3DM 2 Online Help

Table of Contents Previous Next Index


Understanding RAID Concepts and Levels > RAID Concepts > Available RAID Configurations

Available RAID Configurations
RAID is a method of combining several hard drives into one unit. It offers fault tolerance and higher throughput levels than a single hard drive or group of independent hard drives. RAID levels 0, 1, 10 and 5 are the most popular. The information below provides a more in-depth explanation of the different RAID levels.
The following RAID levels and configurations are available for drives attached to a 9590SE-4ME 3ware RAID controller:
*
*
*
*
RAID 6 (Requires 3ware 9650SE)
*
*
*
*
*
For how to configure RAID units, see Configuring a New Unit.
RAID 0
RAID 0 provides improved performance, but no fault tolerance. Since the data is striped across more than one disk, RAID 0 disk arrays achieve high transfer rates because they can read and write data on more than one drive simultaneously. The stripe size is configurable during unit creation. RAID 0 requires a minimum of two drives.
When drives are configured in a striped disk array, large files are distributed across the multiple disks using RAID 0 techniques.
Striped disk arrays give exceptional performance, particularly for data intensive applications such as video editing, computer-aided design and geographical information systems.
RAID 0 arrays are not fault tolerant. The loss of any drive results in the loss of all the data in that array, and can even cause a system hang, depending on your operating system. RAID 0 arrays are not recommended for high availability systems unless additional precautions are taken to prevent system hangs and data loss.
Show RAID 0 Configuration Example
RAID 1
RAID 1 provides fault tolerance and a speed advantage over non-RAID disks. RAID 1 is also known as a mirrored array. Mirroring is done on pairs of drives. Mirrored disk arrays write the same data to two different drives using RAID 1 algorithms. This gives your system fault tolerance by preserving the data on one drive if the other drive fails. Fault tolerance is a basic requirement for critical systems like web and database servers.
3ware uses a patented technology, TwinStor®, on RAID 1 arrays for improved performance during sequential read operations. With TwinStor technology, read performance is twice the speed of a single drive during sequential read operation.
The adaptive algorithms in TwinStor technology boost performance by distinguishing between random and sequential read requests. For the sequential requests generated when accessing large files, both drives are used, with the heads simultaneously reading alternating sections of the file. For the smaller random transactions, the data is read from a single optimal drive head.
Show RAID 1 Configuration Example
RAID 5
RAID 5 provides performance, fault tolerance, high capacity, and storage efficiency. It requires a minimum of three drives and combines striping data with parity (exclusive OR) to restore data in case of a drive failure. Performance and efficiency increase as the number of drives in a unit increases.
Parity information is distributed across all of the drives in a unit rather than being concentrated on a single disk. This avoids throughput loss due to contention for the parity drive.
RAID 5 is able to tolerate 1 drive failure in the unit.
Show RAID 5 Configuration Example
RAID 6
RAID 6 requires a 3ware 9650SE RAID controller.
RAID 6 provides greater redundancy and fault tolerance than RAID 5. It is similar to RAID 5, but has two blocks of parity information (P+Q) distributed across all the drives of a unit, instead of the single block of RAID 5.
Due to the two parities, a RAID 6 unit can tolerate two hard drives failing simultaneously. This also means that a RAID 6 unit may be in two different states at the same time. For example, one sub-unit can be degraded, while another may be rebuilding, or one sub-unit may be initializing, while another is verifying.
RAID 6 requires a minimum of five drives. Performance and storage efficiency also increase as the number of drives increase.
RAID 6 Configuration Example
RAID 10
RAID 10 is a combination of striped and mirrored arrays for fault tolerance and high performance.
When drives are configured as a striped mirrored array, the disks are configured using both RAID 0 and RAID 1 techniques, thus the name RAID 10. A minimum of four drives are required to use this technique. The first two drives are mirrored as a fault tolerant array using RAID 1. The third and fourth drives are mirrored as a second fault tolerant array using RAID 1. The two mirrored arrays are then grouped as a striped RAID 0 array using a two tier structure. Higher data transfer rates are achieved by leveraging TwinStor and striping the arrays.
In addition, RAID 10 arrays offer a higher degree of fault tolerance than RAID 1 and RAID 5, since the array can sustain multiple drive failures without data loss. For example, in a twelve-drive RAID 10 array, up to six drives can fail (half of each mirrored pair) and the array will continue to function. Please note that if both halves of a mirrored pair in the RAID 10 array fail, then all of the data will be lost.
Show RAID 10 Configuration Example
RAID 50
RAID 50 is a combination of RAID 5 with RAID 0. This array type provides fault tolerance and high performance. RAID 50 requires a minimum of six drives.
Several combinations are available with RAID 50. For example, on a 12-port controller, you can have a grouping of 3, 4, or 6 drives. A grouping of 3 means that the RAID 5 arrays used have 3 disks each; four of these 3-drive RAID 5 arrays are striped together to form the 12-drive RAID 50 array. On a 16-port controller, you can have a grouping of 4 or 8 drives.
In addition, RAID 50 arrays offer a higher degree of fault tolerance than RAID 1 and RAID 5, since the array can sustain multiple drive failures without data loss. For example, in a twelve-drive RAID 50 array, up to one drive in each RAID 5 set can fail and the array will continue to function. Please note that if two or more drives in a RAID 5 set fail, then all of the data will be lost.
Show RAID 50 Configuration Example
Single Disk
A single drive can be configured as a unit through 3ware software. (3BM, 3DM 2, or CLI). Like disks in other RAID configurations, single disks contain 3ware Disk Control Block (DCB) information and are seen by the OS as available units.
Single drives are not fault tolerant and therefore not recommended for high availability systems unless additional precautions are taken to prevent system hangs and data loss.
JBOD
A JBOD (acronym for “Just a Bunch of Disks”) is an unconfigured disk attached to your 3ware RAID controller. JBOD configuration is no longer supported in the 3ware 9000 series. AMCC recommends that you use Single Disk as a replacement for JBOD, to take advantage of advanced features such as caching, OCE, and RLM.
JBOD units are not fault tolerant and therefore not recommended for high availability systems unless additional precautions are taken to prevent system hangs and data loss.
Hot Spare
A hot spare is a single drive, available online, so that a redundant unit can be automatically rebuilt in case of drive failure.

Related Topics

Table of Contents Previous Next Index
www.3ware.com
1-408-542-8800
1-800-840-6055

Copyright AMCC 2004-2006
To contact Support, log in at https://www.3ware.com