), __rxor__ (), _str__(), __sub__(),
__truediv_ (), xor ()

Inherited from lzml.objectify. Objectified Element(Section B.17.12)

__delattr (), _delitem (), getattr (), _ getattribute (), _ getitem (),
Citer (), len (), setattr (), setitem (), addattr(), countchil-

dren(), descendantpaths(), find(), findall(), findtext(), getchildren(), iterfind()
Inherited from lxml.etree. ElementBase(Section B.6.17)

__init ()
Inherited from lxml.etree. Element

~_contains__ (), _copy (), _deepcopy (), _reversed (), addnext(),
addprevious(), append(), clear(), extend(), get(), getiterator(), getnext(), get-
parent(), getprevious(), getroottree(), index(), insert(), items(), iter(), iter-

400

Class NoneElement Module Ixml.objectify

ancestors(), iterchildren(), iterdescendants(), itersiblings(), itertext(), keys(),

makeelement(), remove(), replace(), set(), values(), xpath()
Inherited from object

__format__ (), __hash__ (), __reduce_ (), _reduce_ex_ _(),
__subclasshook ()

Properties

__sizeof (),

Name \ Description

Inherited from lzml.objectify. NumberElement (Section B.17.9)
pyval

Inherited from lxml.objectify. ObjectifiedElement (Section B.17.12)
text

Inherited from lxml.etree. Element
attrib, base, nsmap, prefix, sourceline, tag, tail

Inherited from object
__class

B.17.8 Class NoneElement

object T
Ixml.etree. Element T

Ixml.etree. ElementBase T
Ixml.objectify.Objectified Element T

Ixml.objectify.ObjectifiedDataElement
Ixml.objectify.NoneElement

Methods
__ed__(zy)
X==y
__ge__(z,y)
X>=y

401

Class NoneElement Module Ixml.objectify

gt (z9)
X>y

_ e (7)
X<=y

It (xy)
X<y
__mne__(zy)
x!=y

new (7,5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__nonzero___ (z)

x |= 0 Overrides: Ixml.etree. Element. nonzero

__repr__ (self)

repr(x) Overrides: object. repr extit(inherited documentation)

str (...)

str(x) Overrides: object. str extit(inherited documentation)

Inherited from lzml.objectify. Objectified Element(Section B.17.12)

__delattr (), delitem (), getattr (), _ getattribute (), getitem (),
__iter_ (), __len__(), __setattr__(), __setitem__ (), addattr(), countchil-
dren(), descendantpaths(), find(), findall(), findtext(), getchildren(), iterfind()

Inherited from lzml.etree. ElementBase(Section B.6.17)

402

Class NumberElement Module Ixml.objectify

__init ()
Inherited from lxml.etree. Element

~_contains__ (), copy (), _deepcopy (), reversed (), addnext(),
addprevious(), append(), clear(), extend(), get(), getiterator(), getnext(), get-
parent(), getprevious(), getroottree(), index(), insert(), items(), iter(), iter-
ancestors(), iterchildren(), iterdescendants(), itersiblings(), itertext(), keys(),
makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

_ format (), hash (), _reduce (), _reduce ex (), _sizeof (),

__subclasshook ()

Properties
Name Description
pyval
Inherited from lxml.objectify. ObjectifiedElement (Section B.17.12)
text

Inherited from lxml.etree. Element

attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object

__class

B.17.9 Class NumberElement

object T

Ixml.etree. Element T
Ixml.etree.ElementBase T

Ixml.objectify.Objectified Element T

Ixml.objectify.ObjectifiedDataElement
Ixml.objectify. NumberElement

Known Subclasses: Ixml.objectify.IntElement, Ixml.objectify.FloatElement, Ixml.objectify. LongElem:

Methods

403

Class NumberElement

Module Ixml.objectify

__and_ (...)
__complex (
div (..)
__eq__(zy)
x==y
__float (...
__ge__(z,y)
X>=y
__gt__(zy)
x>y

hex (...

X<=y

_ _long (..)

Ishift (..)

It (zy)

X<y

404

Class NumberElement

Module Ixml.objectify

__ne__(z,9)
x!=y
neg_ _(...)

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__nonzero ()
x =0 Overrides: Ixml.etree. FElement. nonzero
__oct_ (..)
__or_ (..)
pos__ ()

pow(x, yl, z|)
__radd (z,)
VX
__rand_ (z, y)
y&x

405

Class NumberElement Module Ixml.objectify

rdiv (7,)

y/x

__repr___ (self)

repr(x) Overrides: object. repr extit(inherited documentation)

_rlshift (z, y)

__rpow___ (y, x z=...)

pow(x, y[, z|)

_rrshift (z, y)

y»X

_rshift (..)

406

Class NumberElement Module Ixml.objectify

rsub (z, y)

y-X

_rtruediv___ (z, y)

str (...)

str(x) Overrides: object. str extit(inherited documentation)

Inherited from lzml.objectify. Objectified Element(Section B.17.12)

_delattr (), delitem (), getattr (), getattribute (), getitem (),
__iter (), __len__ (), __setattr (), __setitem (), addattr(), countchil-

dren(), descendantpaths(), find(), findall(), findtext(), getchildren(), iterfind()
Inherited from lxml.etree. ElementBase(Section B.6.17)

__init ()
Inherited from lxml.etree. Element

~_contains (), _copy (), deepcopy (), reversed (), addnext(),
addprevious(), append(), clear(), extend(), get(), getiterator(), getnext(), get-
parent(), getprevious(), getroottree(), index(), insert(), items(), iter(), iter-
ancestors(), iterchildren(), iterdescendants(), itersiblings(), itertext(), keys(),
makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format (), _hash (), reduce (), reduce ex (), sizeof (),
__subclasshook ()

407

Class ObjectPath Module Ixml.objectify

Properties
Name Description
pyval
Inherited from lzml.objectify. ObjectifiedElement (Section B.17.12)
text

Inherited from lxml.etree. FElement

attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object

__class

B.17.10 Class ObjectPath

object
Ixml.objectify.ObjectPath
ObjectPath(path) Immutable object that represents a compiled object path.
Example for a path: 'root.child|[1].{other}child[25]’

Methods

_call (..)

Follow the attribute path in the object structure and return the target
attribute value.

If it it not found, either returns a default value (if one was passed as second
argument) or raises AttributeError.

_init __ (path)

X. _init__ (...) initializes x; see x. _class . doc_ _ for signature
Overrides: object. init

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

408

Class ObjectifiedDataFElement Module Ixml.objectify

str (..)

str(x) Overrides: object. str extit(inherited documentation)

addattr(self, root, value)

Append a value to the target element in a subtree.

If any of the children on the path does not exist, it is created.

hasattr(self, root)

setattr(self, root, value)

Set the value of the target element in a subtree.

If any of the children on the path does not exist, it is created.

Inherited from object
~_delattr (), format (), getattribute (), ~ _hash (), re-

duce (), reduce ex (), _repr_ (), setattr (), sizeof (),
__subclasshook ()

Properties

Name Description

find
Inherited from object
__class

B.17.11 Class ObjectifiedDataElement

object T
Ixml.etree. Element T
Ixml.etree.ElementBase T

Ixml.objectify.Objectified Element
Ixml.objectify.Objectified DataElement

Known Subclasses: Ixml.objectify.NumberElement, Ixml.objectify.NoneElement, Ixml.objectify.String

409

Class ObjectifiedDataFElement Module Ixml.objectify

This is the base class for all data type Elements. Subclasses should override the 'pyval’
property and possibly the str method.

Methods

new (7,5, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__repr___ (self)

repr(x) Overrides: object. repr extit(inherited documentation)

str (..)

str(x) Overrides: object. str extit(inherited documentation)

Inherited from lzml.objectify. Objectified Element(Section B.17.12)

_delattr (), delitem (), getattr (), getattribute (), getitem (),
__dter_ (), __len__(), __setattr__ (), __setitem (), addattr(), countchil-

dren(), descendantpaths(), find(), findall(), findtext(), getchildren(), iterfind()
Inherited from lzml.etree. ElementBase(Section B.6.17)

~_init_ ()
Inherited from lxml.etree. Element

__contains__ (), _ _copy_ (), __deepcopy (), _ mnonzero (), __re-
versed (), addnext(), addprevious(), append(), clear(), extend(), get(), getit-
erator(), getnext(), getparent(), getprevious(), getroottree(), index(), insert(),
items(), iter(), iterancestors(), iterchildren(), iterdescendants(), itersiblings(),
itertext(), keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__ (), __hash__ (), __reduce_ (), __reduce_ex__(), _sizeof (),
__subclasshook ()

Properties
Name Description
pyval
Inherited from lzml.objectify. ObjectifiedElement (Section B.17.12)
text
Inherited from lxml.etree. Element

continued on next page

410

Class ObjectifiedElement Module Ixml.objectify

Name \ Description

attrib, base, nsmap, prefix, sourceline, tag, tail

Inherited from object
__class

B.17.12 Class ObjectifiedElement

object T
Ixml.etree. Element T
Ixml.etree.ElementBase
Ixml.objectify.ObjectifiedElement

Known Subclasses: Ixml.objectify.ObjectifiedDataElement
Main XML Element class.

Element children are accessed as object attributes. Multiple children with the same name

are available through a list index. Example:

>>> root = XML ("<root><cl1><c2>0</c2><c2>1</c2></c1></root>")
>>> second_c2 = root.cl.c2[1]

>>> print(second_c2.text)
1

Note that you cannot (and must not) instantiate this class or its subclasses.

Methods

_delattr _ (...)

X. _delattr (‘name’) <==> del x.name Overrides:
object. delattr

_delitem _ (z, y)

del x|y] Overrides: Ixml.etree. Element. delitem

411

Class ObjectifiedElement Module Ixml.objectify

__getattr (...

Return the (first) child with the given tag name. If no namespace is
provided, the child will be looked up in the same one as self.

___getattribute (...)

X. _ getattribute ('mame’) <==> x.name Overrides:
object. getattribute

__getitem _ (...)

Return a sibling, counting from the first child of the parent. The method
behaves like both a dict and a sequence.

e If argument is an integer, returns the sibling at that position.

e If argument is a string, does the same as getattr(). This can be used
to provide namespaces for element lookup, or to look up children with
special names (text etc.).

e If argument is a slice object, returns the matching slice.

Overrides: lxml.etree. Element. getitem

__iter (self)

Iterate over self and all siblings with the same tag. Overrides:
Ixml.etree. Element. iter

len(x) Overrides: Ixml.etree. Element. len

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

412

Class ObjectifiedElement Module Ixml.objectify

_setattr (...

X. _setattr _ ('name’, value) <==> x.name = value Overrides:
object. setattr

_setitem (=, 4, y)

x[i|=y Overrides: Ixml.etree. Element. setitem
_str (..)
str(x) Overrides: object. str extit(inherited documentation)

addattr(self, tag, value)

Add a child value to the element.

As opposed to append(), it sets a data value, not an element.

countchildren(self)

Return the number of children of this element, regardless of their name.

descendantpaths(self, prefiz—None)

Returns a list of object path expressions for all descendants.

find(self, path)

Finds the first matching subelement, by tag name or path. Overrides:
Ixml.etree. Element.find

findall(self, path)

Finds all matching subelements, by tag name or path. Overrides:
Ixml.etree. Element.findall

findtext(self, path, default=None)

Finds text for the first matching subelement, by tag name or path.
Overrides: Ixml.etree. Element.findtext

413

Class ObjectifyElementClassLookup Module Ixml.objectify

getchildren(self)

Returns a sequence of all direct children. The elements are returned in
document order. Overrides: Ixml.etree. Element.getchildren

iterfind(self, path)

[terates over all matching subelements, by tag name or path. Overrides:
Ixml.etree. Element.iterfind

Inherited from lzml.etree. ElementBase(Section B.6.17)
__init_ ()
Inherited from lzxml.etree. Element

__contains__ (), _copy (), _deepcopy (), _monzero (), _repr__ (),
__reversed (), addnext(), addprevious(), append(), clear(), extend(), get(),
getiterator(), getnext(), getparent(), getprevious(), getroottree(), index(), in-
sert(), items(), iter(), iterancestors(), iterchildren(), iterdescendants(), itersib-
lings(), itertext(), keys(), makeelement(), remove(), replace(), set(), values(),
xpath()

Inherited from object

__format (), _hash (), __reduce_ (), __reduce_ex__ (), __sizeof _ (),
__subclasshook ()

Properties
Name Description
text Text before the first subelement. This is
either a string or the value None, if there was
no text.

Inherited from lxml.etree. Element

attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object

__class

B.17.13 Class ObjectifyElementClassLookup

object T

Ixml.etree. ElementClassLookup

Ixml.objectify.ObjectifyElementClassLookup

414

Class PyType Module Ixml.objectify

ObjectifyElementClassLookup(self, tree class=None, empty data_class=None) Element
class lookup method that uses the objectify classes.

Methods

__init (self, tree_ class=None, empty data_ class=None)

X. _init_ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init

new (T, 5, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

Inherited from object
__delattr (), format (), __ getattribute (), ~ hash (), re-

duce (), reduce ex (), repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name \ Description
Inherited from object
__class

B.17.14 Class PyType

object
Ixml.objectify.PyType
PyType(self, name, type check, type class, stringify=None) User defined type.

Named type that contains a type check function and a type class that inherits from Objec-
tifiedDataElement. The type check must take a string as argument and raise ValueError
or TypeError if it cannot handle the string value. It may be None in which case it is not
considered for type guessing.

Example:
PyType(’int’, int, MyIntClass).register()

Note that the order in which types are registered matters. The first matching type will
be used.

415

Class PyType Module Ixml.objectify

Methods

__init _ (self, name, type_ check, type_ class, stringify—None)

X. _init (...) initializes x; see x. class . doc_ for signature
Overrides: object. init

__mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__repr__ (...)

repr(x) Overrides: object. repr extit(inherited documentation)

register(self, before=None, after—None)

Register the type.

The additional keyword arguments ’before’ and ’after’ accept a sequence of
type names that must appear before/after the new type in the type list. If
any of them is not currently known, it is simply ignored. Raises ValueError
if the dependencies cannot be fulfilled.

unregister (self)

Inherited from object
~_delattr (), _ format (), getattribute (), ~ _hash (), re-

duce (), _ reduce ex (), setattr (), sizeof (), str (),
__subclasshook ()

Properties
Name Description

name

stringify

type_check

xmlSchemaTypes The list of XML Schema datatypes this
Python type maps to.
Note that this must be set before registering
the type!

Inherited from object

continued on next page

416

Class StringElement Module Ixml.objectify

Name Description
__class

B.17.15 Class StringElement

object T

Ixml.etree. Element T
Ixml.etree.ElementBase T

Ixml.objectify.ObjectifiedElement T

Ixml.objectify.ObjectifiedDataElement
Ixml.objectify.StringElement
String data class.

Note that this class does not support the sequence protocol of strings: len(), iter(),
str_attr[0], str_attr[0:1], etc. are not supported. Instead, use the .text attribute to get
a ‘real’ string.

Methods

__add (...
__complex (...
__ed__(z,9)
X==y
__float (...
__ge__(zy)
X>=y

417

Class StringElement

Module Ixml.objectify

__gt__(zy)
X>y
__int_ (..)
_ e _(ny)
X<=y
_long__(..)
ok (my)
X<y

mod (...

x!=y

_ _mnew_ (T, S, ..)

Return Value
a new object with type S, a subtype of T

Overrides: object. new

__nonzero___ (z)

x =0 Overrides: Ixml.etree. Element. nonzero

_radd (z, y)

V+X

418

Class StringElement Module Ixml.objectify

__repr___ (self)

repr(x) Overrides: object. repr extit(inherited documentation)

_rmod__ (z, y)

y%ox

_rmul (7, y)

y*x

strlen(...)

Inherited from lzml.objectify. Objectified DataElement(Section B.17.11)
_ostr ()
Inherited from lzml.objectify. Objectified Element(Section B.17.12)

_delattr (), __delitem (), _getattr (), __ getattribute (), __getitem (),
__dter__(), __len__(), __setattr__ (), __setitem__ (), addattr(), countchil-

dren(), descenaa_ntpz;cﬂs(), find(), findall(), findtext(), getchildren(), iterfind()
Inherited from lxml.etree. ElementBase(Section B.6.17)

~_init_ ()
Inherited from lxml.etree. Element

__contains__ (), copy (), _deepcopy (), reversed (), addnext(),
addprevious(), append(), clear(), extend(), get(), getiterator(), getnext(), get-
parent(), getprevious(), getroottree(), index(), insert(), items(), iter(), iter-
ancestors(), iterchildren(), iterdescendants(), itersiblings(), itertext(), keys(),
makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format (), _hash (), _reduce (), __reduce_ex__ (), _sizeof (),
__subclasshook ()

Properties
Name Description
pyval
Inherited from lzml.objectify. ObjectifiedElement (Section B.17.12)
text

continued on next page

419

Class StringElement Module Ixml.objectify

Name \ Description
Inherited from lxml.etree. Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class

420

Variables

Module Ixml.pyclasslookup

B.18 Module Ixml.pyclasslookup

B.18.1 Variables

Name

Description

__package

Value: ’1xml’

421

Class SaxFError Module Ixml.sax

B.19 Module Ixml.sax

SAX-based adapter to copy trees from/to the Python standard library.
Use the ElementTreeContentHandler class to build an ElementTree from SAX events.

Use the ElementTreeProducer class or the saxify () function to fire the SAX events of
an ElementTree against a SAX ContentHandler.

See http://codespeak.net/Ixml/sax.html

B.19.1 Functions

saxify(element_or_tree, content handler)

One-shot helper to generate SAX events from an XML tree and fire them
against a SAX ContentHandler.

B.19.2 Variables

Name Description
__package Value: ’1xml’

B.19.3 Class SaxError

object T
exceptions.BaseException T
exceptions.Exception T
Ixml.etree.Error T

Ixml.etree.LxmlError

Ixml.sax.SaxError

General SAX error.

Methods

Inherited from lxml.etree. LvmlError(Section B.6.31)
~init. ()

422

http://codespeak.net/lxml/sax.html

Class ElementTreeContentHandler Module Ixml.sax

Inherited from exceptions.Exception
~_new_ ()

Inherited from exceptions.BaseFException

__delattr (), _ getattribute (), getitem (), getslice (), re-
duce_ (), __repr__(), __setattr__(), __setstate_ (), __str__(), __uni-
code ()

Inherited from object

__format (), ~ hash (), reduce ex (), _ sizeof (), _ sub-
classhook ()

Properties

Name \ Description
Inherited from exceptions. BaseException
args, message
Inherited from object
__class

B.19.4 Class ElementTreeContentHandler

xml.sax.handler.ContentHandler
Ixml.sax.Element TreeContentHandler

Build an lxml ElementTree from SAX events.

Methods

__init __ (self, makeelement—=None)

Overrides: xml.sax.handler.ContentHandler. init

423

Class ElementTreeContentHandler Module Ixml.sax

setDocumentLocator(self, locator)

Called by the parser to give the application a locator for locating the origin
of document events.

SAX parsers are strongly encouraged (though not absolutely required) to
supply a locator: if it does so, it must supply the locator to the application
by invoking this method before invoking any of the other methods in the
DocumentHandler interface.

The locator allows the application to determine the end position of any
document-related event, even if the parser is not reporting an error.
Typically, the application will use this information for reporting its own
errors (such as character content that does not match an application’s
business rules). The information returned by the locator is probably not
sufficient for use with a search engine.

Note that the locator will return correct information only during the
invocation of the events in this interface. The application should not
attempt to use it at any other time. Overrides:
xml.sax.handler.ContentHandler.set DocumentLocator extit(inherited
documentation)

start Document (self)
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other
methods in this interface or in DTDHandler (except for
setDocumentLocator). Overrides:
xml.sax.handler.ContentHandler.startDocument extit(inherited
documentation)

endDocument(self)
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last
method invoked during the parse. The parser shall not invoke this method
until it has either abandoned parsing (because of an unrecoverable error) or
reached the end of input. Overrides:
xml.sax.handler.ContentHandler.endDocument extit(inherited
documentation)

424

Class ElementTreeContentHandler Module Ixml.sax

startPrefixMapping(self, prefiz, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace
processing: the SAX XML reader will automatically replace prefixes for
element and attribute names when the
http://xml.org/sax/features/namespaces feature is true (the default).

There are cases, however, when applications need to use prefixes in
character data or in attribute values, where they cannot safely be expanded
automatically; the start /endPrefixMapping event supplies the information
to the application to expand prefixes in those contexts itself, if necessary.

Note that start /endPrefixMapping events are not guaranteed to be
properly nested relative to each-other: all startPrefixMapping events will
occur before the corresponding startElement event, and all
endPrefixMapping events will occur after the corresponding endElement
event, but their order is not guaranteed. Overrides:
xml.sax.handler.ContentHandler.start PrefixMapping extit(inherited
documentation)

endPrefixMapping(self, prefir)
End the scope of a prefix-URI mapping.

See startPrefixMapping for details. This event will always occur after the
corresponding endElement event, but the order of endPrefixMapping events
is not otherwise guaranteed. Overrides:
xml.sax.handler.ContentHandler.endPrefixMapping extit(inherited
documentation)

startElementNS(self, ns_name, qgname, attributes—=None)
Signals the start of an element in namespace mode.

The name parameter contains the name of the element type as a (uri,
localname) tuple, the qname parameter the raw XML 1.0 name used in the
source document, and the attrs parameter holds an instance of the
Attributes class containing the attributes of the element.

The uri part of the name tuple is None for elements which have no
namespace. Overrides: xml.sax.handler.ContentHandler.start ElementNS
extit(inherited documentation)

425

http://xml.org/sax/features/namespaces

Class ElementTreeContentHandler Module Ixml.sax

processingInstruction(self, target, data)
Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction
found: note that processing instructions may occur before or after the main
document element.

A SAX parser should never report an XML declaration (XML 1.0, section
2.8) or a text declaration (XML 1.0, section 4.3.1) using this method.
Overrides: xml.sax.handler.ContentHandler.processinglnstruction
extit(inherited documentation)

endElementNS(self, ns_name, gname)
Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with
the startElementNS event. Overrides:
xml.sax.handler.ContentHandler.endElementNS extit(inherited
documentation)

startElement(self, name, attributes=None)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type
as a string and the attrs parameter holds an instance of the Attributes
class containing the attributes of the element. Overrides:
xml.sax.handler.ContentHandler.start Element extit(inherited
documentation)

endElement(self, name)
Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with
the startElement event. Overrides:
xml.sax.handler.ContentHandler.endElement extit(inherited
documentation)

426

Class ElementTreeProducer Module Ixml.sax

characters(self, data)
Receive notification of character data.

The Parser will call this method to report each chunk of character data.
SAX parsers may return all contiguous character data in a single chunk, or
they may split it into several chunks; however, all of the characters in any
single event must come from the same external entity so that the Locator
provides useful information. Overrides:
xml.sax.handler.ContentHandler.characters extit(inherited documentation)

ignorableWhitespace(self, data)
Receive notification of character data.

The Parser will call this method to report each chunk of character data.
SAX parsers may return all contiguous character data in a single chunk, or
they may split it into several chunks; however, all of the characters in any
single event must come from the same external entity so that the Locator
provides useful information. Overrides:
xml.sax.handler.ContentHandler.ignorableWhitespace extit(inherited
documentation)

Inherited from xzml.sax.handler. ContentHandler

skippedEntity ()
Properties
Name Description
etree Contains the generated ElementTree after
parsing is finished.

B.19.5 Class ElementTreeProducer

object
Ixml.sax.ElementTreeProducer

Produces SAX events for an element and children.

Methods
__init _ (self, element_or_tree, content_handler)
X. _init__ (...) initializes x; see x. _class . doc__ for signature
Overrides: object. init extit(inherited documentation)

427

Class ElementTreeProducer Module Ixml.sax

saxify (self)

Inherited from object

__delattr (), format (), getattribute (), _hash (), new (),
_ _reduce (), _reduce ex (), _repr (), setattr (), sizeof (),
_str (), __subclasshook ()

Properties

Name Description
Inherited from object
__class

428

Module Ixml.usedoctest

B.20 Module Ixml.usedoctest

Doctest module for XML comparison.
Usage:

>>> import lxml.usedoctest
>>> # now do your XML doctests

See 1xml.doctestcompare

429

	Contents
	I lxml
	lxml
	Introduction
	Documentation
	Download
	Mailing list
	Bug tracker
	License
	Old Versions

	Why lxml?
	Contents
	Motto
	Aims

	Installing lxml
	Contents
	Requirements
	Installation
	Installation in ActivePython
	Building lxml from sources
	MS Windows
	MacOS-X

	What's new in lxml 2.0?
	Contents
	Changes in etree and objectify
	Incompatible changes
	Enhancements
	Deprecation

	New modules
	lxml.usedoctest
	lxml.html
	lxml.cssselect

	Benchmarks and Speed
	Contents
	General notes
	How to read the timings
	Parsing and Serialising
	The ElementTree API
	Child access
	Element creation
	Merging different sources
	deepcopy
	Tree traversal

	XPath
	A longer example
	lxml.objectify
	ObjectPath
	Caching Elements
	Further optimisations

	ElementTree compatibility of lxml.etree
	lxml FAQ - Frequently Asked Questions
	Contents
	General Questions
	Is there a tutorial?
	Where can I find more documentation about lxml?
	What standards does lxml implement?
	Who uses lxml?
	What is the difference between lxml.etree and lxml.objectify?
	How can I make my application run faster?
	What about that trailing text on serialised Elements?
	How can I find out if an Element is a comment or PI?
	How can I map an XML tree into a dict of dicts?

	Installation
	Which version of libxml2 and libxslt should I use or require?
	Where are the binary builds?
	Why do I get errors about missing UCS4 symbols when installing lxml?

	Contributing
	Why is lxml not written in Python?
	How can I contribute?

	Bugs
	My application crashes!
	My application crashes on MacOS-X!
	I think I have found a bug in lxml. What should I do?
	How do I know a bug is really in lxml and not in libxml2?

	Threading
	Can I use threads to concurrently access the lxml API?
	Does my program run faster if I use threads?
	Would my single-threaded program run faster if I turned off threading?
	Why can't I reuse XSLT stylesheets in other threads?
	My program crashes when run with mod_python/Pyro/Zope/Plone/...

	Parsing and Serialisation
	Why doesn't the pretty_print option reformat my XML output?
	Why can't lxml parse my XML from unicode strings?
	What is the difference between str(xslt(doc)) and xslt(doc).write() ?
	Why can't I just delete parents or clear the root node in iterparse()?
	How do I output null characters in XML text?

	XPath and Document Traversal
	What are the findall() and xpath() methods on Element(Tree)?
	Why doesn't findall() support full XPath expressions?
	How can I find out which namespace prefixes are used in a document?
	How can I specify a default namespace for XPath expressions?

	II Developing with lxml
	The lxml.etree Tutorial
	Contents
	The Element class
	Elements are lists
	Elements carry attributes
	Elements contain text
	Using XPath to find text
	Tree iteration
	Serialisation

	The ElementTree class
	Parsing from strings and files
	The fromstring() function
	The XML() function
	The parse() function
	Parser objects
	Incremental parsing
	Event-driven parsing

	Namespaces
	The E-factory
	ElementPath

	APIs specific to lxml.etree
	Contents
	lxml.etree
	Other Element APIs
	Trees and Documents
	Iteration
	Error handling on exceptions
	Error logging
	Serialisation
	CDATA
	XInclude and ElementInclude
	write_c14n on ElementTree

	Parsing XML and HTML with lxml
	Contents
	Parsers
	Parser options
	Error log
	Parsing HTML
	Doctype information

	The target parser interface
	The feed parser interface
	iterparse and iterwalk
	Selective tag events
	Comments and PIs
	Modifying the tree
	iterwalk

	Python unicode strings
	Serialising to Unicode strings

	Validation with lxml
	Contents
	Validation at parse time
	DTD
	RelaxNG
	XMLSchema
	Schematron

	XPath and XSLT with lxml
	Contents
	XPath
	The xpath() method
	Namespaces and prefixes
	XPath return values
	Generating XPath expressions
	The XPath class
	The XPathEvaluator classes
	ETXPath
	Error handling

	XSLT
	XSLT result objects
	Stylesheet parameters
	The xslt() tree method
	Dealing with stylesheet complexity
	Profiling

	lxml.objectify
	Contents
	The lxml.objectify API
	Creating objectify trees
	Element access through object attributes
	Tree generation with the E-factory
	Namespace handling

	Asserting a Schema
	ObjectPath
	Python data types
	Recursive tree dump
	Recursive string representation of elements

	How data types are matched
	Type annotations
	XML Schema datatype annotation
	The DataElement factory
	Defining additional data classes
	Advanced element class lookup

	What is different from lxml.etree?

	lxml.html
	Contents
	Parsing HTML
	Parsing HTML fragments
	Really broken pages

	HTML Element Methods
	Running HTML doctests
	Creating HTML with the E-factory
	Viewing your HTML

	Working with links
	Functions

	Forms
	Form Filling Example
	Form Submission

	Cleaning up HTML
	autolink
	wordwrap

	HTML Diff
	Examples
	Microformat Example

	lxml.cssselect
	Contents
	The CSSSelector class
	CSS Selectors
	Namespaces
	Limitations

	BeautifulSoup Parser
	Contents
	Parsing with the soupparser
	Entity handling
	Using soupparser as a fallback
	Using only the encoding detection

	html5lib Parser
	Differences to regular HTML parsing
	Function Reference

	III Extending lxml
	Document loading and URL resolving
	Contents
	URI Resolvers
	Document loading in context
	I/O access control in XSLT

	Python extensions for XPath and XSLT
	Contents
	XPath Extension functions
	The FunctionNamespace
	Global prefix assignment
	The XPath context
	Evaluators and XSLT
	Evaluator-local extensions
	What to return from a function

	XSLT extension elements
	Declaring extension elements
	Applying XSL templates
	Working with read-only elements

	Using custom Element classes in lxml
	Contents
	Background on Element proxies
	Element initialization
	Setting up a class lookup scheme
	Default class lookup
	Namespace class lookup
	Attribute based lookup
	Custom element class lookup
	Tree based element class lookup in Python

	Generating XML with custom classes
	Implementing namespaces

	Sax support
	Contents
	Building a tree from SAX events
	Producing SAX events from an ElementTree or Element
	Interfacing with pulldom/minidom

	The public C-API of lxml.etree
	Contents
	Writing external modules in Cython
	Writing external modules in C

	IV Developing lxml
	How to build lxml from source
	Contents
	Cython
	Subversion
	Setuptools
	Running the tests and reporting errors
	Building an egg
	Building lxml on MacOS-X
	Static linking on Windows
	Building Debian packages from SVN sources

	How to read the source of lxml
	Contents
	What is Cython?
	Where to start?
	Concepts
	The documentation

	lxml.etree
	Python modules
	lxml.objectify
	lxml.html

	Credits
	Main contributors
	Special thanks goes to:

	Changes
	2.2.6 (2010-03-02)
	Bugs fixed

	2.2.5 (2010-02-28)
	Features added
	Bugs fixed

	2.2.4 (2009-11-11)
	Bugs fixed

	2.2.3 (2009-10-30)
	Features added
	Bugs fixed
	Other changes

	2.2.2 (2009-06-21)
	Features added
	Bugs fixed
	Other changes

	2.2.1 (2009-06-02)
	Features added
	Bugs fixed
	Other changes

	2.2 (2009-03-21)
	Features added
	Bugs fixed

	2.2beta4 (2009-02-27)
	Features added
	Bugs fixed
	Other changes

	2.2beta3 (2009-02-17)
	Features added
	Bugs fixed
	Other changes

	2.2beta2 (2009-01-25)
	Bugs fixed

	2.1.5 (2009-01-06)
	Bugs fixed

	2.2beta1 (2008-12-12)
	Features added
	Bugs fixed
	Other changes

	2.1.4 (2008-12-12)
	Bugs fixed

	2.0.11 (2008-12-12)
	Bugs fixed

	2.2alpha1 (2008-11-23)
	Features added
	Bugs fixed
	Other changes

	2.1.3 (2008-11-17)
	Features added
	Bugs fixed
	Other changes

	2.0.10 (2008-11-17)
	Bugs fixed

	2.1.2 (2008-09-05)
	Features added
	Bugs fixed
	Other changes

	2.0.9 (2008-09-05)
	Bugs fixed

	2.1.1 (2008-07-24)
	Features added
	Bugs fixed
	Other changes

	2.0.8 (2008-07-24)
	Features added
	Bugs fixed
	Other changes

	2.1 (2008-07-09)
	Features added
	Bugs fixed
	Other changes

	2.0.7 (2008-06-20)
	Features added
	Bugs fixed
	Other changes

	2.1beta3 (2008-06-19)
	Features added
	Bugs fixed
	Other changes

	2.0.6 (2008-05-31)
	Features added
	Bugs fixed
	Other changes

	2.1beta2 (2008-05-02)
	Features added
	Bugs fixed
	Other changes

	2.0.5 (2008-05-01)
	Features added
	Bugs fixed
	Other changes

	2.1beta1 (2008-04-15)
	Features added
	Bugs fixed
	Other changes

	2.0.4 (2008-04-13)
	Features added
	Bugs fixed
	Other changes

	2.1alpha1 (2008-03-27)
	Features added
	Bugs fixed
	Other changes

	2.0.3 (2008-03-26)
	Features added
	Bugs fixed
	Other changes

	2.0.2 (2008-02-22)
	Features added
	Bugs fixed
	Other changes

	2.0.1 (2008-02-13)
	Features added
	Bugs fixed
	Other changes

	2.0 (2008-02-01)
	Features added
	Bugs fixed
	Other changes

	1.3.6 (2007-10-29)
	Bugs fixed
	Other changes

	1.3.5 (2007-10-22)
	Features added
	Bugs fixed

	1.3.4 (2007-08-30)
	Features added
	Bugs fixed
	Other changes

	1.3.3 (2007-07-26)
	Features added
	Bugs fixed

	1.3.2 (2007-07-03)
	Features added
	Bugs fixed

	1.3.1 (2007-07-02)
	Features added
	Bugs fixed

	1.3 (2007-06-24)
	Features added
	Bugs fixed
	Other changes

	1.2.1 (2007-02-27)
	Bugs fixed

	1.2 (2007-02-20)
	Features added
	Bugs fixed
	Other changes

	1.1.2 (2006-10-30)
	Features added
	Bugs fixed

	1.1.1 (2006-09-21)
	Features added
	Bugs fixed

	1.1 (2006-09-13)
	Features added
	Bugs fixed

	1.0.4 (2006-09-09)
	Features added
	Bugs fixed

	1.0.3 (2006-08-08)
	Features added
	Bugs fixed

	1.0.2 (2006-06-27)
	Features added
	Bugs fixed

	1.0.1 (2006-06-09)
	Features added
	Bugs fixed

	1.0 (2006-06-01)
	Features added
	Bugs fixed

	0.9.2 (2006-05-10)
	Features added
	Bugs fixed

	0.9.1 (2006-03-30)
	Features added
	Bugs fixed

	0.9 (2006-03-20)
	Features added
	Bugs fixed

	0.8 (2005-11-03)
	Features added
	Bugs fixed

	0.7 (2005-06-15)
	Features added
	Bugs fixed

	0.6 (2005-05-14)
	Features added
	Bugs fixed

	0.5.1 (2005-04-09)
	0.5 (2005-04-08)

	Generated API documentation
	Package lxml
	Modules
	Variables

	Module lxml.ElementInclude
	Functions
	Variables
	Class FatalIncludeError

	Module lxml.builder
	Functions
	Variables
	Class ElementMaker

	Module lxml.cssselect
	Class SelectorSyntaxError
	Class ExpressionError
	Class CSSSelector

	Module lxml.doctestcompare
	Functions
	Variables
	Class LXMLOutputChecker
	Class LHTMLOutputChecker

	Module lxml.etree
	Functions
	Variables
	Class AncestorsIterator
	Class AttributeBasedElementClassLookup
	Class C14NError
	Class CDATA
	Class CommentBase
	Class CustomElementClassLookup
	Class DTD
	Class DTDError
	Class DTDParseError
	Class DTDValidateError
	Class DocInfo
	Class DocumentInvalid
	Class ETCompatXMLParser
	Class ETXPath
	Class ElementBase
	Class ElementChildIterator
	Class ElementClassLookup
	Class ElementDefaultClassLookup
	Class ElementDepthFirstIterator
	Class ElementNamespaceClassLookup
	Class ElementTextIterator
	Class EntityBase
	Class Error
	Class ErrorDomains
	Class ErrorLevels
	Class ErrorTypes
	Class FallbackElementClassLookup
	Class HTMLParser
	Class LxmlError
	Class LxmlRegistryError
	Class LxmlSyntaxError
	Class NamespaceRegistryError
	Class PIBase
	Class ParseError
	Class ParserBasedElementClassLookup
	Class ParserError
	Class PyErrorLog
	Class PythonElementClassLookup
	Class QName
	Class RelaxNG
	Class RelaxNGError
	Class RelaxNGErrorTypes
	Class RelaxNGParseError
	Class RelaxNGValidateError
	Class Resolver
	Class Schematron
	Class SchematronError
	Class SchematronParseError
	Class SchematronValidateError
	Class SerialisationError
	Class SiblingsIterator
	Class TreeBuilder
	Class XInclude
	Class XIncludeError
	Class XMLParser
	Class XMLSchema
	Class XMLSchemaError
	Class XMLSchemaParseError
	Class XMLSchemaValidateError
	Class XMLSyntaxError
	Class XPath
	Class XPathDocumentEvaluator
	Class XPathElementEvaluator
	Class XPathError
	Class XPathEvalError
	Class XPathFunctionError
	Class XPathResultError
	Class XPathSyntaxError
	Class XSLT
	Class XSLTAccessControl
	Class XSLTApplyError
	Class XSLTError
	Class XSLTExtension
	Class XSLTExtensionError
	Class XSLTParseError
	Class XSLTSaveError
	Class iterparse
	Class iterwalk

	Package lxml.html
	Modules
	Functions
	Variables

	Module lxml.html.ElementSoup
	Functions

	Module lxml.html.builder
	Functions
	Variables

	Module lxml.html.clean
	Functions
	Variables
	Class Cleaner

	Module lxml.html.defs
	Variables

	Module lxml.html.diff
	Functions

	Module lxml.html.formfill
	Functions
	Class FormNotFound
	Class DefaultErrorCreator

	Module lxml.html.html5parser
	Functions
	Variables
	Class HTMLParser
	Class XHTMLParser

	Module lxml.html.soupparser
	Functions

	Module lxml.html.usedoctest
	Module lxml.objectify
	Functions
	Variables
	Class BoolElement
	Class ElementMaker
	Class FloatElement
	Class IntElement
	Class LongElement
	Class NoneElement
	Class NumberElement
	Class ObjectPath
	Class ObjectifiedDataElement
	Class ObjectifiedElement
	Class ObjectifyElementClassLookup
	Class PyType
	Class StringElement

	Module lxml.pyclasslookup
	Variables

	Module lxml.sax
	Functions
	Variables
	Class SaxError
	Class ElementTreeContentHandler
	Class ElementTreeProducer

	Module lxml.usedoctest

