GStreamer Application Development
Manual (0.10.29)

Wim Taymans
Steve Baker
Andy Wingo

Ronald S. Bultje
Stefan Kost

GStreamer Application Development Manual (0.10.29)
by Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultjel Stefan Kost

This material may be distributed only subject to the terms@mnditions set forth in the Open Publication License, \t.later (the latest version
is presently available at http://www.opencontent.org&bpml (http://www.opencontent.org/opl.shtml)).

Table of Contents

L 0T 1 o] o PP OUPRPPPPRRN |
1] oo (U1 i o o RSP RUPRPTP Vi
1. Who should read this ManUal2.............ccuuiiiiiiiii e Vil
2. Preliminary readiNg........e..eeeecoiiiiieeiie s e e e e s esiteeesa st r e e e e e e s e s r e e e e e e e s rreeeeeanann viii
3. Structure of thisS MANUAL............oiiii s viii
(Y o T TU | A 1] (=T T 1= TP X.
TN B L RSl 353 (=TT 1= o SRR 1
2. DESIGN PrINCIPIES. ...ttt ettt et e e e s e e e e e e e e s e s s e e ee e e e ensnrnteeeaeeeenaanns 4
2.1. Clean and POWEI ULuuiiiiie e e e e e e e e sanend 4
A O] o 1=Tot Ao 41T 1 (= o PSPPI 4
2.3 EXIENSIDIE ... et a e nnnne e 4
2.4. Allow BIiNary-only PIUGINS ..ol 4..
2.5. High PErfOrMEANCEeeiiiiee ittt e e e e e e b eeaaeas 5
2.6. Clean core/pluging SEParatiOn..........c.uueeiiiiiirai ittt e e ee e e e e 5..
2.7. Provide a framework for codec experimentation............ccccceeeriiiiiiiiiinieee s 5
T o101 o To F= 1 1 To] I TR 6.
T I =T 031 o (TP TR RT TP 6
T - (o L3P OPPPUPPPRPRTN 6.
3.3. BiNS and PIPEIINES.ueiiiiieeii et 7
3.4, COMMUNICALION ...ttt ee e ettt e e e ettt e e e e e e e ettt e e e e e e e e e s e emnnneaaens 7
(1T =101 (o [TaTo = Ta 1Y o] o] o= 14 To] o KU U P PRI 9
L |11 F= LA g T J TS LT 1 1= USSR 10
4.1, Simple iNtIaliZatiON........ccceeeeeee e 10
4.2. The GOPLON INEIACE. ... uueiiiie e e e e e e e e s rrr e e e e e e e 11
T = [T 0 =T o £ PSPPSR 13
5.1. What @re @lemMENES2......coi ittt 13
5.2. Creating @5t El IMBNT ...vvviiieeiiiciiiiiieeeeeeeessstieteeeeeeessseeeeeeeessssnnnananneeeeeesnnnnnnenns 15.
5.3. Using an element aSGI0j ©CT ..uvvvieeeiiiiiiiiieiieee e e s eeiie e s e e e esenr e e e e e s s eeeeeee s 16
5.4. More about element faCtories.cooiiueiiiiiii e 17
5.5, LINKING ElEMENTS.....cci i e e e e e s rr e e e e e 19
5.6, EIEMENT STALESeiii it 20
LT =] LT PRSP 22
B.1. WHat @re DINS.......eeeiiiiiiiiiie ettt 22
6.2. Creating @ biM.........oeeiiiii e 22
6.3, CUSLOM DINS.....itiiiiiiii ettt e e s nbeeee e s sbbeeeenseeeeean 23
7 BUS. et e e e eas 25
7.1 HOW TO USE @ DUS...coiiiiiiieie ettt e e e e e 25
7.2, MESSAQE LY PS. ..o 28
8. Pads and Capabilities...........uuiiiiiiiiiiie et 30
S T I == 1o £ 30
8.2. CapabilitiesS Of @ Pad........cooiiiii s 33
8.3. What capabilities are used far..........c.c..uuviiiiiiiii e 35
S] 0 01 A o T= Lo KT UUT PRSP 38
9. BUffers and EVENTS........c..uuiiiiiiiiiiieite et iiieeeeee e innneee e e snnee e A0
0. L BUI IS ettt e e e e e e 40

L T V=T 01 3R 40

O (o0 T g {16 A= To] o] [[ox= 11T] o H TP 42
101 HEHO WOII. ..ttt e e eee e 42

10.2. Compiling and Running helloworld.C.............ccoiiiiiiiiieiee e 45
10.3. CONCIUSION. ...ttt e e ettt e e e e e e e e e bbb beeeeeanaseeeeees 46

[II. ADVANCEd G StrEaMEI CONCEPLS. .. .uueiiiiiieeee e ettt ee e e e s et e e e e e s s e seeeeaaeeaeaaabbbbeeeaaaeessaannnnn 47
11. Position tracking and SEEKINGuuuiiiiiiiee et 48.
11.1. Querying: getting the position or length of a stream.............ccccccooviiiiiis 48

11.2. Events: seeking (AN MOIE).......cooi it 49

2 Y T2 - To - | = TSR POPPPPPPPPRR 51
12.1. Metadata readING.cuueeeeeeiee ettt e e e e e e e 51

2 - To T 1] T P UR P PUPPRR PR 51

R TR 01155 7= 1o LSO 52
13.1. The URIINEEITACE. . ..ot 52
13.2. The MIXEr INTEITACE.eeii et 52
13.3. The TUNEI INtEITACE. ... e 53

13.4. The Color Balance iNterfaCe.........ccvviiiiiiiie it 53

13.5. The Property Probe interface..........cccovvcviiieiiiiie e e 53

13.6. The X Overlay iNterface.........ccuuueeiiiiieei e 54

14, CIOCKS IN GSIIBAIMEE.....ciiutiiii ettt ettt e ettt e e et e e st e e e sttt e e e s st e e e e s anbeeeesameeesane 55
I 0 O (o ol o] 0 Vo 1= = SO 55

14.2. ClOCK SIAVES......eeiieiieiiiie ettt et e e e nnnae e 56

15. Dynamic Controllable ParameterS........cuueeciii i ececiee e e e e e e e e e ane e 57
15.1. Getting STAr@U.....ccceee e ere e e e e e e e e e s e e eenaes 57
15.2. Setting up parameter CONIOL..........cceeiiiiiiiiieieee e ee e 57

T I 1 == o - S PP RPTPPI 59
16.1. When would you want to force athread?............cccccooiiiiiiiiiiiie e, 59

16.2. SCheduling IN GSIEAME.........uiiiiiia ettt 60

AN T | (o] o] L8 o o[o FO PP TR 61
17.1. MIME-types as a way to identity Streams...........ccoooiiiiiiiiiiiein e 61

17.2. Media stream type deteCtiON.............oiiiiiiiiiiiiiieiiie e 62

17.3. Plugging together dynamic pipelines............cooeviiiiiiiiiiiiiiee e 64

18. Pipeling ManipUIBtiON.oouueiiiiiie et e e e e e e 70
SRR DT- 1= U o] o] o] 1 o[TR PR UR R RTUURUPUPN 70
18.2. Manually adding or removing data from/to a pipeline..............ccccciiiiiiiiinnnnen. 12,

18.3. Embedding static elements in your application............cccccooviiiiiiiiiiie e 75

IV. Higher-level interfaces for GStreamer appliCationS..........cccuvuiiiiiiiiiiiie e 17
19, COMPONENTS. ...ttt e e s e e e s e e e e e e e e e e e e eeeee e e e e as 78
S TN N = = 1Y o PP 78
19.2. DECOUEDIN. ...ttt e e ae e 79

L QY| Il 1] 1 (=T T 1= SO PP 83
20.1. Turning GStEIEmMEeNntS iNt0 XML........ooiiiiiiiiiiieeee s 83
20.2. Loading a GstElement from an XML file..........ccooiiiiiiie e 84
20.3. Adding custom XML tags into the core XML data..........ccccceeeeeviiiiiiniieeeee e 85

21. Things to check when writing an application..............cccccoiiiiiiiiiiii e 89
21.1. Good programming habitS. ... 89
21.2. DEDUGGING ... ettt ettt e e e e e s nneeee s 89
21.3. CONVErSION PIUGINS ...ccoiiiiiteeee e e e e e s Q0
21.4. Utility applications provided with GStreamer..........ccccccviiiiiiiiieiie e, 20

22. Porting 0.8 applicationNS 10 0.10........ooieiiiiiieei ettt e e 92
22.1. LISt Of CRANGESeiiiiiiee et eee s 92

AT 1 (=To | = LT] o FE U PRT TSP 94
23.1. Linux and UNIX-like operating SYStEMS........ccooiiiiiiiiiiiiiieee i 94
23.2. GNOME dESKEOP. ...ciieiiii ittt et e e e e e e neb e e e eaeens 94
23.3. KDE AESKIOP....cetiieeeiiiitiitie ittt e e e e e ettt et e e e e e e e sne b e e e e aeeneeees 96
2314, OS Xttt et b e bt et e et e e sneaete e s nbeeeaneeean 96
235, WINAOWS. ...ttt sttt e ettt e e e st e e e s enbe e e e e s smeeenntbeeeenan 96

24, LICENSING AUVISOIY.....uteiiiiiiiieee ittt e ettt e e sttt esete et e e e s ate e e e e s anteeeessabeeeeesstbeeeenseeeesans 99
24.1. How to license the applications you build with GStream...............cccccvvveeeennn. Q9

25. QUOLES frOM the DEVEIOPEES ... eeeiii ettt 101

List of Figures

I 1y (T T g1 o 1Y TSR 2
3-1. GStreamer pipeline for a simple 0gg Player........cccvoeiiiiieriiiie e
3-2. GStreamer pipeline with different communication flaws............ccccccee e 8
5-1. Visualisation Of a SOUrCE IEMEML...........coeiiii it e e e e e e e e e 13
5-2. Visualisation of a filter €lemMENL...........oveiii it 14
5-3. Visualisation of a filter element with more than one otifad...............cccccvviivieee e 14
5-4. Visualisation of a SiNK €I8MENL...........ccuiiiiiiiie e e eee e 14
5-5. Visualisation of three lINked €I8MEeNtS...........ccciiiiiiiie e 19
6-1. Visualisation of a bin with some elements iN.it............cccciiiiiii e 22
8-1. Visualisation of a&st Bi n (../../gstreamer/html/GstBin.html) element without ghpads............ 38
8-2. Visualisation of a&st Bi n (../../gstreamer/html/GstBin.html) element with a ghuesdl................. 38
10-1. The "hello World" PIPEIINE.........eee e ere e e e e e e s s eeeenenes 45
14-1. GStreamer clock and VarioUs tIMES..........uuuirereeiiieiiiiirieie e e es s ceeeee e e e e s st ereeae e e ensneeneeees 55.
16-1. Data buffering, from a NEtWOrKed SOUICE.........cccoiiiiiiiiiiii et 59
16-2. Synchronizing audio and VIAE0 SINKS..........uiiiiiiiiiiiiiiie ettt 59
17-1. The Hello world pipeline with MIME tyPesS..........uuuiiiiiiiiaaiiee et 61

Vi

Foreword

GStreamer is an extremely powerful and versatile framevi@rkreating streaming media applications.
Many of the virtues of the GStreamer framework come from itgloarity: GStreamer can seamlessly
incorporate new plugin modules. But because modularitypveer often come at a cost of greater
complexity, writing new applications is not always easy.

This guide is intended to help you understand the GStreamaerefivork (version 0.10.29) so you can
develop applications based on it. The first chapters willifoan development of a simple audio player,
with much effort going into helping you understand GStreacomcepts. Later chapters will go into
more advanced topics related to media playback, but alsthat forms of media processing (capture,
editing, etc.).

Vii

Introduction

1. Who should read this manual?

This book is about GStreamer from an application develspesint of view; it describes how to write a
GStreamer application using the GStreamer libraries amld.t6or an explanation about writing plugins,
we suggest the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstreduead/pwg/html/index.html).

Also check out the other documentation available on the &a8ter web site
(http://gstreamer.freedesktop.org/documentation/).

2. Preliminary reading

In order to understand this manual, you need to have a baderstanding of th€ language

Since GStreamer adheres to the GObject programming mbdeguide also assumes that you
understand the basics of GObject (http://library.gnomggdevel/gobject/stable/) and glib
(http://library.gnome.org/devel/glib/stable/) progmaing. Especially,

« GObject instantiation

- GObject properties (set/get)

« GObject casting

- GObject referecing/dereferencing
« glib memory management

- glib signals and callbacks

« glib main loop

3. Structure of this manual

To help you navigate through this guide, it is divided inteesal large parts. Each part addresses a
particular broad topic concerning GStreamer applictiorettjment. The parts of this guide are laid out
in the following order:

Part | inGStreamer Application Development Manual (0.10419%s you an overview of GStreamer,
it's design principles and foundations.

viii

Introduction

Part Il in GStreamer Application Development Manual (0.10@8)ers the basics of GStreamer
application programming. At the end of this part, you shdaddable to build your own audio player
using GStreamer

In Part 11l in GStreamer Application Development Manual (0.10,.28) will move on to advanced
subjects which make GStreamer stand out of its competiéeawill discuss application-pipeline
interaction using dynamic parameters and interfaces, Welistuss threading and threaded pipelines,
scheduling and clocks (and synchronization). Most of ttiop&s are not just there to introduce you to
their API, but primarily to give a deeper insight in solvingpdication programming problems with
GStreamer and understanding their concepts.

Next, inPart IV in GStreamer Application Development Manual (0.10.283 will go into higher-level
programming APIs for GStreamer. You don’t exactly need tovkall the details from the previous parts
to understand this, but you will need to understand basicga8ter concepts nevertheless. We will,
amongst others, discuss XML, playbin and autopluggers.

Finally in Part V inGStreamer Application Development Manual (0.10.28) will find some random
information on integrating with GNOME, KDE, OS X or Windowsyme debugging help and general
tips to improve and simplify GStreamer programming.

|. About GStreamer

This part gives you an overview of the technologies desdribé¢his book.

Chapter 1. What is GStreamer?

GStreamer is a framework for creating streaming media eafpins. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, a$ agsome ideas from DirectShow.

GStreamer’s development framework makes it possible teewarny type of streaming multimedia
application. The GStreamer framework is designed to magasiy to write applications that handle audio
or video or both. Itisn’t restricted to audio and video, aad process any kind of data flow. The pipeline
design is made to have little overhead above what the apfillieic induce. This makes GStreamer a
good framework for designing even high-end audio appbeetiwhich put high demands on latency.

One of the the most obvious uses of GStreamer is using it td bunedia player. GStreamer already
includes components for building a media player that capstifa very wide variety of formats,
including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, maoahd more. GStreamer, however, is much
more than just another media player. Its main advantagabatréhe pluggable components can be
mixed and matched into arbitrary pipelines so that it's fildsgo write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the vasicodec and other functionality. The
plugins can be linked and arranged in a pipeline. This pigediefines the flow of the data. Pipelines can
also be edited with a GUI editor and saved as XML so that pigdlbraries can be made with a
minimum of effort.

The GStreamer core function is to provide a framework fogjris, data flow and media type
handling/negotiation. It also provides an API to write apgiions using the various plugins.

Specifically, GStreamer provides

- an API for multimedia applications

« aplugin architecture

- apipeline architecture

- amechanism for media type handling/negotiation
« over 150 plug-ins

. asetoftools

GStreamer plug-ins could be classified into
- protocols handling
- sources: for audio and video (involves protocol plugins)

- formats: parsers, formaters, muxers, demuxers, metagidititles

Chapter 1. What is GStreamer?

. codecs: coders and decoders
. filters: converters, mixers, effects, ...

- sinks: for audio and video (involves protocol plugins)

Figure 1-1. Gstreamer overview
gstreamer tools multimedia applications

gst-inspect
gst-launch
gst-editor

media agnostic

base classes

message bus

media type negotiation
plugin system

utility libraries
language bindings

protocols
- file: - alsa
- http: - w42
- rtsp: -tep/udp

sources

formats codecs

- avi - mp3
- mp4 - mpegd
- 089 - varbis

gstreamer plugins
gstreamer includes over 150 plugins

GStreamer is packaged into

- gstreamer: the core package

filters

- canverters
- MIiXers
- effetcs

- gst-plugins-base: an essential exemplary set of elements

- gst-plugins-good: a set of good-quality plug-ins under LGP

sinks

- alsa
- ¥videao
- tep/udp

- gst-plugins-ugly: a set of good-quality plug-ins that ntigbse distribution problems

- gst-plugins-bad: a set of plug-ins that need more quality

« gst-python: the python bindings

- afew others packages

Chapter 1. What is GStreamer?

Chapter 2. Design principles

2.1. Clean and powerful

GStreamer provides a clean interface to:

« The application programmer who wants to build a media pigeli he programmer can use an
extensive set of powerful tools to create media pipelingsauit writing a single line of code.
Performing complex media manipulations becomes very easy.

- The plugin programmer. Plugin programmers are provideéarncand simple API to create
self-contained plugins. An extensive debugging and taoiechanism has been integrated.
GStreamer also comes with an extensive set of real-lifeipfutpat serve as examples too.

2.2. Object oriented

GStreamer adheres to GObject, the GLib 2.0 object modelognammer familiar with GLib 2.0 or
GTK+ will be comfortable with GStreamer.

GStreamer uses the mechanism of signals and object pregerti
All objects can be queried at runtime for their various prtips and capabilities.

GStreamer intends to be similar in programming methodotodyTK+. This applies to the object
model, ownership of objects, reference counting, etc.

2.3. Extensible

All GStreamer Objects can be extended using the GObjectitahee methods.

All plugins are loaded dynamically and can be extended agdagzd independently.

2.4. Allow binary-only plugins

Plugins are shared libraries that are loaded at runtimeeSift the properties of the plugin can be set
using the GObject properties, there is no need (and in faatay) to have any header files installed for
the plugins.

Chapter 2. Design principles

Special care has been taken to make plugins completelgaetiined. All relevant aspects of plugins
can be queried at run-time.

2.5. High performance

High performance is obtained by:

using GLib’sGSl i ce allocator

extremely light-weight links between plugins. Data cawétahe pipeline with minimal overhead.
Data passing between plugins only involves a pointer dezat® in a typical pipeline.

« providing a mechanism to directly work on the target memarplugin can for example directly write

to the X server’s shared memory space. Buffers can also fmarbitrary memory, such as a sound
card’s internal hardware buffer.

refcounting and copy on write minimize usage of memcpy. Buibers efficiently split buffers into
manageable pieces.

dedicated streaming threads, with scheduling handleddiemel.

- allowing hardware acceleration by using specialized misgi

using a plugin registry with the specifications of the plegso that the plugin loading can be delayed
until the plugin is actually used.

2.6. Clean core/plugins separation

The core of GStreamer is essentially media-agnostic. it kmbws about bytes and blocks, and only
contains basic elements. The core of GStreamer is fund@muagh to even implement low-level
system tools, like cp.

All of the media handling functionality is provided by plugi external to the core. These tell the core
how to handle specific types of media.

2.7. Provide a framework for codec experimentation

GStreamer also wants to be an easy framework where codelopgex&can experiment with different
algorithms, speeding up the development of open and freémadia codecs like Theora and Vorbis
(http://www.xiph.org/ogg/index.html).

Chapter 3. Foundations

This chapter of the guide introduces the basic concepts tE@®er. Understanding these concepts will
be important in reading any of the rest of this guide, all @thassume understanding of these basic
concepts.

3.1. Elements

An elements the most important class of objects in GStreamer. Youusillally create a chain of
elements linked together and let data flow through this chB@&lements. An element has one specific
function, which can be the reading of data from a file, decgdiithis data or outputting this data to
your sound card (or anything else). By chaining togetheeisdwsuch elements, you creatpipelinethat
can do a specific task, for example media playback or capBB&eamer ships with a large collection of
elements by default, making the development of a large tyapiemedia applications possible. If needed,
you can also write new elements. That topic is explainedéagdeal in th&sStreamer Plugin Writer's
Guide

3.2. Pads

Padsare element’s input and output, where you can connect otberemts. They are used to negotiate
links and data flow between elements in GStreamer. A pad caieled as a “plug” or “port” on an
element where links may be made with other elements, andghrarhich data can flow to or from those
elements. Pads have specific data handling capabilitiesdd/cpn restrict the type of data that flows
through it. Links are only allowed between two pads when tlosvad data types of the two pads are
compatible. Data types are negotiated between pads usiragess called¢aps negotiationData types
are described as@st Caps.

An analogy may be helpful here. A pad is similar to a plug okjan a physical device. Consider, for
example, a home theater system consisting of an amplifiey,[a @ayer, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed becausetbdévices have audio jacks, and linking
the projector to the DVD player is allowed because both d=/itave compatible video jacks. Links
between the projector and the amplifier may not be made bec¢hagprojector and amplifier have
different types of jacks. Pads in GStreamer serve the sanp@gel as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way throdgtkdetween elements. Data flows out
of one element through one or maeurce padsand elements accept incoming data through one or
moresink padsSource and sink elements have only source and sink pagscte®ly. Data usually
means buffers (described by tet Buf f er
(http://gstreamer.freedesktop.org/data/doc/gstre@iable/gstreamer/html//gstreamer-GstBuffer.html)
object) and events (described by thest Event

Chapter 3. Foundations

(http://gstreamer.freedesktop.org/data/doc/gstrestable/gstreamer/html//gstreamer-GstEvent.html)
object).

3.3. Bins and pipelines

A binis a container for a collection of elementsp#pelineis a special subtype of a bin that allows
execution of all of its contained child elements. Since lairessubclasses of elements themselves, you
can mostly control a bin as if it were an element, therebyrabghg away a lot of complexity for your
application. You can, for example change state on all elésriara bin by changing the state of that bin
itself. Bins also forward bus messages from their contagiéidren (such as error messages, tag
messages or EOS messages).

A pipelineis a top-level bin. As you set it to PAUSED or PLAYING statetalfiow will start and media
processing will take place. Once started, pipelines willirua separate thread until you stop them or the
end of the data stream is reached.

Figure 3-1. GStreamer pipeline for a simple ogg player

pipeline

I_I |_||_| T> vorbis-decoder
JdJ

audio-sink

file-source ogg-demuxer

==

|

theora-decoder video-sink

Gstreamer pipeline for a basic ogg player

3.4. Communication

GStreamer provides several mechanisms for communicatidlata exchange between tggplication
and thepipeline

- buffers are objects for passing streaming data between elemethis pipeline. Buffers always travel
from sources to sinks (downstream).

+ eventsare objects send between elements or from the applicatieleinents. Events can travel
upstream and downstream. Downstream events can be syrsguan the data flow.

Chapter 3. Foundations

+ messagesare object send from elements over the bus to the applicddlessages can be received
synchronously, but then from the streaming thread contiekisosender or asynchronously marshalled
to the main thread of the application.

- queries allow application to request information from the pipeliQueries are answered
synchronously. Also elements can use queries. They candoEbagh ways, but most common are
downstream queries.

Figure 3-2. GStreamer pipeline with different communication flows

application

bus) messages
pipeline
events gueries
Y Y
file-source | ‘ogg-demuxer | ‘vorbis-decoder | ‘ alsa-output
buffers

ll. Building an Application

In these chapters, we will discuss the basic concepts ofe@iter and the most-used objects, such as
elements, pads and buffers. We will use a visual representat these objects so that we can visualize
the more complex pipelines you will learn to build later oouXvill get a first glance at the GStreamer
API, which should be enough for building elementary appiares. Later on in this part, you will also
learn to build a basic command-line application.

Note that this part will give a look into the low-level API andncepts of GStreamer. Once you're going
to build applications, you might want to use higher-level&\F hose will be discussed later on in this
manual.

Chapter 4. Initializing GStreamer

When writing a GStreamer application, you can simply inelgsit / gst . h to get access to the library
functions. Besides that, you will also need to intialize G&treamer library.

4.1. Simple initialization

Before the GStreamer libraries can be uggd,_i ni t has to be called from the main application. This
call will perform the necessary initialization of the lilbyeas well as parse the GStreamer-specific
command line options.

A typical program' would have code to initialize GStreamer that looks like:this

Example 4-1. Initializing GStreamer

#i ncl ude <stdi o. h>
#i ncl ude <gst/gst.h>

i nt
main (int ar gc,
char xargv[])
{
const gchar *nano_str;
guint major, minor, mcro, nano;

gst_init (&rgc, &argv);
gst _version (&mmjor, &mnor, &nmcro, &nano);
if (nano == 1)
nano_str = "(CVS)";
else if (nano == 2)
nano_str = "(Prerel ease)";
el se

nano_str = "";

printf ("This programis |inked agai nst GStreaner % . %d. %d 9%\ n",
maj or, mnor, mcro, nano_str);

return O;

10

Chapter 4. Initializing GStreamer

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and GST_BHER_MICRO macros to
get the GStreamer version you are building against, or westutictiongst _ver si on to get the version
your application is linked against. GStreamer currentlsus scheme where versions with the same
major and minor versions are API-/ and ABI-compatible.

It is also possible to call thgst _i ni t function with two NULL arguments, in which case nho command
line options will be parsed by GStreamer.

4.2. The GOption interface

You can also use a GOption table to initialize your own patanseas shown in the next example:

Example 4-2. Initialisation using the GOption interface

#i ncl ude <gst/gst.h>

int
main (int argc,

{

char *argv[])

gbool ean sil ent FALSE;
gchar xsavefile = NULL;
GOpt i onCont ext =*ct Xx;
GError xerr = NULL;
GOptionEntry entries[] = {
{ "silent", "s’, 0, G_OPTION_ARG NONE, &silent,
"do not output status information", NULL },
{ "output", "o, 0, G OPTION ARG STRING &savefile,
"save xm representation of pipeline to FILE and exit", "FILE" },
{ NULL }
s

/+ we nmust initialise the threadi ng system before using any
* other GLib funtion, such as g_option_context_new() =*/
if (!g_thread_supported ())
g_thread_init (NULL);

ctx = g_option_context_new ("- Your application");
g_option_context_add_main_entries (ctx, entries, NULL);
g_option_context_add_group (ctx, gst_init_get_option_group ());
if (!g_option_context_parse (ctx, &argc, &argv, &err)) {

g print ("Failed to initialize: %\n", err->nessage);

g_error_free (err);

return 1;

}

printf ("Run nme with --help to see the Application options appended.\n");

11

Chapter 4. Initializing GStreamer

return O;

}

As shown in this fragment, you can use a GOption
(http://developer.gnome.org/doc/API/2.0/glib/glilmi@mandline-option-parser.html) table to define your
application-specific command line options, and pass thie t& the GLib initialization function along
with the option group returned from the functigst _i ni t _get _opti on_gr oup. Your application
options will be parsed in addition to the standard GStreaypgons.

Notes

1. The code for this example is automatically extracted ftloendocumentation and built under
exanpl es/ manual in the GStreamer tarball.

12

Chapter 5. Elements

The most important object in GStreamer for the applicati@gpammer is th&st El ement
(../..Igstreamer/html/GstElement.html) object. An edgrnis the basic building block for a media
pipeline. All the different high-level components you wike are derived fror@st El ement . Every
decoder, encoder, demuxer, video or audio output is in fest & enent

5.1. What are elements?

For the application programmer, elements are best visthfs black boxes. On the one end, you might
put something in, the element does something with it and #unteelse comes out at the other side. For
a decoder element, for example, you'd put in encoded datkthenelement would output decoded data.
In the next chapter (sd@ads and capabilitisyou will learn more about data input and output in
elements, and how you can set that up in your application.

5.1.1. Source elements

Source elements generate data for use by a pipeline, for@gasading from disk or from a sound card.
Figure 5-1shows how we will visualise a source element. We always draauace pad to the right of
the element.

Figure 5-1. Visualisation of a source element

source element

Source elements do not accept data, they only generateYdataan see this in the figure because it only
has a source pad (on the right). A source pad can only gercatge

5.1.2. Filters, convertors, demuxers, muxers and codecs

Filters and filter-like elements have both input and outpaigs. They operate on data that they receive
on their input (sink) pads, and will provide data on theirpuit(source) pads. Examples of such elements
are a volume element (filter), a video scaler (convertorf)gg demuxer or a Vorbis decoder.

13

Chapter 5. Elements
Filter-like elements can have any number of source or sidlspa video demuxer, for example, would
have one sink pad and several (1-N) source pads, one for Eanbkrary stream contained in the

container format. Decoders, on the other hand, will onlyehawe source and sink pads.

Figure 5-2. Visualisation of a filter element

filter

Figure 5-2shows how we will visualise a filter-like element. This spiec@lement has one source and
one sink element. Sink pads, receiving input data, are tipat the left of the element; source pads are
still on the right.

Figure 5-3. Visualisation of a filter element with more than me output pad

demuxer

Figure 5-3shows another filter-like element, this one having more thanoutput (source) pad. An
example of one such element could, for example, be an Oggxkrfar an Ogg stream containing both
audio and video. One source pad will contain the elementdgovstream, another will contain the
elementary audio stream. Demuxers will generally fire dgyndien a new pad is created. The
application programmer can then handle the new elemerii@ars in the signal handler.

5.1.3. Sink elements

Sink elements are end points in a media pipeline. They adaptbut do not produce anything. Disk
writing, soundcard playback, and video output would allibglemented by sink elementsigure 5-4
shows a sink element.

Figure 5-4. Visualisation of a sink element

sink element

14

Chapter 5. Elements

5.2. Creating a Gst El enent

The simplest way to create an elementis togtsie el enment _f act ory_make ()
(http://gstreamer.freedesktop.org/data/doc/gstremiable/gstreamer/html/GstElementFactory.html#gst-
element-factory-make). This function takes a factory namean element name for the newly created
element. The name of the element is something you can uselate look up the element in a bin, for
example. The name will also be used in debug output. You cas WBILL as the name argument to get a
unique, default name.

When you don’t need the element anymore, you need to unrsiriggst _obj ect _unref ()
(http://gstreamer.freedesktop.org/data/doc/gstremiable/gstreamer/html/GstObject. html#gst-object-
unref). This decreases the reference count for the elenyehtAn element has a refcount of 1 when it
gets created. An element gets destroyed completely wheaefib@unt is decreased to 0.

The following examplé shows how to create an element narsedrcefrom the element factory named
fakesrc It checks if the creation succeeded. After checking, iefmthe element.

#i ncl ude <gst/gst.h>

i nt
main (int argc,
char xargv[])

{

Gst El enent *el enent ;

[+ init GStreamer =*/
gst_init (&rgc, &argv);

/* create elenment =*/
el ement = gst_el enent _factory_nmake ("fakesrc", "source");
if (lelement) {
g print ("Failed to create el enent of type 'fakesrc'\n");
return -1;

}

gst _obj ect _unref (GST_OBJECT (el enent));

return O;

gst _el enent _fact ory_make is actually a shorthand for a combination of two functions. A

Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstreiable/gstreamer/html/GstElement.html) object is
created from a factory. To create the element, you have taapetss to &st El enent Fact ory
(http://gstreamer.freedesktop.org/data/doc/gstre@iadle/gstreamer/html/GstElementFactory.html)
object using a unique factory name. This is done with_el enent _factory_find ()

15

Chapter 5. Elements

(http://gstreamer.freedesktop.org/data/doc/gstremiable/gstreamer/html/GstElementFactory.html#gst-
element-factory-find).

The following code fragment is used to get a factory that canded to create tifakesrcelement, a fake
data source. The functiayst _el enent _factory create ()
(http://gstreamer.freedesktop.org/data/doc/gstremiable/gstreamer/html/GstElementFactory.html#gst-
element-factory-create) will use the element factory &ate an element with the given

name.

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{

Gst El enent Factory *factory;
Gst El enent * el enent;

[+ init GStreaner x/
gst_init (&rgc, &argv);

/* create el enent, nethod #2 =/

factory = gst_elenent_factory_find ("fakesrc");

if (!factory) {
g print ("Failed to find factory of type ’'fakesrc’'\n");
return -1;

}

el enent = gst_el enent _factory_create (factory, "source");

if (lelement) {
g print ("Failed to create el enent, even though its factory exists!\n");
return -1;

}
gst _obj ect _unref (GST_OBJECT (el enent));

return O;

5.3. Using an elementas a Gbj ect

A Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstre@iable/gstreamer/html/GstElement.html) can have
several properties which are implemented using stan@asfect properties. The usu&@bj ect
methods to query, set and get property values@tad anSpecs are therefore supported.

16

Chapter 5. Elements

EveryGst El ement inherits at least one property from its par@t Ooj ect : the "name" property. This
is the name you provide to the functiogmst _el enent _f act ory_make () or

gst_el enent _factory_create ().Youcan getand set this property using the functions

gst _obj ect _set _name andgst _obj ect _get _nane or use thed0bj ect property mechanism as
shown below.

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{

Gst El enent xel enent;
gchar =*nane;

[+ init GStreamer =*/
gst_init (&rgc, &argv);

/* create elenment =*/
el ement = gst_el enent _factory_make ("fakesrc", "source");

/* get nanme */

g_obj ect_get (G OBJECT (elenent), "nane", &niane, NULL);
g_print ("The nanme of the elenent is "%’ .\n", nane);
g_free (nane);

gst _obj ect _unref (GST_OBJECT (el enent));

return O;

Most plugins provide additional properties to provide mioifermation about their configuration or to
configure the elemengst-inspectis a useful tool to query the properties of a particular eletyiewill
also use property introspection to give a short explanatimut the function of the property and about
the parameter types and ranges it supports. See the apfendetails abougst-inspect

For more information abow@bj ect properties we recommend you read the GObject manual
(http://developer.gnome.org/doc/API/2.0/gobjectérdhitml) and an introduction to The Glib Object
system (http://developer.gnome.org/doc/API/2.0/gciifpe01.html).

A Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstre@iable/gstreamer/html/gstreamer/html/GstElemesitFg. html)
also provides variouSbj ect signals that can be used as a flexible callback mechanisre, tber, you

can usgyst-inspectto see which signals a specific element supports. Togetgasls and properties are

the most basic way in which elements and applications iotera

17

Chapter 5. Elements

5.4. More about element factories

In the previous section, we briefly introduced tis El enent Fact ory
(http://gstreamer.freedesktop.org/data/doc/gstremiable/gstreamer/html/GstElement.html) object
already as a way to create instances of an element. Elenatotiés, however, are much more than just
that. Element factories are the basic types retrieved flen@aStreamer registry, they describe all plugins
and elements that GStreamer can create. This means thatrel&atories are useful for automated
element instancing, such as what autopluggers do, anddating lists of available elements, such as
what pipeline editing applications (e.g. GStreamer Editor
(http://gstreamer.freedesktop.org/modules/gst-edital)) do.

5.4.1. Getting information about an element using a factory

Tools likegst-inspectwill provide some generic information about an elementhsasthe person that
wrote the plugin, a descriptive name (and a shortname) kaaad a category. The category can be used
to get the type of the element that can be created using #mnsegit factory. Examples of categories
includeCodec/ Decoder / Vi deo (video decoder)codec/ Encoder / Vi deo (video encoder),

Sour ce/ Vi deo (a video generatori nk/ Vi deo (a video output), and all these exist for audio as well,
of course. Then, there’s al€dec/ Denuxer andCodec/ Muxer and a whole lot moregst-inspectwill
give a list of all factories, angst-inspect <factory-name>will list all of the above information, and a

lot more.

#i ncl ude <gst/gst.h>

i nt
main (int argc,
char xargv[])

{
Gst El enent Factory *factory;

[+ init GCStreamer x/
gst_init (&rgc, &argv);

/* get factory x/

factory = gst_elenent_factory_find ("fakesrc");

if (!factory) {
g_print ("You don’t have the 'fakesrc’ elenent installed!/'\n");
return -1;

}

/* display information */

g_print ("The "%’ elenent is a nenber of the category %.\n"
"Description: %\n",
gst_plugin_feature_get_nane (GST_PLUG N_FEATURE (factory)),
gst _el ement _factory_get_kl ass (factory),
gst _elenent _factory_get _description (factory));

return O;

18

Chapter 5. Elements

You can useyst _regi stry_pool _feature_list (GST_TYPE _ELEMENT_FACTORY) to get a list of
all the element factories that GStreamer knows about.

5.4.2. Finding out what pads an element can contain

Perhaps the most powerful feature of element factoriesaisttiey contain a full description of the pads
that the element can generate, and the capabilities of themt®(in layman words: what types of media
can stream over those pads), without actually having totbaske plugins into memory. This can be used
to provide a codec selection list for encoders, or it can leel tisr autoplugging purposes for media
players. All current GStreamer-based media players arabaiggers work this way. We'll look closer at
these features as we learn abGsit Pad andGst Caps in the next chapteiPads and capabilities

5.5. Linking elements

By linking a source element with zero or more filter-like ekamts and finally a sink element, you set up a
media pipeline. Data will flow through the elements. Thisis basic concept of media handling in

GStreamer.
| | sink

By linking these three elements, we have created a very siot@in of elements. The effect of this will
be that the output of the source element (“elementl1”) willbed as input for the filter-like element
(“element2”). The filter-like element will do something Withe data and send the result to the final sink
element (“element3”).

Figure 5-5. Visualisation of three linked elements

filter

source

Imagine the above graph as a simple Ogg/Vorbis audio decbdersource is a disk source which reads
the file from disc. The second element is a Ogg/Vorbis audimder. The sink element is your
soundcard, playing back the decoded audio data. We willhiseimple graph to construct an
Ogg/Vorbis player later in this manual.

In code, the above graph is written like this:

19

Chapter 5. Elements

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{
Gst El enent =*pi pel i ne;
Gst El enent *source, *filter, =*sink;

[+ init */
gst_init (&rgc, &argv);

/* create pipeline x/
pi peline = gst_pipeline_new ("ny-pipeline");

/* create el ements x/

source = gst_el enent _factory_nmke ("fakesrc", "source");
filter = gst_elenent_factory_make ("identity", "filter");
sink = gst_elenent_factory_nake ("fakesink", "sink");

/+* must add el enents to pipeline before Iinking them*/
gst _bin_add_many (GST_BIN (pipeline), source, filter, sink, NULL);

[+ link */
if ('gst_elenment_link_many (source, filter, sink, NULL)) {
g warning ("Failed to link elenents!");

}

For more specific behaviour, there are also the functisns el ement _| i nk () and
gst_el enent _| i nk_pads (). You can also obtain references to individual pads and lioké¢ using
variousgst _pad_I| i nk_* () functions. See the API references for more details.

Important: you must add elements to a bin or pipebeéorelinking them, since adding an elementto a
bin will disconnect any already existing links. Also, yownoat directly link elements that are not in the
same bin or pipeline; if you want to link elements or pads #edént hierarchy levels, you will need to
use ghost pads (more about ghost pads later).

5.6. Element States

After being created, an element will not actually perforng antions yet. You need to change elements
state to make it do something. GStreamer knows four elentetass each with a very specific meaning.
Those four states are:

20

Notes

Chapter 5. Elements

« GST_STATE_NULL: this is the default state. This state will deallocate adbrerces held by the element.

« GST_STATE_READY: in the ready state, an element has allocated all of its ¢l@saurces, that is,
resources that can be kept within streams. You can thinktadpmning devices, allocating buffers and
so on. However, the stream is not opened in this state, sdréns positions is automatically zero. If
a stream was previously opened, it should be closed in this,sind position, properties and such
should be reset.

- GST_STATE_PAUSED: in this state, an element has opened the stream, but is tglg@rocessing it.
An element is allowed to modify a stream’s position, read prutess data and such to prepare for
playback as soon as state is changed to PLAYING, butibisllowed to play the data which would
make the clock run. In summary, PAUSED is the same as PLAYINGwlithout a running clock.

Elements going into the PAUSED state should prepare theesé&r moving over to the PLAYING
state as soon as possible. Video or audio outputs wouldxéomple, wait for data to arrive and queue
it so they can play it right after the state change. Also, oigieks can already play the first frame
(since this does not affect the clock yet). Autopluggerdatose this same state transition to already
plug together a pipeline. Most other elements, such as sanffdters, do not need to explicitely do
anything in this state, however.

« GST_STATE_PLAYI NG in the PLAYING state, an element does exactly the same deiRAUSED
state, except that the clock now runs.

You can change the state of an element using the fungtionel enent _set _state (). If yousetan
element to another state, GStreamer will internally tregetl intermediate states. So if you set an
element from NULL to PLAYING, GStreamer will internally stite element to READY and PAUSED
in between.

When moved t@ST_STATE_PLAYI NG, pipelines will process data automatically. They do nothtee
be iterated in any form. Internally, GStreamer will stareids that take this task on to them. GStreamer
will also take care of switching messages from the pipeditieread into the application’s own thread, by
using aGst Bus
(http://gstreamer.freedesktop.org/data/doc/gstre@iadle/gstreamer/html/GstBus.html). S&eapter 7
for details.

1. The code for this example is automatically extracted ftloendocumentation and built under
exanpl es/ manual in the GStreamer tarball.

21

Chapter 6. Bins

A bin is a container element. You can add elements to a biceSirbin is an element itself, a bin can be
handled in the same way as any other element. Therefore htbke\previous chapteE{fement$ applies
to bins as well.

6.1. What are bins

Bins allow you to combine a group of linked elements into agdal element. You do not deal with the
individual elements anymore but with just one element, iheWe will see that this is extremely
powerful when you are going to construct complex pipelinesesit allows you to break up the pipeline
in smaller chunks.

The bin will also manage the elements contained in it. It figiire out how the data will flow in the bin
and generate an optimal plan for that data flow. Plan gewoeraione of the most complicated
procedures in GStreamer. You will learn more about this ggeccalled scheduling, Bection 16.2

Figure 6-1. Visualisation of a bin with some elements in it

Bin

Element 1 | | Element 2 | | Element 3

There is one specialized type of bin available to the GStezgmrogrammer:

+ A pipeline: a generic container that allows scheduling ef¢bntaining elements. The toplevel bin has
to be a pipeline, every application thus needs at least otiesé. Pipelines will automatically run
themselves in a background thread when started.

6.2. Creating a bin

Bins are created in the same way that other elements aredréa&t using an element factory. There are
also convenience functions availabds{_bi n_new () andgst _pi pel i ne_new ()). To add
elements to a bin or remove elements from a bin, you camsisebi n_add () andgst _bi n_r enove

22

Chapter 6. Bins

() . Note that the bin that you add an element to will take owriprshthat element. If you destroy the
bin, the element will be dereferenced with it. If you remowestement from a bin, it will be
dereferenced automatically.

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{

Gst El enent =*hbin, *pipeline, *source, *sink;

[* init =/
gst_init (&rgc, &argv);

[+ create */

pi peline = gst_pipeline_new ("ny_pipeline");

bin = gst_bin_new ("my_bin");

source = gst_el enent_factory_make ("fakesrc", "source");
sink = gst_el ement _factory_nake ("fakesink", "sink");

/* First add the elenents to the bin */

gst _bin_add_many (GST_BIN (bin), source, sink, NULL);
/* add the bin to the pipeline */

gst_bin_add (GST_BIN (pipeline), bin);

/+ link the el ements =/
gst _element _link (source, sink);

[--]

There are various functions to lookup elements in a bin. Moualso get a list of all elements that a bin
contains using the functiagst _bi n_get _li st (). See the API references Gt Bi n
(http://gstreamer.freedesktop.org/data/doc/gstreiable/gstreamer/html/GstBin.html) for details.

6.3. Custom bins

The application programmer can create custom bins packidel@ments to perform a specific task.
This allows you, for example, to write an Ogg/Vorbis decodih just the following lines of code:
int
main (int ar gc,

char xargv[])

{
Gst El enent =pl ayer;

23

Chapter 6. Bins

[* init =/
gst_init (&rgc, &argv);

/* create player =/
pl ayer = gst_el enent_factory_nake ("oggvorbisplayer", "player");

/+ set the source audio file =/
g_object_set (player, "location", "helloworld.ogg", NULL);

/+ start playback */

gst _el ement _set_state (GST_ELEMENT (pl ayer), GST_STATE _PLAYI NG ;
[..]
}

Custom bins can be created with a plugin or an XML descriptiu will find more information about
creating custom bin in the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstreduead/pwg/html/index.html).

Examples of such custom bins are the playbin and decodedimegits from gst-plugins-base
(http://gstreamer.freedesktop.org/data/doc/gstreduead/gst-plugins-base-plugins/html/index.html).

24

Chapter 7. Bus

A bus is a simple system that takes care of forwarding mesdagm the pipeline threads to an
application in its own thread context. The advantage of astigat an application does not need to be
thread-aware in order to use GStreamer, even though GSiréwelf is heavily threaded.

Every pipeline contains a bus by default, so applicationsat;meed to create a bus or anything. The
only thing applications should do is set a message handlarws, which is similar to a signal handler
to an object. When the mainloop is running, the bus will pdidally be checked for new messages, and
the callback will be called when any message is available.

7.1. How to use a bus

There are two different ways to use a bus:

« Run a GLib/Gtk+ main loop (or iterate the default GLib maimtaxt yourself regularly) and attach
some kind of watch to the bus. This way the GLib main loop wikck the bus for new messages and
notify you whenever there are messages.

Typically you would useyst _bus_add_wat ch () orgst_bus_add_si gnal _wat ch () in this
case.

To use a bus, attach a message handler to the bus of a pipgiiggst _bus_add_wat ch (). This
handler will be called whenever the pipeline emits a mesgage bus. In this handler, check the
signal type (see next section) and do something accordihgl/return value of the handler should be
TRUE to keep the handler attached to the bus, return FALSEnwmve it.

« Check for messages on the bus yourself. This can be donegssingpus_peek () and/or
gst _bus_poll ().

#i ncl ude <gst/gst.h>
static Gvai nLoop *I| oop;

static gbool ean

my_bus_cal | back (GstBus *bus,
Cst Message *nmessage,
gpoi nter dat a)

{

g_print ("Got % nessage\n", GST_MESSAGE_TYPE_NAME (nessage));

switch (GST_MESSAGE_TYPE (nessage)) {

25

Chapter 7. Bus

case GST_MESSAGE ERROR: {
GError *err;
gchar =debug

gst _nessage_parse_error (nessage, &err, &debug);
g_print ("Error: 9%\n", err->nessage);
g_error_free (err);

g_free (debug);

g_main_l oop_quit (loop);
br eak;

}

case GST_MESSACE ECS
[end- of - stream */
g_mai n_l oop_quit (loop);
br eak;

defaul t:
[+ unhandl ed nmessage */
br eak;

}

/+ we want to be notified again the next tine there is a nessage
* on the bus, so returning TRUE (FALSE neans we want to stop watching
+ for messages on the bus and our call back should not be called again)
*/
return TRUE;
}

gi nt
mai n (gint argc,
gchar xargv[])
{
Gst El enent =*pi pel i ne;
Gst Bus *bus;

[* init =/
gst_init (&rgc, &argv);

/* create pipeline, add handl er =*/
pi pel i ne = gst_pi peline_new ("ny_pipeline");

/+* adds a watch for new nessage on our pipeline’ s nessage bus to

* the default GLib main context, which is the main context that our
* GLib main loop is attached to bel ow

*/

bus = gst_pi peline_get_bus (GST_PI PELI NE (pipeline));

gst _bus_add_watch (bus, mnmy_bus_cal |l back, NULL);

gst _obj ect _unref (bus);

[--]

/* create a nmainloop that runs/iterates the default GLib main context
* (context NULL), in other words: makes the context check if anything

26

Chapter 7. Bus

* it watches for has happened. \When a nmessage has been posted on the

* bus, the default main context will automatically call our
* my_bus_cal | back() function to notify us of that nessage.
* The main loop will be run until soneone calls g_main_loop_quit()

*/
|l oop = g_mai n_l oop_new (NULL, FALSE);
g_mai n_|l oop_run (1l oop);

/* clean up =/

gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (pipeline);

g_mai n_| oop_unref (I oop);

return O;

It is important to know that the handler will be called in thegad context of the mainloop. This means
that the interaction between the pipeline and applicatia@r the bus issynchronousand thus not

suited for some real-time purposes, such as cross-fadimgeba audio tracks, doing (theoretically)
gapless playback or video effects. All such things shoulddree in the pipeline context, which is easiest
by writing a GStreamer plug-in. It is very useful for its pany purpose, though: passing messages from
pipeline to application. The advantage of this approachasaill the threading that GStreamer does
internally is hidden from the application and the applicatileveloper does not have to worry about
thread issues at all.

Note that if you're using the default GLib mainloop integoat you can, instead of attaching a watch,
connect to the “message” signal on the bus. This way you dhawvé toswi t ch() on all possible
message types; just connect to the interesting signalsim &b “message::<type>", where <type>is a
specific message type (see the next section for an explaraitinessage types).

The above snippet could then also be written as:

Gst Bus *bus;

[..]

bus = gst_pi peline_get_bus (GST_PI PELI NE (pi peline);
gst _bus_add_si gnal _wat ch (bus);

g_si gnal _connect (bus, "nessage::error", G CALLBACK (ch_nessage_error), NULL);
g_si gnal _connect (bus, "message::eos", G CALLBACK (cb_message_eos), NULL);

[--]

If you aren’t using GLib mainloop, the asynchronous messageals won't be available by default. You
can however install a custom sync handler that wakes up sterrumainloop and that uses

27

Chapter 7. Bus

gst _bus_async_si gnal _func () to emitthe signals. (see also documentation
(http://gstreamer.freedesktop.org/data/doc/gstre@iable/gstreamer/html/GstBus.html) for details)

7.2. Message types

GStreamer has a few pre-defined message types that can kd passthe bus. The messages are
extensible, however. Plug-ins can define additional messand applications can decide to either have
specific code for those or ignore them. All applications arergyly recommended to at least handle error
messages by providing visual feedback to the user.

All messages have a message source, type and timestamp.€Bsage source can be used to see which
element emitted the message. For some messages, for examiplthe ones emitted by the top-level
pipeline will be interesting to most applications (e.g. $tate-change notifications). Below is a list of all
messages and a short explanation of what they do and howse pessage-specific content.

- Error, warning and information notifications: those aredisg elements if a message should be shown
to the user about the state of the pipeline. Error messagdatal and terminate the data-passing. The
error should be repaired to resume pipeline activity. Wagsiare not fatal, but imply a problem
nevertheless. Information messages are for non-probleifications. All those messages contain a
GEr r or with the main error type and message, and optionally a detoingysBoth can be extracted
usinggst _message_parse_error (),_parse_warning () and_parse_i nfo ().Botherror
and debug strings should be freed after use.

- End-of-stream notification: this is emitted when the strée® ended. The state of the pipeline will
not change, but further media handling will stall. Applicats can use this to skip to the next song in
their playlist. After end-of-stream, it is also possiblesgek back in the stream. Playback will then
continue automatically. This message has no specific angisme

- Tags: emitted when metadata was found in the stream. Thise&amitted multiple times for a
pipeline (e.g. once for descriptive metadata such as adiste or song title, and another one for
stream-information, such as samplerate and bitrate).iéqjns should cache metadata internally.
gst _nessage_parse_tag () should be used to parse the taglist, which should be
gst_tag_list_free ()’'edwhen nolonger needed.

- State-changes: emitted after a successful state chgsigeressage_par se_st ate_changed ()
can be used to parse the old and new state of this transition.

- Buffering: emitted during caching of network-streams. @aa manually extract the progress (in
percent) from the message by extracting the “buffer-pdtgenperty from the structure returned by
gst _nmessage_get _structure ().

- Element messages: these are special messages that aretorggttain elements and usually represent
additional features. The element’s documentation sho@dtion in detail which element messages a
particular element may send. As an example, the 'qtdemuiciJime demuxer element may send a
redirect’ element message on certain occasions if thastieontains a redirect instruction.

- Application-specific messages: any information on thosebeaextracted by getting the message
structure (see above) and reading its fields. Usually thessages can safely be ignored.

28

Chapter 7. Bus

Application messages are primarily meant for internal nsgpiplications in case the application needs
to marshal information from some thread into the main thr&&dks is particularly useful when the

application is making use of element signals (as those sigvih be emitted in the context of the
streaming thread).

29

Chapter 8. Pads and capabilities

As we have seen iRlementsthe pads are the element’s interface to the outside wodth Bireams

from one element’s source pad to another element’s sinkTaglspecific type of media that the element
can handle will be exposed by the pad’s capabilities. Wetalil more on capabilities later in this
chapter (se&ection 8.2

8.1. Pads

A pad type is defined by two properties: its direction andvilability. As we've mentioned before,
GStreamer defines two pad directions: source pads and sitsk phis terminology is defined from the
view of within the element: elements receive data on thek piads and generate data on their source
pads. Schematically, sink pads are drawn on the left sida efement, whereas source pads are drawn
on the right side of an element. In such graphs, data flows feftnto right.*

Pad directions are very simple compared to pad availabflifyad can have any of three availabilities:
always, sometimes and on request. The meaning of thosetjfpreRis exactly as it says: always pads
always exist, sometimes pad exist only in certain casesdandlisappear randomly), and on-request
pads appear only if explicitely requested by applications.

8.1.1. Dynamic (or sometimes) pads

Some elements might not have all of their pads when the eleimereated. This can happen, for
example, with an Ogg demuxer element. The element will readgg stream and create dynamic pads
for each contained elementary stream (vorbis, theora) \itltetects such a stream in the Ogg stream.
Likewise, it will delete the pad when the stream ends. Thisqiple is very useful for demuxer elements,
for example.

Running gst-inspect oggdemux will show that the elemenbinésone pad: a sink pad called 'sink’. The
other pads are “dormant”. You can see this in the pad tempktause there is an “Exists: Sometimes”
property. Depending on the type of Ogg file you play, the paitide created. We will see that this is
very important when you are going to create dynamic pipslilYeu can attach a signal handler to an
element to inform you when the element has created a new paddne of its “sometimes” pad
templates. The following piece of code is an example of hodatthis:

#i ncl ude <gst/gst.h>

static void

cb_new pad (GstEl enent =*el ement,
Gst Pad *pad,
gpoi nt er dat a)

{

gchar =*nane;

30

Chapter 8. Pads and capabilities

name = gst_pad_get _nane (pad);
g_print ("A new pad % was created\n", nane);
g_free (nane);

/* here, you would setup a new pad link for the newy created pad */

[--]
}

i nt
main (int argc,
char xargv[])

{
Gst El enent =*pi pel i ne, *source, =*denux;
Gwvai nLoop x| oop;
[* init =/
gst_init (&rgc, &argv);
[+ create el ements */
pi peline = gst_pipeline_new ("ny_pipeline");
source = gst_elenent_factory_nmake ("filesrc", "source");
g_obj ect _set (source, "location", argv[1], NULL);
denux = gst_el ement _factory_nake ("oggdenux", "denuxer");
/* you would nornmal ly check that the el ements were created properly =/
/* put together a pipeline x/
gst _bin_add_many (GST_BIN (pipeline), source, dermux, NULL);
gst _el ement _| i nk_pads (source, "src", demux, "sink");
/+* listen for newy created pads */
g_si gnal _connect (denux, "pad-added", G CALLBACK (cbh_new pad), NULL);
/* start the pipeline */
gst _el ement _set_state (GST_ELEVMENT (pi peline), GST_STATE_PLAYI NG ;
|l oop = g_mai n_l oop_new (NULL, FALSE);
g_mai n_|l oop_run (1 oop);
[-.]
}

8.1.2. Request pads

An element can also have request pads. These pads are rteticietomatically but are only created on
demand. This is very useful for multiplexers, aggregatacstae elements. Aggregators are elements
that merge the content of several input streams togethepim output stream. Tee elements are the

31

Chapter 8. Pads and capabilities

reverse: they are elements that have one input stream agdhisfstream to each of their output pads,
which are created on request. Whenever an application raewdler copy of the stream, it can simply
request a new output pad from the tee element.

The following piece of code shows how you can request a nepubpiad from a “tee” element:

static void
sonme_function (GstEl ement *tee)

{
Gst Pad * pad;
gchar *nane;
pad = gst_el enent _get _request _pad (tee, "src%d");
name = gst_pad_get _nane (pad);
g_print ("A new pad % was created\n", nane);
g_free (nane);
/* here, you would link the pad =*/

[-.]
/+ and, after doing that, free our reference */
gst _obj ect _unref (GST_OBJECT (pad));

}

Thegst _el ement _get _request _pad () method can be used to get a pad from the element based on

the name of the pad template. It is also possible to request ghat is compatible with another pad
template. This is very useful if you want to link an elemenatmultiplexer element and you need to
request a pad that is compatible. The methsd el enent _get _conpati bl e_pad () can be used to
request a compatible pad, as shown in the next example.lltegilest a compatible pad from an Ogg
multiplexer from any input.

static void
link _to_multiplexer (GstPad +xt ol i nk_pad,
Gst El enent *nmux)
{
Gst Pad *pad;
gchar *srcnane, =*sinknaneg;

srcnane = gst_pad_get _nane (tolink_pad);

pad = gst_el enent _get _conpati bl e_pad (nmux, tolink_pad);
gst _pad_link (tolinkpad, pad);

si nkname = gst_pad_get _nanme (pad);

gst _obj ect _unref (GST_OBJECT (pad));

g_print ("A new pad % was created and |linked to %\n", srcnanme, sinknane);

g_free (sinknane);
g_free (srcnane);

32

Chapter 8. Pads and capabilities

8.2. Capabilities of a pad

Since the pads play a very important role in how the elemerieiged by the outside world, a
mechanism is implemented to describe the data that can flowrogntly flows through the pad by using
capabilities. Here, we will briefly describe what capal@itare and how to use them, enough to get an
understanding of the concept. For an in-depth look into biifias and a list of all capabilities defined in
GStreamer, see the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstreduead/pwg/html/index.html).

Capabilities are attached to pad templates and to padsademplates, it will describe the types of
media that may stream over a pad created from this templateédels, it can either be a list of possible
caps (usually a copy of the pad template’s capabilities)Hith case the pad is not yet negotiated, or it is
the type of media that currently streams over this pad, irclvbase the pad has been negotiated already.

8.2.1. Dissecting capabilities

A pads capabilities are described gt Caps object. Internally, &st Caps
(../..Igstreamer/html/gstreamer-GstCaps.html) wilitain one or mor&st St ruct ur e
(../..Igstreamer/html/gstreamer-GstStructure.htha) tvill describe one media type. A negotiated pad
will have capabilities set that contain exaabiyestructure. Also, this structure will contain orfixed
values. These constraints are not true for unnegotiatesigaohad templates.

As an example, below is a dump of the capabilities of the “igatéc” element, which you will get by
runninggst-inspect vorbisdec You will see two pads: a source and a sink pad. Both of theds g
always available, and both have capabilities attachedeimtfhe sink pad will accept vorbis-encoded
audio data, with the mime-type “audio/x-vorbis”. The sapad will be used to send raw (decoded)
audio samples to the next element, with a raw audio mime-typthis case, “audio/x-raw-int”) The
source pad will also contain properties for the audio samapeand the amount of channels, plus some
more that you don't need to worry about for now.

Pad Tenpl at es:
SRC tenplate: 'src’
Avai l ability: Al ways
Capabi lities:
audi o/ x-raw f | oat
rate: [8000, 50000]
channels: [1, 2]
endi anness: 1234
wi dt h: 32
buffer-frames: 0

SINK tenpl ate: ’sink’
Avai l ability: Al ways
Capabi lities:

audi o/ x-vorbi s

33

Chapter 8. Pads and capabilities

8.2.2. Properties and values

Properties are used to describe extra information for aéified. A property consists of a key (a string)
and a value. There are different possible value types thabeaised:

- Basic types, this can be pretty much aBly pe registered with Glib. Those properties indicate a
specific, non-dynamic value for this property. Exampledude:

- Aninteger valueG_TYPE_I NT): the property has this exact value.

- Aboolean value@ TYPE_BOOLEAN): the property is either TRUE or FALSE.

- Afloat value G_TYPE_FLOAT): the property has this exact floating point value.
- Astring value G_TYPE_STRI NG): the property contains a UTF-8 string.

- Afraction value GST_TYPE_FRACTI ON): contains a fraction expressed by an integer numerator
and denominator.

- Range types ar@Types registered by GStreamer to indicate a range of possihlesalhey are used
for indicating allowed audio samplerate values or supjgrigeo sizes. The two types defined in
GStreamer are:

- Aninteger range valuesST_TYPE_| NT_RANGE): the property denotes a range of possible integers,
with a lower and an upper boundary. The “vorbisdec” elemfentexample, has a rate property that
can be between 8000 and 50000.

. Afloat range value@ST_TYPE_FLOAT_RANGE): the property denotes a range of possible floating
point values, with a lower and an upper boundary.

.- Afraction range valueGST_TYPE_FRACTI ON_RANGE): the property denotes a range of possible
fraction values, with a lower and an upper boundary.

- Alist value (GST_TYPE_LI ST): the property can take any value from a list of basic valuesrgin
this list.

Example: caps that express that either a sample rate of 444@8d a sample rate of 48000 Hz is
supported would use a list of integer values, with one vakied44100 and one value being 48000.

- An array value GST_TYPE_ARRAY): the property is an array of values. Each value in the agayfull
value on its own, too. All values in the array should be of thms elementary type. This means that
an array can contain any combination of integers, lists t&gers, integer ranges together, and the
same for floats or strings, but it can not contain both floatkiats at the same time.

Example: for audio where there are more than two channetdvied the channel layout needs to be
specified (for one and two channel audio the channel layantpficit unless stated otherwise in the
caps). So the channel layout would be an array of integer erlmes where each enum value
represents a loudspeaker position. Unlikesa_TYPE_LI ST, the values in an array will be interpreted
as awhole.

34

Chapter 8. Pads and capabilities

8.3. What capabilities are used for

Capabilities (short: caps) describe the type of data thettémmed between two pads, or that one pad
(template) supports. This makes them very useful for varmurposes:

« Autoplugging: automatically finding elements to link to algzased on its capabilities. All
autopluggers use this method.

« Compatibility detection: when two pads are linked, GStreaoan verify if the two pads are talking
about the same media type. The process of linking two padslaecking if they are compatible is
called “caps negotiation”.

- Metadata: by reading the capabilities from a pad, appbcatcan provide information about the type
of media that is being streamed over the pad, which is inftionabout the stream that is currently
being played back.

- Filtering: an application can use capabilities to limit gessible media types that can stream between
two pads to a specific subset of their supported stream tyyreapplication can, for example, use
“filtered caps” to set a specific (fixed or non-fixed) video gtz&t should stream between two pads.
You will see an example of filtered caps later in this manue$ection 18.2You can do caps filtering
by inserting a capsfilter element into your pipeline andrsgits “caps” property. Caps filters are often
placed after converter elements like audioconvert, aedample, ffmpegcolorspace or videoscale to
force those converters to convert data to a specific outpotgbat a certain point in a stream.

8.3.1. Using capabilities for metadata

A pad can have a set (i.e. one or more) of capabilities atthtthiz. Capabilities Gst Caps) are
represented as an array of one or mesest r uct ur es, and eacl®st St r uct ur e is an array of fields
where each field consists of a field name string (e.g. "wickin') a typed value (e.@ TYPE_I NT or
GST_TYPE_I NT_RANGE).

Note that there is a distinct difference betweengbssiblecapabilities of a pad (ie. usually what you
find as caps of pad templates as they are shown in gst-insgiez)lowedcaps of a pad (can be the
same as the pad’s template caps or a subset of them, depemding possible caps of the peer pad) and
lastly negotiateccaps (these describe the exact format of a stream or buffec@mtain exactly one
structure and have no variable bits like ranges or listgshiey are fixed caps).

You can get values of properties in a set of capabilities ®rgjng individual properties of one structure.
You can get a structure from a caps usysgy _caps_get _structure () and the number of structures
in aGst Caps usinggst _caps_get _si ze ().

35

Chapter 8. Pads and capabilities

Caps are calledimple capsvhen they contain only one structure, dned capsvhen they contain only
one structure and have no variable field types (like rangésterof possible values). Two other special
types of caps arANY capsandempty caps

Here is an example of how to extract the width and height fresataof fixed video caps:

static void
read_vi deo_props (GstCaps *caps)
{

gint wi dth, height;

const GstStructure *str;

g return_if_fail (gst_caps_is_fixed (caps));

str = gst_caps_get_structure (caps, 0);
if ('gst_structure_get_int (str, "width", & dth) ||
lgst_structure_get_int (str, "height", &height)) {
g_print ("No w dth/height avail able\n");
return;

}

g_print ("The video size of this set of capabilities is %x%\ n",
wi dt h, height);

8.3.2. Creating capabilities for filtering

While capabilities are mainly used inside a plugin to déscthe media type of the pads, the application
programmer often also has to have basic understanding abddies in order to interface with the
plugins, especially when using filtered caps. When you'iegiiltered caps or fixation, you're limiting
the allowed types of media that can stream between two paasubset of their supported media types.
You do this using @apsfi | t er elementin your pipeline. In order to do this, you also neecréate

your ownGst Caps. The easiest way to do this is by using the convenience foamcti

gst _caps_new sinple ():

static gbool ean
link _elements_with filter (GstEl enent *el enentl, GstEl enent *el ement?2)
{

gbool ean |i nk_ok;

Gst Caps *caps;

caps = gst_caps_new sinple ("video/x-raw yuv",
"format", GST_TYPE_FOURCC, GST_MAKE FOURCC ('I1', "4, '2', '0"),
"width", G TYPE_INT, 384,
"hei ght", G_TYPE_INT, 288,

36

Chapter 8. Pads and capabilities

"framerate", GST_TYPE FRACTION, 25, 1,
NULL) ;

link_ok = gst_elenent_link filtered (el enentl, elenment2, caps);
gst _caps_unref (caps);

if ('link_ok) {
g warning ("Failed to link elenentl and el ement2!");

}

return |ink_ok;

This will force the data flow between those two elements tortagevideo format, width, height and
framerate (or the linking will fail if that cannot be achielim the context of the elments involved). Keep
in mind that when you usegst _el ement _link_filtered () it willautomatically create a

capsfil ter elementfor you and insert it into your bin or pipeline betwdlee two elements you want
to connect (this is important if you ever want to disconnbose elements because then you will have to
disconnect both elements from the capsfilter instead).

In some cases, you will want to create a more elaborate seipattilities to filter a link between two
pads. Then, this function is too simplistic and you'll wamtise the methogst _caps_new ful | ():

static gbool ean
link_elements_with filter (GstEl enent xel enentl, GstEl enment *el ement?2)

{
gbool ean |i nk_ok;
Gst Caps *caps;
caps = gst_caps_new full (
gst _structure_new ("video/ x-raw yuv",
"wi dth", G TYPE_INT, 384,
"hei ght", G TYPE_INT, 288,
"franerate", GST_TYPE_FRACTION, 25, 1,
NULL) ,
gst _structure_new ("video/ x-rawrgh",
"wi dth", G TYPE_INT, 384,
"hei ght", G TYPE_INT, 288,
"franerate", GST_TYPE_FRACTICON, 25, 1,
NULL) ,
NULL) ;
link_ok = gst_elenent_link filtered (elenentl, element2, caps);
gst _caps_unref (caps);
if (!'link_ok) {
g warning ("Failed to link elenentl and el enent2!");
}
return |ink_ok;
}

37

Chapter 8. Pads and capabilities

See the API references for the full AP G§t St r uct ur e andGst Caps.

8.4. Ghost pads

You can see fronfrigure 8-1how a bin has no pads of its own. This is where "ghost pads" doto@lay.

Figure 8-1. Visualisation of aGst Bi n (../../gstreamer/html/GstBin.html) element without ghcst
pads

| Element 1 | | Element 2

A ghost pad is a pad from some element in the bin that can besedelirectly from the bin as well.
Compare it to a symbolic link in UNIX filesystems. Using ghpats on bins, the bin also has a pad and
can transparently be used as an element in other parts otypdet

Figure 8-2. Visualisation of aGst Bi n (../../gstreamer/html/GstBin.html) element with a ghospad

Figure 8-2is a representation of a ghost pad. The sink pad of elemerisammv also a pad of the bin.
Because ghost pads look and work like any other pads, thepeeadded to any type of elements, not
just to aGst Bi n, just like ordinary pads.

38

Chapter 8. Pads and capabilities

A ghostpad is created using the functigst _ghost _pad_new ():
#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{
Gst El enent *bin, =*sink;
Gst Pad *pad;

[+ init */
gst_init (&rgc, &argv);

/* create elenent, add to bin */

sink = gst_elenent_factory_nake ("fakesink", "sink");
bin = gst_bin_new ("nybin");

gst _bin_add (GST_BIN (bin), sink);

/* add ghostpad */

pad = gst_el enent _get _static_pad (sink, "sink");

gst _el ement _add_pad (bin, gst_ghost_pad_new ("sink", pad));
gst _obj ect _unref (GST_OBJECT (pad));

[--]

In the above example, the bin now also has a pad: the pad ¢aligd of the given element. The bin
can, from here on, be used as a substitute for the sink elem@ntould, for example, link another
element to the bin.

Notes

1. Inreality, there is no objection to data flowing from a smupad to the sink pad of an element
upstream (to the left of this element in drawings). Data,witlwever, always flow from a source pad
of one element to the sink pad of another.

39

Chapter 9. Buffers and Events

The data flowing through a pipeline consists of a combinatidsuffers and events. Buffers contain the
actual media data. Events contain control informationhsagcseeking information and end-of-stream
notifiers. All this will flow through the pipeline automatibawhen it's running. This chapter is mostly
meant to explain the concept to you; you don’t need to do amgtior this.

9.1. Buffers

Buffers contain the data that will flow through the pipelirmnhave created. A source element will
typically create a new buffer and pass it through a pad to éx¢@lement in the chain. When using the
GStreamer infrastructure to create a media pipeline yountlhave to deal with buffers yourself; the
elements will do that for you.

A buffer consists, amongst others, of:

- A pointer to a piece of memory.
« The size of the memory.
- A timestamp for the buffer.

- Arefcount that indicates how many elements are using thfebT his refcount will be used to
destroy the buffer when no element has a reference to it.

- Buffer flags.

The simple case is that a buffer is created, memory allocdtgd put in it, and passed to the next
element. That element reads the data, does something (@kértg a new buffer and decoding into it),
and unreferences the buffer. This causes the data to bedread the buffer to be destroyed. A typical
video or audio decoder works like this.

There are more complex scenarios, though. Elements carfyrimutiers in-place, i.e. without allocating
a new one. Elements can also write to hardware memory (sutbras/ideo-capture sources) or
memory allocated from the X-server (using XShm). Buffens ba read-only, and so on.

9.2. Events

Events are control particles that are sent both up- and dosam in a pipeline along with buffers.
Downstream events notify fellow elements of stream st&essible events include seeking, flushes,
end-of-stream notifications and so on. Upstream eventssae hoth in application-element interaction

as well as element-element interaction to request changessiam state, such as seeks. For applications,

40

Chapter 9. Buffers and Events

only upstream events are important. Downstream eventsistrexplained to get a more complete picture
of the data concept.

Since most applications seek in time units, our examplevbdimes so too:

static void
seek_to_time (GstEl enent xel enent,

gui nt 64 time_ns)
{
Gst Event *event;
event = gst_event _new seek (1.0, GST_FORVAT_TI ME,
GST_SEEK _FLAG_NONE,
GST_SEEK _METHOD_SET, tine_ns,
GST_SEEK_TYPE_NONE, G _GUI NT64_CONSTANT (0));
gst _el ement _send_event (el enent, event);
}

The functiongst _el ement _seek () is a shortcut for this. This is mostly just to show how it allnks.

41

Chapter 10. Your first application

This chapter will summarize everything you've learned ie finevious chapters. It describes all aspects
of a simple GStreamer application, including initializililgraries, creating elements, packing elements
together in a pipeline and playing this pipeline. By doinglak, you will be able to build a simple
Ogg/Vorbis audio player.

10.1. Hello world

We're going to create a simple first application, a simple ©gdis command-line audio player. For
this, we will use only standard GStreamer components. Téngeplwill read a file specified on the
command-line. Let’s get started!

We've learned, irChapter 4that the first thing to do in your application is to initisdiZsStreamer by
callinggst _init (). Also, make sure that the application includgs/ gst . h so all function names
and objects are properly defined. USencl ude <gst/ gst. h>to do that.

Next, you'll want to create the different elements usysg _el enent _factory_make (). Foran
Ogg/Vorbis audio player, we'll need a source element thedsdiles from a disk. GStreamer includes
this element under the name “filesrc”. Next, we’ll need sdnimgj to parse the file and decode it into raw
audio. GStreamer has two elements for this: the first parggss®eams into elementary streams (video,
audio) and is called “oggdemux”. The second is a Vorbis addmpder, it's conveniently called
“vorbisdec”. Since “oggdemux” creates dynamic pads foheslementary stream, you'll need to set a
“pad-added” event handler on the “oggdemux” element, lik@'ye learned irSection 8.1.1to link the
Ogg demuxer and the Vorbis decoder elements together. Atladl also need an audio output element,
we will use “autoaudiosink”, which automatically detectaly audio device.

The last thing left to do is to add all elements into a conta@ement, &st Pi pel i ne, and iterate this
pipeline until we've played the whole song. We've previguskrned how to add elements to a container
bin in Chapter 6and we've learned about element stateSeation 5.6\We will also attach a message
handler to the pipeline bus so we can retrieve errors ana e end-of-stream.

Let's now add all the code together to get our very first authggr:

#i ncl ude <gst/gst.h>
#i ncl ude <glib. h>

static gbool ean

bus_call (GstBus *bus,
Gst Message *nsg,
gpoi nter dat a)

42

Chapter 10. Your first application

{
Gwvai nLoop *l oop = (Gwai nLoop *) data;
swi tch (GST_MESSAGE TYPE (nsg)) {
case GST_MESSAGE ECS:
g_print ("End of streamin");
g_mai n_l oop_quit (loop);
br eak;
case GST_MESSAGE ERROR: {
gchar =*debug;
GError xerror;
gst _nmessage_parse_error (nsg, &error, &debug);
g_free (debug);
g_printerr ("Error: %\n", error->message);
g_error_free (error);
g_main_l oop_quit (loop);
br eak;
}
defaul t:
br eak;
}
return TRUE;
}

static void

on_pad_added (GstEl ement +el enent,
Gst Pad *pad,
gpoi nter dat a)

Gst Pad *si nkpad;
Gst El enent *decoder = (GstEl enent x) data;

/+ We can now link this pad with the vorbis-decoder sink pad */
g_print ("Dynanm c pad created, |inking denuxer/decoder\n");

sinkpad = gst_el enent _get _static_pad (decoder, "sink");
gst _pad_link (pad, sinkpad);

gst _obj ect _unref (sinkpad);

int
main (int argc,

43

Chapter 10. Your first application
char xargv[])
Gwvai nLoop I oop

Gst El enent =pi peline, *source, *denuxer, xdecoder, =*conv, =*sink
Gst Bus *bus;

/+ Initialisation =/
gst_init (&rgc, &argv);

|l oop = g_mai n_l oop_new (NULL, FALSE);

/* Check input argunents =/

if (argc !'= 2) {
g_printerr ("Usage: % <Qgg/Vorbis filenane>\n", argv[0]);
return -1;

/+* Create gstreaner elenents */
pi pel i ne = gst_pi peline_new ("audio-player");

sour ce = gst_el enent _factory_nmake ("filesrc", "file-source");
denuxer = gst_el enent _factory_nake ("oggdenux", "o0gg- denmuxer");
decoder = gst_elenent_factory_nake ("vorbisdec", "vor bi s-decoder");
conv = gst_el enent _factory_nake ("audi oconvert", "converter");

si nk = gst_el enent _factory_make ("autoaudi osink”, "audi o-output");
if (!pipeline || !source || !demuxer || !decoder || !conv || !sink) {

g_printerr ("One elenent could not be created. Exiting.\n");
return -1,

}
/* Set up the pipeline */

/* we set the input filename to the source el ement x/
g_obj ect _set (G OBJECT (source), "location", argv[1l], NULL);

/+* we add a nessage handler x/

bus = gst_pi peline_get _bus (GST_PI PELI NE (pipeline));
gst _bus_add_wat ch (bus, bus_call, |oop);

gst _obj ect _unref (bus);

/+ we add all elenents into the pipeline */
/+ file-source | ogg-denuxer | vorbis-decoder | converter | al sa-output */
gst _bin_add_many (GST_BIN (pipeline),

source, denuxer, decoder, conv, sink, NULL);

/+ we link the el enents together =/

/+ file-source -> ogg-denuxer ~> vorbis-decoder -> converter -> al sa-output =*/
gst _elenment _|ink (source, denuxer);

gst _el ement _| i nk_nmany (decoder, conv, sink, NULL);

g_si gnal _connect (denuxer, "pad-added", G CALLBACK (on_pad_added), decoder);

44

Chapter 10. Your first application

/* note that the demuxer will be linked to the decoder dynamically.
The reason is that Oyg may contain various streans (for exanple
audi o and vi deo). The source pad(s) will be created at run tine,
by the demuxer when it detects the anmpunt and nature of streans.
Therefore we connect a call back function which will be executed
when the "pad-added" is enmtted. */

/+* Set the pipeline to "playing" statex/
g_print ("Now playing: %\n", argv[1]);
gst_el enent _set_state (pipeline, GST_STATE PLAYING ;

/* lterate */
g_print ("Running...\n");
g_mai n_l cop_run (| oop);

/+* CQut of the main |oop, clean up nicely */
g_print ("Returned, stopping playback\n");
gst _el ement _set _state (pipeline, GST_STATE NULL);

g_print ("Deleting pipeline\n");
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

We now have created a complete pipeline. We can visualisgipiedine as follows:

Figure 10-1. The "hello world" pipeline

pipeline

file-source vorbis-decoder

ogg-demuxer converter audio-output

10.2. Compiling and Running helloworld.c

To compile the helloworld example, usgcc -Wall $(pkg-config --cflags --libs gstreamer-0.10)
helloworld.c -o helloworld. GStreamer makes use pifg-configto get compiler and linker flags needed
to compile this application. If you're running a non-stardimstallation, make sure the

45

Chapter 10. Your first application

PKG_CONFI G_PATHenvironment variable is set to the correct locati$hi (bdi r / pkgconfi g).
application against the uninstalled location.

You can run this example application witthelloworld file.ogg Substituté i | e. ogg with your
favourite Ogg/Vorbis file.

10.3. Conclusion

This concludes our first example. As you see, setting up dipgis very low-level but powerful. You

will see later in this manual how you can create a more powerédia player with even less effort using
higher-level interfaces. We will discuss all that in

Part IV in GStreamer Application Development Manual (0.10.283 will first, however, go more
in-depth into more advanced GStreamer internals.

It should be clear from the example that we can very easillacepthe “filesrc” element with some other
element that reads data from a network, or some other dateeselement that is better integrated with
your desktop environment. Also, you can use other decoderparsers/demuxers to support other
media types. You can use another audio sink if you're notinghhinux, but Mac OS X, Windows or
FreeBSD, or you can instead use a filesink to write audio fielgk instead of playing them back. By
using an audio card source, you can even do audio captueadsef playback. All this shows the
reusability of GStreamer elements, which is its greatesaaihge.

46

lll. Advanced GStreamer concepts

In this part we will cover the more advanced features of Gfirer. With the basics you learned in the
previous part you should be able to creatmpleapplication. However, GStreamer provides much
more candy than just the basics of playing back audio filethitnchapter, you will learn more of the
low-level features and internals of GStreamer.

Some parts of this part will serve mostly as an explanatidmef GStreamer works internally; they are
not actually needed for actual application developmeris Fitludes chapter such as the ones covering
scheduling, autoplugging and synchronization. Other thraphowever, discuss more advanced ways of
pipeline-application interaction, and can turn out to beyweseful for certain applications. This includes
the chapters on metadata, querying and events, interidyesamic parameters and pipeline data
manipulation.

Chapter 11. Position tracking and seeking

So far, we've looked at how to create a pipeline to do mediagssing and how to make it run. Most
application developers will be interested in providingdack to the user on media progress. Media
players, for example, will want to show a slider showing thegpess in the song, and usually also a label
indicating stream length. Transcoding applications wadnito show a progress bar on how much
percent of the task is done. GStreamer has built-in suppodding all this using a concept known as
querying Since seeking is very similar, it will be discussed here aB.\8eeking is done using the
concept ofevents

11.1. Querying: getting the position or length of a stream

Querying is defined as requesting a specific stream-propaetied to progress tracking. This includes
getting the length of a stream (if available) or getting tbherent position. Those stream properties can be
retrieved in various formats such as time, audio sampldgsovirames or bytes. The function most
commonly used for this igst _el enent _query (), although some convenience wrappers are
provided as well (such agst _el ement _query_position () andgst_el enent _query_durati on

()). You can generally query the pipeline directly, and itfjdre out the internal details for you, like
which element to query.

Internally, queries will be sent to the sinks, and “dispatttbackwards until one element can handle it;
that result will be sent back to the function caller. Usugliyat is the demuxer, although with live sources
(from a webcam), it is the source itself.

#i ncl ude <gst/gst.h>

static gbool ean
cb_print_position (GstEl enent =*pipeline)

{
Gst Format fnt = GST_FORMAT_TI ME;
gi nt 64 pos, |en;
if (gst_elenment_query_position (pipeline, & nt, &pos)
&& gst _el ement _query_duration (pipeline, &m, & en)) {
g_print ("Time: % GST_TIME_FORVAT " / 9% GST_TI ME_FORMAT "\r",
GST_TI ME_ARGS (pos), GST_TIME_ARGS (len));
}
/+ call me again */
return TRUE;
}

48

Chapter 11. Position tracking and seeking

gi nt
mai n (gint argc,
gchar xargv[])

{
Gst El enent =*pi pel i ne;

[--]

/* run pipeline =/
g_tinmeout _add (200, (GSourceFunc) cb_print_position, pipeline);
g_mai n_| oop_run (1 oop);

[--]

11.2. Events: seeking (and more)

Events work in a very similar way as queries. Dispatchingef@ample, works exactly the same for
events (and also has the same limitations), and they cafadiytie sent to the toplevel pipeline and it
will figure out everything for you. Although there are moreywan which applications and elements can
interact using events, we will only focus on seeking heras ihdone using the seek-event. A seek-event
contains a playback rate, a seek offset format (which is ttiteofi the offsets to follow, e.g. time, audio
samples, video frames or bytes), optionally a set of seeietajed flags (e.g. whether internal buffers
should be flushed), a seek method (which indicates relaiivehait the offset was given), and seek
offsets. The first offset (cur) is the new position to seekuioile the second offset (stop) is optional and
specifies a position where streaming is supposed to stollydiis fine to just specify

GST_SEEK _TYPE_NONE and -1 as end_method and end offsetdtmviour of a seek is also
wrapped in theyst _el enent _seek ().

static void
seek_to_time (GstEl enent =*pipeline,

gi nt 64 ti me_nanoseconds)
{
if (!gst_elenment_seek (pipeline, 1.0, GST_FORVAT_TI Mg, GST_SEEK FLAG FLUSH,
GST_SEEK_TYPE_SET, tine_nanoseconds,
GST_SEEK _TYPE_NONE, GST_CLOCK TI ME_NONE)) {
g_print ("Seek failed!'\n");
}
}

Seeks with the GST_SEEK_FLAG_FLUSH should be done whenitiedipe is in PAUSED or
PLAYING state. The pipeline will automatically go to prersiate until the new data after the seek will
cause the pipeline to preroll again. After the pipeline isrpled, it will go back to the state (PAUSED or

49

Chapter 11. Position tracking and seeking

PLAYING) it was in when the seek was executed. You can wagdking) for the seek to complete with
gst _el enent _get _stat e() or by waiting for the ASYNC_DONE message to appear on the bus.

Seeks without the GST_SEEK_FLAG_FLUSH should only be dohemthe pipeline is in the
PLAYING state. Executing a non-flushing seek in the PAUSEdesinight deadlock because the
pipeline streaming threads might be blocked in the sinks.

It is important to realise that seeks will not happen indyaintthe sense that they are finished when the
functiongst _el ement _seek () returns. Depending on the specific elements involved, theahc
seeking might be done later in another thread (the streathiegd), and it might take a short time until
buffers from the new seek position will reach downstreammelets such as sinks (if the seek was
non-flushing then it might take a bit longer).

Itis possible to do multiple seeks in short time-intervalsg;h as a direct response to slider movement.
After a seek, internally, the pipeline will be paused (if &swplaying), the position will be re-set
internally, the demuxers and decoders will decode from #ve position onwards and this will continue
until all sinks have data again. If it was playing originaltywill be set to playing again, too. Since the
new position is immediately available in a video output, ydll see the new frame, even if your pipeline
is not in the playing state.

50

Chapter 12. Metadata

GStreamer makes a clear distinction between two types aidatd, and has support for both types. The
first is stream tags, which describe the content of a streaamin-technical way. Examples include the
author of a song, the title of that very same song or the albhisrai part of. The other type of metadata is
stream-info, which is a somewhat technical descriptiomefgroperties of a stream. This can include
video size, audio samplerate, codecs used and so on. Tagaratked using the GStreamer tagging
system. Stream-info can be retrieved fro@sa Pad.

12.1. Metadata reading

Stream information can most easily be read by reading them &Gst Pad. This has already been
discussed before iBection 8.3.1Therefore, we will skip it here. Note that this requiresessto all
pads of which you want stream information.

Tag reading is done through a bus in GStreamer, which hasdiseussed previously i@hapter 7 You
can listen foIGST_MESSAGE_TAGmessages and handle them as you wish.

Note, however, that théST_MESSAGE_TAG message may be fired multiple times in the pipeline. It is the
application’s responsibility to put all those tags togeted display them to the user in a nice, coherent
way. Usually, usinggst _tag_| i st _merge () is a good enough way of doing this; make sure to empty
the cache when loading a new song, or after every few minuteswstening to internet radio. Also,
make sure you useST_TAG_MERGE_PREPEND as merging mode, so that a new title (which came in
later) has a preference over the old one for display.

12.2. Tag writing

Tag writing is done using theést TagSet t er interface. All that's required is a tag-set-supporting
element in your pipeline. In order to see if any of the elermémt/our pipeline supports tag writing, you
can use the functiogst _bin_iterate_all_by interface (pipeline,

GST_TYPE_TAG_SETTER) . On the resulting element, usually an encoder or muxer, gowse
gst_tag_setter_nerge () (with ataglist) orgst _tag_setter_add () (with individual tags) to
set tags on it.

A nice extra feature in GStreamer tag support is that tagpraserved in pipelines. This means that if
you transcode one file containing tags into another media, pd that new media type supports tags
too, then the tags will be handled as part of the data stre@b@merged into the newly written media
file, too.

51

Chapter 13. Interfaces

In Section 5.3you have learned how to u@ebj ect properties as a simple way to do interaction
between applications and elements. This method sufficdbémimple’n’straight settings, but fails for
anything more complicated than a getter and setter. For tre oomplicated use cases, GStreamer uses
interfaces based on the Gl nt er f ace type.

Most of the interfaces handled here will not contain any gxamode. See the API references for
details. Here, we will just describe the scope and purposadi interface.

13.1. The URI interface

In all examples so far, we have only supported local filesughathe “filesrc” element. GStreamer,
obviously, supports many more location sources. Howeveden't want applications to need to know
any particular element implementation details, such aseft names for particular network source types
and so on. Therefore, there is a URI interface, which can bé tesget the source element that supports a
particular URI type. There is no strict rule for URI namingt in general we follow naming conventions
that others use, too. For example, assuming you have theat@iugins installed, GStreamer supports
“file:/l/<path>/<file>", “http://<host>/<path>/<file>";mms://<host>/<path>/<file>", and so on.

In order to get the source or sink element supporting a paati¢JRI, use
gst _el enent _make_fromuri (), with the URI type being eitheBST_URI _SRCfor a source
element, 0oiGST_URI _SI NK for a sink element.

You can convert filenames to and from URIs using GL#'$i | enane_to_uri () and
g uri_to_filenane ().

13.2. The Mixer interface

The mixer interface provides a uniform way to control thewné on a hardware (or software) mixer.
The interface is primarily intended to be implemented byredats for audio inputs and outputs that talk
directly to the hardware (e.g. OSS or ALSA plugins).

Using this interface, it is possible to control a list of tkag¢such as Line-in, Microphone, etc.) from a
mixer element. They can be muted, their volume can be chaaggdor input tracks, their record flag
can be set as well.

Example plugins implementing this interface include theS@Ements (osssrc, osssink, ossmixer) and
the ALSA plugins (alsasrc, alsasink and alsamixer).

52

Chapter 13. Interfaces

You should not use this interface for volume control in a pkagk application. Either useva! ume
element or usel aybi n’s “volume” property, or use the audiosink’s “volume” prape(if it has one).

Note: In order for the Gst M xer interface to be usable, the element implementing it needs to be in
the right state, so that the underlying mixer device is open. This usually means the element needs to
be at least in GST_STATE_READY before you can use this interface. You will get confusing warnings if
the element is not in the right state when the interface is used.

13.3. The Tuner interface

The tuner interface is a uniform way to control inputs ancbatg on a multi-input selection device. This
is primarily used for input selection on elements for TV- aagture-cards.

Using this interface, it is possible to select one track feolist of tracks supported by that tuner-element.
The tuner will than select that track for media-processitgrnally. This can, for example, be used to
switch inputs on a TV-card (e.g. from Composite to S-video).

This interface is currently only implemented by the Vidaéondk and Video4linux2 elements.

Note: In order for the Gst Tuner interface to be usable, the element implementing it needs to be in
the right state, so that the underlying device is open. This usually means the element needs to be at
least in GST_STATE_READY before you can use this interface. You will get confusing warnings if the
element is not in the right state when the interface is used.

13.4. The Color Balance interface

The colorbalance interface is a way to control video-rel@i@perties on an element, such as brightness,
contrast and so on. It's sole reason for existance is thédyas its authors know, there’s no way to
dynamically register properties usi@gbj ect .

The colorbalance interface is implemented by several phjgncluding xvimagesink and the
Video4linux and Video4linux2 elements.

53

Chapter 13. Interfaces

13.5. The Property Probe interface

The property probe is a way to autodetect allowed values @ibhect property. It's primary use is to
autodetect devices in several elements. For example, tBee@®ents use this interface to detect all
OSS devices on a system. Applications can then “probe” tloiggrty and get a list of detected devices.

Note: Given the overlap between HAL and the practical implementations of this interface, this might
in time be deprecated in favour of HAL.

This interface is currently implemented by many elementduiding the ALSA, OSS, XVImageSink,
Video4linux and Video4linux2 elements.

13.6. The X Overlay interface

The X Overlay interface was created to solve the problem dfeziding video streams in an application
window. The application provides an X-window to the elememilementing this interface to draw on,
and the element will then use this X-window to draw on rathantcreating a new toplevel window. This
is useful to embed video in video players.

This interface is implemented by, amongst others, the \Atieox and Video4linux2 elements and by
ximagesink, xvimagesink and sdlvideosink.

54

Chapter 14. Clocks in GStreamer

To maintain sync in pipeline playback (which is the only cageere this really matters), GStreamer uses
clocks Clocks are exposed by some elements, whereas other ekearemherely clock slaves. The
primary task of a clock is to represent the time progressraatg to the element exposing the clock,
based on its own playback rate. If no clock provider is alddan a pipeline, the system clock is used
instead.

GStreamer derives several times from the clock and the pldybtate. It is important to note, that a
clock-timeis monotonically rising, but the value itself is not mearfiigSubtracting théase-timeyields
therunning-time It is the same as thetream-timeaf one plays from start to end at original rate. The
stream-timandicates the position in the media.

Figure 14-1. GStreamer clock and various times

100 ms stream n A i | replay

Stream time

L) Ll L]

50 60 70 80 90 100 60 70

Running time

100 200 30 40 50 60 70 80 90 100 110 120 130 140

Clock time

@ 60 70 20 90 100 110 120 130 140 150 160 170 180 190 200 210

base time

14.1. Clock providers

Clock providers exist because they play back media at soteeganad this rate is not necessarily the same
as the system clock rate. For example, a soundcard may plaghd4,1 kHz, but that doesn’t mean that
afterexactlyl secondaccording to the system clodke soundcard has played back 44.100 samples.
This is only true by approximation. Therefore, generallggtines with an audio output use the
audiosink as clock provider. This ensures that one secouded will be played back at the same rate as
that the soundcard plays back 1 second of audio.

Whenever some part of the pipeline requires to know the atioleck time, it will be requested from the
clock throughgst _cl ock_get _ti ne (). The clock-time does not need to start at 0. The pipeline,
which contains the global clock that all elements in the lngewill use, in addition has a “base time”,
which is the clock time at the the point where media time igtistg from zero. This timestamp is
subctracted from the clock time, and that value is returnedget _time ().

The clock provider is responsible for making sure that tlelkctime always represents the current media
time as closely as possible; it has to take care of things asgilayback latencies, buffering in

55

Chapter 14. Clocks in GStreamer

audio-kernel modules, and so on, since all those couldtadfesync and thus decrease the user
experience.

14.2. Clock slaves

Clock slaves get assigned a clock by their containing pigellheir task is to make sure that media
playback follows the time progress as represented by thikdas closely as possible. For most
elements, that will simply mean to wait until a certain timeé@ached before playing back their current
sample; this can be done with the functigst _cl ock_i d_wait (). Some elements may need to
support dropping samples too, however.

For more information on how to write elements that conforrthis required behaviour, see the Plugin
Writer's Guide.

56

Chapter 15. Dynamic Controllable Parameters

15.1. Getting Started

The controller subsystem offers a lightweight way to adgadiject properties over stream-time. It works
by using time-stamped value pairs that are queued for elepreperties. At run-time the elements
continously pull values changes for the current streangtim

This subsystem is contained within thst cont r ol | er library. You need to include the header in your
application’s source file:

#i ncl ude <gst/gst.h>
#i ncl ude <gst/controller/gstcontroller.h>
Your application should link to the shared librayyt r eaner - control | er.

Thegstreaner-control | er library needs to be initialized when your application is.rlihis can be
done after the the GStreamer library has been initialized.

gst_init (&rgc, &argv);
gst_controller_init (&rgc, &argv);

15.2. Setting up parameter control

The first step is to select the parameters that should beatleukr This returns a controller object that is
needed to further adjust the behaviour.

controller = gst_object_control _properties(object, "propl", "prop2",...);

Next we can select an interpolation mode. This mode cont@isinbetween values are determined. The
controller subsystem can e.qg. fill gaps by smoothing paranoétanges. Each controllable GObject
property can be interpolated differently.

gst _controller_set_interpol ati on_node(controller,"propl", node);

57

Chapter 15. Dynamic Controllable Parameters

Finally one needs to set control points. These are timefgdrsValues. The values become active when
the timestamp is reached. They still stay in the list. If &g.pipeline runs a loop (using a segmented
seek), the control-curve gets repeated as well.

gst_controller_set (controller, "propl" ,0 GST_SECOND, val uel);
gst_controller_set (controller, "propl" ,1 GST_SECOND, val ue2);

The controller subsystem has a builtin live-mode. Even ¢ihoaiparameter has timestamped
control-values assigned one can change the GObject pydpestighg_obj ect _set () . This is highly
useful when binding the GObject properties to GUI widgetbeWthe user adjusts the value with the
widget, one can set the GOBject property and this remaimgeaghtil the next timestamped value
overrides. This also works with smoothed parameters.

58

Chapter 16. Threads

GStreamer is inherently multi-threaded, and is fully tlksafe. Most threading internals are hidden
from the application, which should make application depeaient easier. However, in some cases,
applications may want to have influence on some parts of tli@S&eamer allows applications to force
the use of multiple threads over some parts of a pipeline.

16.1. When would you want to force a thread?

There are several reasons to force the use of threads. Hovi@veerformance reasons, you never want
to use one thread for every element out there, since thatreidlte some overhead. Let’s now list some
situations where threads can be particularly useful:

- Data buffering, for example when dealing with network stnsar when recording data from a live
stream such as a video or audio card. Short hickups elsewhtre pipeline will not cause data loss.

Figure 16-1. Data buffering, from a networked source

|thread 1 | thread 2

networked parser [decoder audlo sink

- Synchronizing output devices, e.g. when playing a streameagoing both video and audio data. By
using threads for both outputs, they will run independeatigt their synchronization will be better.

Figure 16-2. Synchronizing audio and video sinks

) thread 1 | thread 2
' 1
- [queue ! audm decoder audno sink
' 1
= \M M
source : [demuxer l
| Iqueue wdeo decoder wr.iec sink

T
|
1
: thread 3

59

Chapter 16. Threads

Above, we've mentioned the “queue” element several timeg Aoqueue is the thread boundary
element through which you can force the use of threads. & dody using a classic provider/receiver
model as learned in threading classes at universities@linar the world. By doing this, it acts both as a
means to make data throughput between threads threadsdfié can also act as a buffer. Queues have
severalGbj ect properties to be configured for specific uses. For examplecga set lower and upper
tresholds for the element. If there’s less data than therdreshold (default: disabled), it will block
output. If there’s more data than the upper treshold, it ldick input or (if configured to do so) drop
data.

To use a queues (and therefore force the use of two distireadls in the pipeline), one can simply
create a “queue” element and put this in as part of the pipe@Streamer will take care of all threading
details internally.

16.2. Scheduling in GStreamer

Scheduling of pipelines in GStreamer is done by using a thi@aeach “group”, where a group is a set
of elements separated by “queue” elements. Within such@pgsheduling is either push-based or
pull-based, depending on which mode is supported by théecpkat element. If elements support random
access to data, such as file sources, then elements downgtréee pipeline become the entry point of
this group (i.e. the element controlling the schedulingtbo elements). The entry point pulls data from
upstream and pushes data downstream, thereby calling aladiirng functions on either type of element.

In practice, most elements in GStreamer, such as decodermjers, etc. only support push-based
scheduling, which means that in practice, GStreamer usastalpased scheduling model.

60

Chapter 17. Autoplugging

In Chapter 10you've learned to build a simple media player for Ogg/Vefiles. By using alternative
elements, you are able to build media players for other ntggies, such as Ogg/Speex, MP3 or even
video formats. However, you would rather want to build anlapgion that can automatically detect the
media type of a stream and automatically generate the bssifjp@ pipeline by looking at all available
elements in a system. This process is called autopluggmbGstreamer contains high-quality
autopluggers. If you're looking for an autoplugger, doe’ad any further and go t©hapter 19This
chapter will explain theonceptof autoplugging and typefinding. It will explain what system
GStreamer includes to dynamically detect the type of a m&déeam, and how to generate a pipeline of
decoder elements to playback this media. The same prisaple also be used for transcoding. Because
of the full dynamicity of this concept, GStreamer can be matically extended to support new media
types without needing any adaptations to its autopluggers.

We will first introduce the concept of MIME types as a dynanmid @xtendible way of identifying media
streams. After that, we will introduce the concept of typdifirg to find the type of a media stream.
Lastly, we will explain how autoplugging and the GStreansgjistry can be used to setup a pipeline that
will convert media from one mimetype to another, for exaniptenedia decoding.

17.1. MIME-types as a way to identity streams

We have previously introduced the concept of capabilitiea way for elements (or, rather, pads) to
agree on a media type when streaming data from one elemée tekt (se&ection 8.2 We have
explained that a capability is a combination of a mimetype @set of properties. For most container
formats (those are the files that you will find on your hard d3gg, for example, is a container format),
no properties are needed to describe the stream. Only a M{jd&is needed. A full list of MIME-types
and accompanying properties can be found in the Plugin Y& i@&uide
(http://gstreamer.freedesktop.org/data/doc/gstreduead/pwg/html/section-types-definitions.html).

An element must associate a MIME-type to its source and saals pvhen it is loaded into the system.
GStreamer knows about the different elements and what tiygata they expect and emit through the
GStreamer registry. This allows for very dynamic and ext#aglement creation as we will see.

In Chapter 10we've learned to build a music player for Ogg/Vorbis filest’s look at the MIME-types
associated with each pad in this pipelikggure 17-1shows what MIME-type belongs to each pad in this
pipeline.

61

Chapter 17. Autoplugging

Figure 17-1. The Hello world pipeline with MIME types

pipeline

file-source o0gg-demuxer

vorbis-decoder converter audio-output

(any) audio/x-vorbis i audio/x-raw-float audio/x-raw-int
application/ogg audiofx-vorbis audio/x-raw-float audio/x-raw-int

Now that we have an idea how GStreamer identifies known médiares, we can look at methods
GStreamer uses to setup pipelines for media handling andédia type detection.

17.2. Media stream type detection

Usually, when loading a media stream, the type of the strearotiknown. This means that before we
can choose a pipeline to decode the stream, we first needdct de¢ stream type. GStreamer uses the
concept of typefinding for this. Typefinding is a normal pdra@ipeline, it will read data for as long as
the type of a stream is unknown. During this period, it wilbpide data to all plugins that implement a
typefinder. when one of the typefinders recognizes the strisentypefind element will emit a signal and
act as a passthrough module from that point on. If no type wasd, it will emit an error and further
media processing will stop.

Once the typefind element has found a type, the applicatiomsa this to plug together a pipeline to
decode the media stream. This will be discussed in the netibse

Plugins in GStreamer can, as mentioned before, implempefityder functionality. A plugin
implementing this functionality will submit a mimetype,tamally a set of file extensions commonly
used for this media type, and a typefind function. Once thpefipd function inside the plugin is called,
the plugin will see if the data in this media stream matchgseaific pattern that marks the media type
identified by that mimetype. If it does, it will notify the tgfind element of this fact, telling which
mediatype was recognized and how certain we are that tieigratis indeed that mediatype. Once this
run has been completed for all plugins implementing a typdfimctionality, the typefind element will
tell the application what kind of media stream it thinks tedaecognized.

The following code should explain how to use the typefind it will print the detected media type,
or tell that the media type was not found. The next sectiohimtiioduce more useful behaviours, such as
plugging together a decoding pipeline.

#i ncl ude <gst/gst.h>

62

Chapter 17. Autoplugging
[.. nmy_bus_cal | back goes here ..]

static gbool ean
idle_exit_loop (gpointer data)

{
g_main_|l oop_quit ((GwvainLoop *) data);
/* once x/
return FALSE;

}

static void
cb_typefound (GstEl ement xtypefind,

gui nt probability,
Gst Caps *caps,
gpoi nt er dat a)
{
Gwvai nLoop *l oop = dat a;
gchar *type;
type = gst_caps_to_string (caps);
g_print ("Media type % found, probability %%An", type, probability);
g_free (type);
/* since we connect to a signal in the pipeline thread context, we need
* to set an idle handler to exit the main | oop in the nainloop context.
* Normal |y, your app should not need to worry about such things. =*/
g_idle_add (idle_exit_loop, |oop);
}
gi nt

mai n (gint argc,
gchar xargv[])
{
Gwvai nLoop *I oop;
Gst El enent =*pipeline, *=filesrc, *typefind, *fakesink;
Gst Bus *bus;

/* init GStreanmer */
gst_init (&rgc, &argv);
|l oop = g_mai n_l oop_new (NULL, FALSE);

/* check args =*/

if (argc '= 2) {
g_print ("Usage: % <filename>\n", argv[0]);
return -1;

}

/+* create a new pipeline to hold the elenents */
pi peline = gst_pipeline_new ("pipe");

bus = gst_pi peline_get_bus (GST_PI PELI NE (pipeline));
gst _bus_add_wat ch (bus, mnmy_bus_cal | back, NULL);

63

Chapter 17. Autoplugging
gst _obj ect _unref (bus);

/+ create file source and typefind el ement */

filesrc = gst_element_factory_nake ("filesrc", "source");

g_object_set (G OBJECT (filesrc), "location", argv[1], NULL);

typefind = gst_el ement _factory_nake ("typefind", "typefinder");

g_signal _connect (typefind, "have-type", G CALLBACK (cb_typefound), |oop);
fakesink = gst_el ement _factory_make ("fakesink", "sink");

[+ setup =*/

gst _bin_add_many (GST_BIN (pipeline), filesrc, typefind, fakesink, NULL);
gst _element _link_many (filesrc, typefind, fakesink, NULL);

gst _el ement _set_state (GST_ELEMENT (pi peline), GST_STATE_PLAYI NG ;

g_mai n_|l oop_run (1l oop);

/* unset =/
gst _el ement _set _state (GST_ELEVMENT (pi peline), GST_STATE _NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

Once a media type has been detected, you can plug an elentera ¢eemuxer or decoder) to the source
pad of the typefind element, and decoding of the media streifirstart right after.

17.3. Plugging together dynamic pipelines

Warning

The code in this section is broken, outdated and overly complicated. Also, you
should use decodebin, playbin or uridecodebin to get decoders plugged
automatically.

In this chapter we will see how you can create a dynamic pipel dynamic pipeline is a pipeline that
is updated or created while data is flowing through it. We wridlate a partial pipeline first and add more
elements while the pipeline is playing. The basis of thiygtavill be the application that we wrote in
the previous sectiorSection 17.2to identify unknown media streams.

Once the type of the media has been found, we will find elemeritee registry that can decode this
streamtype. For this, we will get all element factories (@hhive've seen before iBection 5.2 and find
the ones with the given MIME-type and capabilities on theikpad. Note that we will only use parsers,
demuxers and decoders. We will not use factories for anyr efleenent types, or we might get into a
loop of encoders and decoders. For this, we will want to baiiidt of “allowed” factories right after
initializing GStreamer.

64

Chapter 17. Autoplugging
static GList *factories;

| *

* This function is called by the registry |loader. Its return val ue

* (TRUE or FALSE) deci des whether the given feature will be included
* inthe list that we're generating further down.

*/

static gbool ean
cb_feature_filter (GstPluginFeature *feature,
gpoi nt er dat a)
{
const gchar =*kl ass;
gui nt rank;

/+ we only care about elenment factories x/
if (!GST_I S _ELEMENT_FACTORY (feature))
return FALSE;

/* only parsers, denuxers and decoders x/
kl ass = gst_el enent _factory_get _kl ass (GST_ELEMENT_FACTORY (feature));
if (g_strrstr (klass, "Denmux") == NULL &&
g_strrstr (klass, "Decoder") == NULL &&
g_strrstr (klass, "Parse") == NULL)
return FALSE;

/* only select elenments with autopl ugging rank =/
rank = gst_plugin_feature_get_rank (feature);
if (rank < GST_RANK_MARG NAL)

return FALSE;

return TRUE;
}

| *
* This function is called to sort features by rank.
*/

static gint
cb_conpare_ranks (GstPluginFeature *f1,
Gst Pl ugi nFeature *f 2)
{
return gst_plugin_feature_get_rank (f2) - gst_plugin_feature_get_rank (f1);
}

static void
init_factories (void)
{
/+ first filter out the interesting elenent factories */
factories = gst_registry feature_filter (
gst _registry_get_default (),
(Gst Plugi nFeatureFilter) cb_feature_filter, FALSE, NULL);

65

Chapter 17. Autoplugging

/* sort themaccording to their ranks x/
factories = g list_sort (factories, (GConpareFunc) cb_conpare_ranks);

From this list of element factories, we will select the onattimost likely will help us decoding a media
stream to a given output type. For each newly created elementill again try to autoplug new
elements to its source pad(s). Also, if the element has dimjpads (which we've seen before in
Section 8.1.}, we will listen for newly created source pads and handle¢htoo. The following code
replaces theb_t ype_f ound from the previous section with a function to initiate autaggding, which
will continue with the above approach.

static void try_to_plug (GstPad *pad, const GstCaps *caps);
static GstEl emrent *audi osi nk;

static void

cb_newpad (GstEl enent *el enent,
Gst Pad *pad,
gpoi nt er dat a)

Gst Caps *caps;

caps = gst_pad_get _caps (pad);
try to_plug (pad, caps);
gst _caps_unref (caps);

}

static void

close_I|ink (GstPad *srcpad,
Gst El enent *si nkel enent,
const gchar =*padnane,
const GList »tenpllist)

Gst Pad *pad;
gbool ean has_dynani c_pads = FALSE;

g_print ("Plugging pad %:% to newWy created %: %\n",
gst _obj ect _get _nane (GST_OBJECT (gst_pad_get_parent (srcpad))),
gst _pad_get _name (srcpad),
gst _obj ect _get _nane (GST_OBJECT (sinkel ement)), padnane);

/* add the elenment to the pipeline and set correct state =*/
if (sinkelement != audiosink) {

gst _bin_add (GST_BIN (pipeline), sinkelenent);

gst _el ement _set_state (sinkel enent, GST_STATE_READY);
}
pad = gst_el enent _get _static_pad (sinkel enent, padnane);
gst _pad_link (srcpad, pad);
if (sinkelement != audiosink) {

gst _el ement _set _state (sinkel enent, GST_STATE_PAUSED);

}

66

}

Chapter 17. Autoplugging
gst _obj ect _unref (GST_OBJECT (pad));

/+ if we have static source pads, link those. If we have dynamc
* source pads, listen for pad-added signals on the elenment x/
for (; tenpllist !'= NULL; tenpllist = tenpllist->next) {

Gst Stati cPadTenpl ate *tenpl = tenpllist->data;

/* only sourcepads, no request pads =/
if (tenpl->direction != GST_PAD SRC ||
tenpl - >presence == GST_PAD_REQUEST) {
conti nue;

}

switch (tenpl->presence) {
case GST_PAD _ALVAYS: {
Gst Pad *pad = gst_el enent _get _static_pad (sinkel enent, tenpl->nane_tenplate);
Gst Caps *caps = gst_pad_get_caps (pad);

[+ link =/
try_to_plug (pad, caps);
gst _obj ect _unref (GST_OBJECT (pad));
gst _caps_unref (caps);
br eak;

}

case GST_PAD_SOVETI MES:
has_dynam c_pads = TRUE;
br eak;

defaul t:
br eak;

}
}

/* listen for newly created pads if this el enent supports that =/
if (has_dynani c_pads) {

g_si gnal _connect (sinkel enent, "pad-added", G CALLBACK (cb_newpad), NULL);
}

static void
try to_plug (GstPad *pad,

{

const Gst Caps *caps)

Gst Obj ect *parent = GST_OBJECT (GST_OBJECT_PARENT (pad));
const gchar *m ne;

const GList *item

Gst Caps *res, xaudiocaps;

/+* don’t plug if we're already plugged - FIXME: menl eak for pad */
if (GST_PAD IS LINKED (gst_el enent _get _static_pad (audiosink, "sink"))) {
g_print ("Oritting link for pad %:% because we’re already |inked\n",
GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad));
return;

67

Chapter 17. Autoplugging

/* as said above, we only try to plug audio... Orit video */
mnme = gst_structure_get_nanme (gst_caps_get_structure (caps, 0));
if (g_strrstr (mne, "video")) {
g print ("Onitting link for pad %: % because m netype % is non-audi o\n"
GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad), nine);
return;

}

/+* can it link to the audi opad? =*/
audi ocaps = gst_pad_get _caps (gst_el enent _get _static_pad (audi osink, "sink"));
res = gst_caps_intersect (caps, audi ocaps);
if (res &% !'gst_caps_is_enpty (res)) {
g_print ("Found pad to link to audiosink - plugging is now done\n");
close_link (pad, audiosink, "sink", NULL);
gst _caps_unref (audi ocaps);
gst _caps_unref (res);
return;
}
gst _caps_unref (audi ocaps);
gst_caps_unref (res);

/* try to plug fromour list */

for (item= factories; item!= NULL; item= item >next) {
Gst El enent Factory *factory = GST_ELEMENT_FACTORY (item >data)
const GList =*pads;

for (pads = gst_elenent_factory _get_static_pad_tenplates (factory);
pads !'= NULL; pads = pads->next) {
Gst Stati cPadTenpl ate *tenpl = pads->data

[+ find the sink tenplate - need an al ways pad*/
if (tenpl->direction != GST_PAD SINK ||
tenpl - >presence ! = GST_PAD _ALVWAYS) {
conti nue;

}

[+ can it |ink? =/
res = gst_caps_intersect (caps,
gst _static_caps_get (& enpl->static_caps));
if (res & !gst_caps_is_enpty (res)) {
Gst El ement *el enent ;
gchar *nane_tenplate = g_strdup (tenpl->name_tenpl ate);

[+ close link and return =/
gst _caps_unref (res);
el ement = gst_elenent _factory _create (factory, NULL);
close_link (pad, elenment, nane_tenplate

gst _elenent_factory_get _static_pad_tenplates (factory));
g_free (nane_tenpl ate);
return;

}

gst _caps_unref (res);

68

Chapter 17. Autoplugging

/+ we only check one sink tenplate per factory, so nove on to the
* next factory now */
br eak;
}
}

/* if we get here, no itemwas found =*/
g_print ("No compatible pad found to decode % on %: %\ n",
m nme, GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad));
}

static void
cb_typefound (GstEl ement *typefind,

gui nt probability,
Gst Caps *caps,
gpoi nter dat a)
{
gchar =xs;
Gst Pad *pad;

s = gst_caps_to_string (caps);
g_print ("Detected nedia type %\n", s);
g free (s);

/+ actually plug now */

pad = gst_el enent _get _static_pad (typefind, "src");
try to_plug (pad, caps);

gst _obj ect _unref (GST_OBJECT (pad));

By doing all this, we will be able to make a simple autoplugat can automatically setup a pipeline
for any media type. In the example below, we will do this fodimuonly. However, we can also do this
for video to create a player that plays both audio and video.

The example above is a good first try for an autoplugger. Nexisswould be to listen for
“pad-removed” signals, so we can dynamically change thgged pipeline if the stream changes (this
happens for DVB or Ogg radio). Also, you might want specidecode for input with known content
(such as a DVD or an audio-CD), and much, much more. Moregwgeill want many checks to prevent
infinite loops during autoplugging, maybe you'll want to ilament shortest-path-finding to make sure
the most optimal pipeline is chosen, and so on. Basicakyféhatures that you implement in an
autoplugger depend on what you want to use it for. For fudlalil implementations, see the “playbin”
and “decodebin” elements.

69

Chapter 18. Pipeline manipulation

This chapter will discuss how you can manipulate your pigein several ways from your application
on. Parts of this chapter are downright hackish, so be adsbat you'll need some programming
knowledge before you start reading this.

Topics that will be discussed here include how you can irdatd into a pipeline from your application,
how to read data from a pipeline, how to manipulate the pigdispeed, length, starting point and how
to listen to a pipeline’s data processing.

18.1. Data probing

Probing is best envisioned as a pad listener. Technicgtlyole is nothing more than a signal callback
that can be attached to a pad. Those signals are by defaditetbat all (since that may have a negative
impact on performance), but can be enabled by attachingl®eprsinggst _pad_add_buf f er _probe
(),gst _pad_add_event probe (), orgst_pad_add_dat a_probe (). Those functions attach the
signal handler and enable the actual signal emission. &ilyjibne can use the

gst _pad_renove_buffer_probe (),gst_pad_renove_event _probe (), or

gst _pad_renove_dat a_probe () toremove the signal handlers again.

Probes run in pipeline threading context, so callbackslshioyito not block and generally not do any
weird stuff, since this could have a negative impact on fiyegberformance or, in case of bugs, cause
deadlocks or crashes. More precisely, one should usuatlyaticany GUI-related functions from within

a probe callback, nor try to change the state of the pipeinepplication may post custom messages on
the pipeline’s bus though to communicate with the main apgitbn thread and have it do things like stop
the pipeline.

In any case, most common buffer operations that elementdaan chai n () functions, can be done
in probe callbacks as well. The example below gives a shgtéssion on how to use them (even if this
usage is not entirely correct, but more on that below):

#i ncl ude <gst/gst.h>

static gbool ean

cb_have_data (Gst Pad *pad,
GstBuffer xbuffer,
gpoi nt er u_dat a)

gint x, vy,
guintl1l6 data = (guintl1l6 *) GST_BUFFER DATA (buffer), t;

/* invert data =*/

for (y = 0; y < 288; y++) {
for (x = 0; x <384/ 2; x++) {

70

Chapter 18. Pipeline manipulation

t = data[384 - 1 - x];
data[384 - 1 - x] = data[x];
data[x] =1t;
}
data += 384;
}

return TRUE;
}

gi nt
mai n (gint argc,
gchar =xargv[])
{
Gwvai nLoop x| oop;
Gst El enent =*pipeline, *src, *sink, *filter, xcsp;
Gst Caps =*filtercaps;
Gst Pad *pad;

/* init GStreanmer */
gst_init (&rgc, &argv);
|l oop = g_mai n_l oop_new (NULL, FALSE);

[+ build */
pi peline = gst_pipeline_new ("ny-pipeline");
src = gst_elenent _factory_nake ("videotestsrc", "src");

if (src == NULL)
g_error ("Could not create 'videotestsrc’ elenent");

filter = gst_elenent_factory_nake ("capsfilter", "filter");
g_assert (filter !'= NULL); /=* should always exist =/
csp = gst_elenent _factory_nake ("ffnpegcol orspace”, "csp");

if (csp == NULL)
g_error ("Could not create 'ffnpegcol orspace’ elenent");

sink = gst_elenent_factory_nake ("xvimagesi nk", "sink");
if (sink == NULL) {
sink = gst_el ement _factory_nake ("xi magesi nk", "sink");

if (sink == NULL)
g_error ("Could not create neither ’xvinmagesink’ nor 'xinagesink’ elenment");

}

gst _bin_add_many (GST_BIN (pipeline), src, filter, csp, sink, NULL);
gst _el ement _link_many (src, filter, csp, sink, NULL);
filtercaps = gst_caps_new sinmple ("video/x-rawrgb",

"wi dth", G TYPE_INT, 384,

"height", G TYPE_INT, 288,

"framerate", GST_TYPE_FRACTION, 25, 1,

"bpp", G_TYPE_INT, 16,

"depth", G.TYPE_INT, 16,

"endi anness", G TYPE | NT, G BYTE ORDER,

NULL) ;

71

Chapter 18. Pipeline manipulation

g_object_set (G OBJECT (filter), "caps", filtercaps, NULL);
gst _caps_unref (filtercaps);

pad = gst_el enent _get _pad (src, "src");
gst _pad_add_buffer_probe (pad, G CALLBACK (cb_have_data), NULL);
gst _obj ect _unref (pad);

[+ run */
gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;

/* wait until it’s up and running or failed */

if (gst_element _get_state (pipeline, NULL, NULL, -1) == GST_STATE_CHANGE_FAI LURE) {
g_error ("Failed to go into PLAYING state");

}

g_print ("Running ...\n");
g_mai n_|l oop_run (1l oop);

[* exit */
gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect __unref (pipeline);

return O;

Compare that output with the output of “gst-launch-0.1@weikstsrc ! xvimagesink”, just so you know
what you're looking for.

The above example is not really correct though. Strictlyakpeg, a pad probe callback is only allowed to
modify the buffer content if the buffer is writable, and itdely allowed to modify buffer metadata like
timestamps, caps, etc. if the buffer metadata is writableetiver this is the case or not depends a lot on
the pipeline and the elements involved. Often enough, $hise case, but sometimes itis not, and ifitis
not then unexpected modification of the data or metadatantesduce bugs that are very hard to debug
and track down. You can check if a buffer and its metadata aitalvle with

gst_buffer_is_ witable () andgst_buffer_is_netadata witable ().Sinceyoucan't
pass back a different buffer than the one passed in, theepsint of making a buffer writable in the
callback function.

Pad probes are suited best for looking at data as it passegththe pipeline. If you need to modify
data, you should write your own GStreamer element. Basseaddie GstAudioFilter, GstVideoFilter or
GstBaseTransform make this fairly easy.

If you just want to inspect buffers as they pass through tpelpie, you don’t even need to set up pad
probes. You could also just insert an identity element ihtogipeline and connect to its "handoff"
signal. The identity element also provides a few useful dging tools like the "dump" property or the
"last-message" property (the latter is enabled by paskmg¥’ switch to gst-launch).

72

Chapter 18. Pipeline manipulation

18.2. Manually adding or removing data from/to a pipeline

Many people have expressed the wish to use their own sowagjectt data into a pipeline. Some people
have also expressed the wish to grab the output in a pipetlidéske care of the actual output inside
their application. While either of these methods are stpdigicouraged, GStreamer offers hacks to do
this. However, there is no support for those methdflis.doesn’t work, you're on your own. Also,
synchronization, thread-safety and other things thatyembéen able to take for granted so far are no
longer guaranteed if you use any of those methods. It's aveayter to simply write a plugin and have
the pipeline schedule and manage it. See the Plugin Wr{Baride for more information on this topic.
Also see the next section, which will explain how to embedypia statically in your application.

Note: New APl is being developed at the moment to make data insertion and extraction less painful
for applications. It can be found as GstAppSrc and GstAppSink in the gst-plugins-bad module. At the
time of writing (October 2007), this API is not quite stable and ready yet, even though it may work
fine for your purposes.

After all those disclaimers, let’s start. There’s threegiole elements that you can use for the
above-mentioned purposes. Those are called “fakesrc’hfaginary source), “fakesink” (an imaginary
sink) and “identity” (an imaginary filter). The same methqubhkes to each of those elements. Here, we
will discuss how to use those elements to insert (using fakes grab (using fakesink or identity) data
from a pipeline, and how to set negotiation.

Those who're paying close attention, will notice that thegmse of identity is almost identical to that of
probes. Indeed, this is true. Probes allow for the same pet@nd a bunch more, and with less overhead
plus dynamic removing/adding of handlers, but apart froosé) probes and identity have the same
purpose, just in a completely different implementatioretyp

18.2.1. Inserting or grabbing data

The three before-mentioned elements (fakesrc, fakesidkdemtity) each have a “handoff” signal that
will be called in the _get () - (fakesrc) or_chai n () -function (identity, fakesink). In the signal
handler, you can set (fakesrc) or get (identity, fakesirgépdo/from the provided buffer. Note that in the
case of fakesrc, you have to set the size of the providediudiag the “sizemax” property. For both
fakesrc and fakesink, you also have to set the “signal-hiésidaroperty for this method to work.

Note that your handoff function shoutebt block, since this will block pipeline iteration. Also, do trioy
to use all sort of weird hacks in such functions to accomg@mmething that looks like synchronization
or so; it’s not the right way and will lead to issues elsewh#ngou’re doing any of this, you're basically
misunderstanding the GStreamer design.

73

Chapter 18. Pipeline manipulation

18.2.2. Forcing a format

Sometimes, when using fakesrc as a source in your pipelmégl] yant to set a specific format, for
example a video size and format or an audio bitsize and nuoflaérannels. You can do this by forcing a
specificGst Caps on the pipeline, which is possible by usifitlered caps You can set a filtered caps on
a link by using the “capsfilter” element in between the tworedats, and specifying@st Caps as

“caps” property on this element. It will then only allow tygmatching that specified capability set for
negotiation.

18.2.3. Example application

This example application will generate black/white (it ®lies every second) video to an X-window
output by using fakesrc as a source and using filtered capsde & format. Since the depth of the image
depends on your X-server settings, we use a colorspacermsimvelement to make sure that the output
to your X server will have the correct bitdepth. You can alsttenestamps on the provided buffers to
override the fixed framerate.

#include <string.h> /* for nenset () =*/
#i ncl ude <gst/gst.h>

static void

cb_handof f (GstEl enent =*fakesrc,
GstBuffer =+buffer,
Gst Pad *pad,
gpoi nter user _data)

static gbool ean white = FALSE;

/+* this nakes the inmage bl ack/white */
nmenset (GST_BUFFER_DATA (buffer), white ? Oxff : 0xO,
GST_BUFFER_SI ZE (buffer));
white = Iwhite;
}

gi nt
mai n (gint argc,
gchar =xargv[])
{
Gst El enent =*pi peline, xfakesrc, *flt, *conv, xvideosink;
Gwvai nLoop *I oop;

/* init GStreanmer */
gst_init (&rgc, &argv);
|l oop = g_mai n_l oop_new (NULL, FALSE);

/* setup pipeline */

pi peline = gst_pipeline_new ("pipeline");

fakesrc = gst_el enment _factory_nake ("fakesrc", "source");
flt = gst_elenment_factory_nake ("capsfilter™, "flt");

74

Chapter 18. Pipeline manipulation

conv = gst_el enent _factory_nake ("ffnpegcol orspace", "conv");
vi deosi nk = gst_el enent _factory_nake ("xvi magesi nk", "videosink");

/* setup */
g_object_set (G OBJECT (flt), "caps",
gst _caps_new_si npl e ("video/ x-raw-rgb",
"wi dth", G TYPE_INT, 384,
"height", G TYPE_INT, 288,
"franerate", GST_TYPE_FRACTION, 1, 1,
"bpp", G_TYPE_INT, 16,
"depth", G TYPE_INT, 16,
"endi anness", G_TYPE_INT, G BYTE_ORDER,
NULL), NULL);
gst _bin_add_many (GST_BIN (pipeline), fakesrc, flt, conv, videosink, NULL);
gst _el ement _| i nk_many (fakesrc, flt, conv, videosink, NULL);

|+ setup fake source */

g_obj ect _set (G OBJECT (fakesrc),

"si gnal - handof fs", TRUE,

"sizemax", 384 * 288 x 2,

"sizetype", 2, NULL);

g_si gnal _connect (fakesrc, "handoff", G CALLBACK (cb_handoff), NULL);

[+ play =/
gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;
g_mai n_|l oop_run (1l oop);

/* clean up */
gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

18.3. Embedding static elements in your application

The Plugin Writer's Guide
(http://gstreamer.freedesktop.org/data/doc/gstreduead/pwg/html/index.html) describes in great detail
how to write elements for the GStreamer framework. In thigiea, we will solely discuss how to embed
such elements statically in your application. This can kefuldor application-specific elements that
have no use elsewhere in GStreamer.

Dynamically loaded plugins contain a structure that’s definsingGST_PLUG N_DEFI NE () . This
structure is loaded when the plugin is loaded by the GStreanre. The structure contains an
initialization function (usually calledl ugi n_i ni t) that will be called right after that. It's purpose is to
register the elements provided by the plugin with the G8tesdramework. If you want to embed

75

Chapter 18. Pipeline manipulation

elements directly in your application, the only thing yowedéo do is to replacéST_PLUG N_DEFI NE

() with GST_PLUG N_DEFI NE_STATI C () . This will cause the elements to be registered when your
application loads, and the elements will from then on belalild like any other element, without them
having to be dynamically loadable libraries. In the exang@®w, you would be able to call

gst _elenent _factory_make ("ny-el enent-nane", "sone-nane") to create an instance of the
element.
| *

* Here, you would wite the actual plugin code.

*/

[--]

static gbool ean
regi ster_el ements (GstPlugin xplugin)
{
return gst_el enent _register (plugin, "ny-el enent-nane",
GST_RANK_NONE, MY_PLUG N_TYPE) ;
}

GST_PLUG N_DEFI NE_STATI C (
GST_VERSI ON_NMAJOR,
GST_VERSI ON_M NOR,
"my-private-plugins",
"Private elements of ny application”,
regi ster_el enents,
VERSI ON,
"LGPL",
"ny-application",
“http://ww.ny-application. net/"

76

IV. Higher-level interfaces for
GStreamer applications

In the previous two parts, you have learned many of the iaterand their corresponding low-level
interfaces into GStreamer application programming. Maggygbe will, however, not need so much
control (and as much code), but will prefer to use a standangbpck interface that does most of the
difficult internals for them. In this chapter, we will intrade you into the concept of autopluggers,
playback managing elements, XML-based pipelines and sthdr things. Those higher-level interfaces
are intended to simplify GStreamer-based applicationamogning. They do, however, also reduce the
flexibility. It is up to the application developer to chooshkieh interface he will want to use.

Chapter 19. Components

GStreamer includes several higher-level components tplginan application developer’s life. All of

the components discussed here (for now) are targetted aaplagback. The idea of each of these
components is to integrate as closely as possible with ae@®ier pipeline, but to hide the complexity of
media type detection and several other rather complexgdpat have been discussed in

Part 11l in GStreamer Application Development Manual (0.10.29)

We currently recommend people to use either playbin Samtion 19.1or decodebin (seBection 19.2,
depending on their needs. Playbin is the recommendedsoligr everything related to simple playback
of media that should just work. Decodebin is a more flexibl®plugger that could be used to add more
advanced features, such as playlist support, crossfadiagdio tracks and so on. Its programming
interface is more low-level than that of playbin, though.

19.1. Playbin

Playbin is an element that can be created using the stand&rdaner API (e.g.

gst_el enent _factory_make ()). The factory is conveniently called “playbin”. By being a

Gst Pi pel i ne (and thus ast El enent), playbin automatically supports all of the features o§ttlass,
including error handling, tag support, state handlingtiggtstream positions, seeking, and so on.

Setting up a playbin pipeline is as simple as creating amaut of the playbin element, setting a file
location using the “uri” property on playbin, and then gaitthe element to théST_STATE _PLAYI NG
state (the location has to be a valid URI, so “<protocol¥aéation>", e.g. file:///tmp/my.ogg or
http://www.example.org/stream.ogg). Internally, pleywill set up a pipeline to playback the media
location.

#i ncl ude <gst/gst.h>
[.. ny_bus_call back goes here ..]

gi nt
mai n (gint argc,
gchar =xargv[])
{
Gwvai nLoop *I oop;
Gst El enent *pl ay;
Gst Bus *bus;

[+ init GStreaner x/
gst_init (&rgc, &argv);
|l oop = g_main_l oop_new (NULL, FALSE);

/* nmake sure we have a URl «/
if (argc !'= 2) {

78

Chapter 19. Components

g_print ("Usage: % <URI >\n", argv[O0]);
return -1;

}

[+ set up */
play = gst_el enent _factory_nake ("playbin", "play");
g_obj ect _set (G OBJECT (play), "uri", argv[1], NULL);

bus = gst_pi peline_get_bus (GST_PI PELINE (play));
gst _bus_add_watch (bus, nmy_bus_cal |l back, |oop);
gst _obj ect _unref (bus);

gst _el ement _set_state (play, GST_STATE_PLAYI NG ;

/* now run =/
g_mai n_|l oop_run (1 oop);

/* also clean up */
gst _el ement _set_state (play, GST_STATE _NULL);
gst _obj ect _unref (GST_OBJECT (play));

return O;

Playbin has several features that have been discussedpsbyi

Settable video and audio output (using the “video-sink” &ndlio-sink” properties).

Mostly controllable and trackable aszat El enent , including error handling, eos handling, tag
handling, state handling (through tBet Bus), media position handling and seeking.

Buffers network-sources, with buffer fullness notificatsdeing passed through t@et Bus.
Supports visualizations for audio-only media.

Supports subtitles, both in the media as well as from sepéitas. For separate subtitle files, use the
“suburi” property.

Supports stream selection and disabling. If your media ha#ipte audio or subtitle tracks, you can
dynamically choose which one to play back, or decide to tuoff alltogther (which is especially
useful to turn off subtitles). For each of those, use thernirtext” and other related properties.

For convenience, it is possible to test “playbin” on the caanaiiine, using the command
“gst-launch-0.10 playbin uri=file:///path/to/file”.

New applications should use playbin2 instead of the oldigtay

79

Chapter 19. Components

19.2. Decodebin

Decodebin is the actual autoplugger backend of playbinclviias discussed in the previous section.
Decodebin will, in short, accept input from a source thairikdd to its sinkpad and will try to detect the
media type contained in the stream, and set up decoder esuftineach of those. It will automatically
select decoders. For each decoded stream, it will emit tee-tlecoded-pad” signal, to let the client
know about the newly found decoded stream. For unknownregéahich might be the whole stream),
it will emit the “unknown-type” signal. The application isén responsible for reporting the error to the
user.

#i ncl ude <gst/gst.h>
[.. my_bus_cal | back goes here ..]
Gst El enent =pi pel i ne, *audi o;

static void
cb_newpad (GstEl enent *decodebi n,

Gst Pad *pad,
gbool ean | ast,
gpoi nter dat a)

Gst Caps *caps;
Gst Structure *str;
Gst Pad *audi opad;

/* only link once */
audi opad = gst_el enent _get _static_pad (audio, "sink");
if (GST_PAD IS LI NKED (audiopad)) {

g_obj ect _unref (audi opad);

return;

}

/* check nedia type */

caps = gst_pad_get _caps (pad);

str = gst_caps_get_structure (caps, 0);

if ('g_strrstr (gst_structure_get_nane (str), "audio")) {
gst _caps_unref (caps);
gst _obj ect _unref (audi opad);
return;

}

gst _caps_unref (caps);

[+ link'n play */
gst _pad_link (pad, audiopad);

g_obj ect _unref (audi opad);

}

gi nt
mai n (gint argc,

80

Chapter 19. Components
gchar =xargv[])

Gwvai nLoop *I oop;

Gst El enent *src, xdec, =*conv, =*sink;
Gst Pad *audi opad;

Gst Bus *bus;

/* init GStreanmer */
gst_init (&rgc, &argv);
|l oop = g_main_l oop_new (NULL, FALSE);

/+* make sure we have input */

if (argc !'= 2) {
g_print ("Usage: % <filename>\n", argv[O0]);
return -1;

}

/* setup */
pi peline = gst_pipeline_new ("pipeline");

bus = gst_pipeline_get_bus (GST_PI PELI NE (pi peline));
gst _bus_add_wat ch (bus, ny_bus_cal | back, |oop);
gst _obj ect __unref (bus);

src = gst_elenent _factory_nake ("filesrc", "source");
g_obj ect_set (G OBJECT (src), "location", argv[1], NULL);
dec = gst_el enent _factory_make ("decodebin", "decoder");

g_si gnal _connect (dec, "new decoded-pad", G CALLBACK (cb_newpad), NULL);
gst _bin_add_many (GST_BIN (pipeline), src, dec, NULL);
gst _element _link (src, dec);

/* create audi o output =*/
audi o = gst_bi n_new ("audi obin");

conv = gst_el enent _factory_nake ("audi oconvert", "aconv");
audi opad = gst_el enent _get _static_pad (conv, "sink");
sink = gst_el ement _factory_nake ("al sasink", "sink");

gst _bin_add_many (GST_BIN (audi o), conv, sink, NULL);
gst _element _link (conv, sink);
gst _el ement _add_pad (audi o,
gst _ghost _pad_new ("si nk", audi opad));
gst _obj ect _unref (audi opad);
gst _bin_add (GST_BIN (pipeline), audio);

[* run */

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;
g_mai n_|l oop_run (1 oop);

/* cl eanup */

gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

81

Chapter 19. Components

Decodebin, similar to playbin, supports the following feats:

- Can decode an unlimited number of contained streams to édamatput pads.

- Is handled as &st El ement in all ways, including tag or error forwarding and state Hargd

Although decodebin is a good autoplugger, there’s a whaleflthings that it does not do and is not
intended to do:

- Taking care of input streams with a known media type (e.g. ®PAh audio-CD or such).
- Selection of streams (e.g. which audio track to play in cdgeulti-language media streams).

- Overlaying subtitles over a decoded video stream.

Decodebin can be easily tested on the commandline, e.qg.ihg e commangst-launch-0.10 filesrc
location=file.ogg ! decodebin ! audioconvert ! audioresamip ! autoaudiosink.

New applications should use decodebin2 instead of the alddibin.

The uridecodebin element is very similar to decodebin2y tmt it automatically plugs a source plugin
based on the protocol of the URI given.

82

Chapter 20. XML in GStreamer

GStreamer can use XML to store and load its pipeline defimstio

We will show you how you can save a pipeline to XML and how yon rgload that XML file again for
later use.

20.1. Turning GstElements into XML

We create a simple pipeline and write it to stdout with gstl xmnite_file (). The following code
constructs an MP3 player pipeline and then writes out the Xidth to stdout and to a file. Use this
program with one argument: the MP3 file on disk.

#i ncl ude <stdlib. h>
#i ncl ude <gst/gst.h>

gbool ean pl ayi ng;

int

main (int argc, char xargv[])

{
Gst El enent *filesrc, *osssink, *decode
Gst El enent =*pi pel i ne;

gst_init (&argc, &rgv);

if (argc !'= 2) {
g_print ("usage: % <np3 filename>\n", argv[O0]);
exit (-1);

}

/+* create a new pipeline to hold the elenents */
pi peline = gst_el enent _factory_nake ("pipeline", "pipeline");
g_assert (pipeline !'= NULL);

/* create a di sk reader =/

filesrc = gst_elenent_factory_nake ("filesrc", "disk_source");
g_assert (filesrc !'= NULL);

g_obj ect_set (G OBJECT (filesrc), "location", argv[1], NULL);

/* and an audi o sink =*/
osssink = gst_el enent _factory_nmke ("osssink", "play_audio");

g_assert (osssink !'= NULL);

decode = gst_elenent_factory_make ("mad", "decode");
g_assert (decode != NULL);

83

Chapter 20. XML in GStreamer

/+* add objects to the main pipeline =/
gst _bin_add_many (GST_BIN (pipeline), filesrc, decode, osssink, NULL);

gst _element _link_many (filesrc, decode, osssink, NULL);

/+ wite the pipeline to stdout =/
gst_xm _wite file (GST_ELEMENT (pipeline), stdout);

/+~ wite the binto a file */
gst_xm _wite file (GST_ELEMENT (pipeline), fopen ("xm Test.gst", "w'));

exit (0);

The most important line is:

gst_xml _wite file (GST_ELEMENT (pipeline), stdout);

gst_xml_write_file () will turn the given element into an XpdcPtr that is then formatted and saved to a
file. To save to disk, pass the result of a fopen(2) as the seagument.

The complete element hierarchy will be saved along with titerielement pad links and the element
parameters. Future GStreamer versions will also allow gaidre the signals in the XML file.

20.2. Loading a GstElement from an XML file

Before an XML file can be loaded, you must create a GstXML dbjsaved XML file can then be
loaded with the gst_xml_parse_file (xml, filename, rootelathmethod. The root element can
optionally left NULL. The following code example loads theepiously created XML file and runs it.

#i ncl ude <stdlib. h>
#i ncl ude <gst/gst.h>

int
mai n(int argc, char *argv[])

{
Gst XML *xni ;

Gst El enent =*pi pel i ne;
gbool ean ret;

gst_init (&argc, &argv);

xm = gst_xm _new ();

84

Chapter 20. XML in GStreamer

ret = gst_xm _parse_file(xm, "xm Test.gst", NULL);
g_assert (ret == TRUE);

pi peline = gst_xm _get_element (xm, "pipeline");
g_assert (pipeline !'= NULL);

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;
g_sleep (4);
gst _el ement _set_state (pipeline, GST_STATE NULL);

exit (0);

gst_xml_get_element (xml, "name") can be used to get afipet@ment from the XML file.
gst_xml_get_topelements (xml) can be used to get a list tdplevel elements in the XML file.

In addition to loading a file, you can also load from a xmIDactd an in-memory buffer using
gst_xml_parse_doc and gst_xml_parse_memory respactBeth of these methods return a gboolean
indicating success or failure of the requested action.

20.3. Adding custom XML tags into the core XML data

It is possible to add custom XML tags to the core XML createthwgist_xml_write. This feature can be
used by an application to add more information to the savgipu The editor will for example insert the
position of the elements on the screen using the custom XNgs. ta

It is strongly suggested to save and load the custom XML taggjwa namespace. This will solve the
problem of having your XML tags interfere with the core XMlgga

To insert a hook into the element saving procedure you cé&ralisignal to the GstElement using the
following piece of code:

xm NsPtr ns;

ns = xm NewNs (NULL, "http://gstreaner.net/gst-test/1.0/", "test");
pi peline = gst_elenent _factory_nake ("pipeline", "pipeline");

g_si gnal _connect (G _OBJECT (pipeline), "object_saved",
G _CALLBACK (object_saved), g_strdup ("decoder pipeline"));

85

Chapter 20. XML in GStreamer

When the thread is saved, the object_save method will beccallur example will insert a comment tag:

static void
obj ect _saved (Gst Obj ect *object, xnl NodePtr parent, gpointer data)

{
xm NodePtr chil d;

child = xm NewChild (parent, ns, "coment", NULL);
xm NewChi | d (child, ns, "text", (gchar *)data);

}

Adding the custom tag code to the above example you will getMh file with the custom tags in it.
Here’s an excerpt:

<gst: el enent >
<gst: name>pi pel i ne</ gst: nane>
<gst:type>pi pel i ne</gst:type>
<gst:version>0. 1. 0</gst:version>

</ gst:children>
<t est: conment >
<t est:text>decoder pipeline</test:text>
</test:coment >
</ gst: el enent >

To retrieve the custom XML again, you need to attach a signtilé GstXML object used to load the
XML data. You can then parse your custom XML from the XML trelemever an object is loaded.

We can extend our previous example with the following piefoeoale.

xm = gst_xm _new ();

g_si gnal _connect (G OBJECT (xm), "object_| oaded",
G _CALLBACK (xnl _I oaded), xm);

ret = gst_xm _parse_file (xm, "xm Test.gst", NULL);
g_assert (ret == TRUE);

Whenever a new object has been loaded, the xml_loaded dunetil be called. This function looks like:

static void
xm _| oaded (Gst XML *xml, GstObject *object, xm NodePtr self, gpointer data)

{
xm NodePtr children = sel f->xnl Chil drenNode;

86

Chapter 20. XML in GStreamer

while (children) {
if (!strcnmp (children->nanme, "comment")) {
xm NodePtr nodes = chil dren->xnl Chi | dr enNode;

whil e (nodes) {
if (!'strcnp (nodes->nane, "text")) {
gchar *nane = g_strdup (xm NodeGet Content (nodes));
g_print ("object % |oaded with conment ' %’ \n",
gst _obj ect _get _nane (object), nane);

}
nodes = nodes- >next;
}
}
children = chil dren->next;

As you can see, you'll get a handle to the GstXML object, thelpéoaded GstObject and the
xmINodePtr that was used to create this object. In the abxample we look for our special tag inside
the XML tree that was used to load the object and we print oorroent to the console.

87

V. Appendices

By now, you've learned all about the internals of GStreanmer @pplication programming using the
GStreamer framework. This part will go into some random thitg are useful to know if you're going to
use GStreamer for serious application programming. Ittailch upon things related to integration with
popular desktop environments that we run on (GNOME, KDE, Q8/idows), it will shortly explain
how applications included with GStreamer can help making Jie easier, and some information on
debugging.

In addition, we also provide a porting guide which will exipleasily how to port GStreamer-0.8
applications to GStreamer-0.10.

Chapter 21. Things to check when writing an
application

This chapter contains a fairly random selection of things tan be useful to keep in mind when writing
GStreamer-based applications. It's up to you how much yogring to use the information provided
here. We will shortly discuss how to debug pipeline probleisiag GStreamer applications. Also, we
will touch upon how to acquire knowledge about plugins amdrednts and how to test simple pipelines
before building applications around them.

21.1. Good programming habits

- Always add aGst Bus handler to your pipeline. Always report errors in your apation, and try to do
something with warnings and information messages, too.

- Always check return values of GStreamer functions. Esfigcidneck return values of
gst _elenment _link () andgst _el ement _set_state ().

- Dereference return values of all functions returning a hase type, such ast _el ement _get _pad
() . Also, always free non-const string returns, suchsts obj ect _get _nane ().

« Always use your pipeline object to keep track of the curréaiesof your pipeline. Don’t keep private
variables in your application. Also, don’t update your uséerface if a user presses the “play” button.
Instead, listen for the “state-changed” message o&h®&us and only update the user interface
whenever this message is received.

- Report all bugs that you find in GStreamer bugzilla at htvpgkilla.gnome.org/
(http://bugzilla.gnome.org).

21.2. Debugging

Applications can make use of the extensive GStreamer détgiggstem to debug pipeline problems.
Elements will write output to this system to log what theyda@ng. It's not used for error reporting, but it
is very useful for tracking what an element is doing exaetlyich can come in handy when debugging
application issues (such as failing seeks, out-of-syndanett.).

Most GStreamer-based applications accept the commarafiien- - gst - debug=LI ST and related
family members. The list consists of a comma-separatedflishtegory/level pairs, which can set the
debugging level for a specific debugging category. For exampgst - debug=oggdenux: 5 would

turn on debugging for the Ogg demuxer element. You can ugkaiitls as well. A debugging level of 0
will turn off all debugging, and a level of 5 will turn on all dagging. Intermediate values only turn on
some debugging (based on message severity; 2, for examiplenly display errors and warnings).
Here’s a list of all available options:

89

Chapter 21. Things to check when writing an application

. --gst-debug- hel p will print available debug categories and exit.

+ --gst-debug- | evel =LEVEL will set the default debug level (which can range from O (ntpat) to
5 (everything)).

- - gst - debug=LI ST takes a comma-separated list of category _name:leveltpases specific levels
for the individual categories. ExampleST_AUTOPLUG 5, avi denmux: 3. Alternatively, you can also
set theGST_DEBUG environment variable, which has the same effect.

« --gst-debug- no-col or will disable color debugging You can also set the
GST_DEBUG_NO_COLOR environment variable to 1 if you wandigable colored debug output
permanently. Note that if you are disabling color purelyvoid messing up your pager output, trying
usingless -R

. --gst-debug-di sabl e disables debugging altogether.

- --gst-plugi n-spewenables printout of errors while loading GStreamer plugins

21.3. Conversion plugins

GStreamer contains a bunch of conversion plugins that npgdications will find useful. Specifically,
those are videoscalers (videoscale), colorspace comséfimpegcolorspace), audio format convertors
and channel resamplers (audioconvert) and audio samplavavertors (audioresample). Those
convertors don’t do anything when not required, they witliagassthrough mode. They will activate
when the hardware doesn’t support a specific request, thédigpplications are recommended to use
those elements.

21.4. Utility applications provided with GStreamer

GStreamer comes with a default set of command-line uslitiet can help in application development.
We will discuss onlygst-launchandgst-inspecthere.

21.4.1. gst-launch

gst-launchis a simple script-like commandline application that camubed to test pipelines. For
example, the commargst-launch audiotestsrc ! audioconvert ! audio/x-raw-intchannels=2!
alsasinkwill run a pipeline which generates a sine-wave audio streathplays it to your ALSA audio
card.gst-launchalso allows the use of threads (will be used automaticalhggsired or as queue
elements are inserted in the pipeline) and bins (using letacko “(" and “)”). You can use dots to imply
padnames on elements, or even omit the padname to autoliyat@lact a pad. Using all this, the
pipelinegst-launch filesrc location=file.ogg ! oggdemux name=d d. uiegue ! theoradec !
ffmpegcolorspace ! xvimagesink d. ! queue ! vorbisdec ! audconvert ! audioresample ! alsasink
will play an Ogg file containing a Theora video-stream and eb\oaudio-stream. You can also use

90

Chapter 21. Things to check when writing an application

autopluggers such as decodebin on the commandline. Seatheahpage ofst-launchfor more
information.

21.4.2. gst-inspect

gst-inspectcan be used to inspect all properties, signals, dynamiapeteas and the object hierarchy of
an element. This can be very useful to see widchj ect properties or which signals (and using what
arguments) an element supports. Rystrinspect fakesrdo get an idea of what it does. See the manual
page ofgst-inspectfor more information.

21.4.3. GstEditor

GstEditor is a set of widgets to display a graphical repriegem of a pipeline.

91

Chapter 22. Porting 0.8 applications to 0.10

This section of the appendix will discuss shortly what cresig applications will be needed to quickly
and conveniently port most applications from GStream8ntd®GStreamer-0.10, with references to the
relevant sections in this Application Development Manubhéve needed. With this list, it should be
possible to port simple applications to GStreamer-0.1683s than a day.

22.1. List of changes

- Most functions returning an object or an object propertyehlaeen changed to return its own reference
rather than a constant reference of the one owned by thetatsjel€. The reason for this change is
primarily thread safety. This means, effectively, thatiretvalues of functions such as
gst _el enment _get _pad (), gst_pad_get _name () and many more like these have to be free’ed
or unreferenced after use. Check the API references of eactién to know for sure whether return
values should be free’ed or not. It is important that all ctgelerived from GstObject are
ref’ed/unref’ed using gst_object_ref() and gst_objentet() respectively (instead of
g_object_ref/unref).

- Applications should no longer use signal handlers to bdiadtof errors, end-of-stream and other
similar pipeline events. Instead, they should use&teBus, which has been discussed@hapter 7
The bus will take care that the messages will be delivereldarcontext of a main loop, which is
almost certainly the application’s main thread. The bigaadsage of this is that applications no longer
need to be thread-aware; they don’t need togusedl e_add () in the signal handler and do the
actual real work in the idle-callback. GStreamer now dokthat internally.

- Related to thisgst _bin_iterate () has beenremoved. Pipelines will iterate in their own thread
and applications can simply run@ai nLoop (or call the mainloop of their Ul toolkit, such as
gtk_main ()).

- State changes can be delayed (ASYNC). Due to the new fukatted nature of GStreamer-0.10,
state changes are not always immediate, in particular @singluding the transition from READY to
PAUSED state. This means two things in the context of porimglications: first of all, it is no longer
always possible to dgst _el ement _set _state () and check for a return value of
GST_STATE_CHANGE_SUCCESS, as the state change might bgett(ASYNC) and the result
will not be known until later. You should still check for GSFTATE_ CHANGE_FAILURE right
away, itis just no longer possible to assume that everyttiiagis not SUCCESS means failure.
Secondly, state changes might not be immediate, so yourreatis to take that into account. You can
wait for a state change to complete if you use GST_CLOCK_TIMBENE as timeout interval with
gst _el enent _get_state ().

- In 0.8, events and queries had to manually be sent to sinkpétipes (unless you were using
playbin). This is no longer the case in 0.10. In 0.10, quaiesevents can be sent to toplevel
pipelines, and the pipeline will do the dispatching intdnfor you. This means less bookkeeping in
your application. For a short code example, €bapter 11Related, seeking is now threadsafe, and
your video output will show the new video position’s frameilgtseeking, providing a better user
experience.

92

Chapter 22. Porting 0.8 applications to 0.10

TheGst Thr ead object has been removed. Applications can now simply pueigs in a pipeline
with optionally some “queue” elements in between for buffgrand GStreamer will take care of
creating threads internally. It is still possible to havetpaf a pipeline run in different threads than
others, by using the “queue” element. SHeapter 16or details.

Filtered caps -> capsfilter element (the pipeline syntaxgitflaunch has not changed though).

libgstgconf-0.10.la does not exist. Use the “gconfvideksand “gconfaudiosink” elements instead,
which will do live-updates and require no library linking.

The “new-pad” and “state-change” signals@t El ement were renamed to “pad-added” and
“state-changed”.

gst_i nit_get_popt _table () hasbeenremoved in favour of the new GOption command line
option API that was added to GLib 2.@st _i nit _get _opti on_group () isthe new
GOption-based equivalent it _i nit _get _ptop_table ().

93

Chapter 23. Integration

GStreamer tries to integrate closely with operating systésuch as Linux and UNIX-like operating
systems, OS X or Windows) and desktop environments (SuchNa®\E&E or KDE). In this chapter, we’'ll
mention some specific techniques to integrate your appitatith your operating system or desktop
environment of choice.

23.1. Linux and UNIX-like operating systems

GStreamer provides a basic set of elements that are useéul integrating with Linux or a UNIX-like
operating system.

- For audio input and output, GStreamer provides input anpgudilements for several audio
subsystems. Amongst others, GStreamer includes elenteis 8A (alsasrc, alsamixer, alsasink),
OSS (osssrc, ossmixer, 0sssink) and Sun audio (sunaudiasudiomixer, sunaudiosink).

- Forvideo input, GStreamer contains source elements faodtinux (v4lsrc, v4lmjpegsrc,
vdlelement and v4imjpegisnk) and Video4linux2 (v412sl2element).

- For video output, GStreamer provides elements for outpXtwgndows (ximagesink), Xv-windows
(xvimagesink; for hardware-accelerated video), direatrfebuffer (dfbimagesink) and openGL image
contexts (glsink).

23.2. GNOME desktop

GStreamer has been the media backend of the GNOME (httpi/gveme.org/) desktop since
GNOME-2.2 onwards. Nowadays, a whole bunch of GNOME aptitioa make use of GStreamer for
media-processing, including (but not limited to) Rhythmiflottp://www.rhythmbox.org/), Totem
(http://www.hadess.net/totem.php3) and Sound Juicer
(http://lwww.burtonini.com/blog/computers/sound-giix

Most of these GNOME applications make use of some specifimtgues to integrate as closely as
possible with the GNOME desktop:

- GNOME applications usually cafit k_i nit () to parse command-line options and initialize GTK.
GStreamer applications would normally cadlt _i nit () to do the same for GStreamer. This would
mean that only one of the two can parse command-line opfianaork around this issue, GStreamer
can provide a GLilBOpt i onG oup which can be passed tmonme_programinit (). The
following example requires GTK 2.6 or newer (previous GTKsiens do not support command line
parsing via GOption yet)

#i ncl ude <gtk/gtk. h>
#incl ude <gst/gst.h>

94

Chapter 23. Integration

static gchar x*+xcnmd_fil enames = NULL;

static GOptionEntries cnd_options[] = {

b

[+ here you can add command |ine options for your application. Check
* the GOption section in the GLib APl reference for a nore el aborate
* exanpl e of how to add your own command |ine options here */

/+ at the end we have a special option that collects all renaining

* command |ine argunents (like filenames) for us. If you don't

* need this, you can safely renove it =/

{ G_OPTION_REMAI NING 0, 0, G OPTI ON_ARG FI LENAME_ARRAY, &cnd_fil enanes,
"Special option that collects any renmining argunents for us" },

/+ mark the end of the options array with a NULL option =/
{ NULL, }

[+ this should usually be defined in your config.h x/
#define VERSION "0.0. 1"

gi

nt

mai n (gint argc, gchar =*xargv)

{

GOpt i onCont ext =*cont ext;
GOpti onGroup *gstreaner_group, *gtk_group;
GError *err = NULL;

/+ we must initialise the threading system before using any
* other GLib funtion, such as g_option_context_new() =/
if ('g_thread_supported ())
g_thread_init (NULL);

context = g_option_context_new ("gtk-deno-app");

/+* get command |ine options fromGStreaner and add themto the group */
gstreaner_group = gst_init_get_option_group ();
g_option_context_add_group (context, gstreamer_group);

gtk_group = gtk_get_option_group (TRUE);

g_option_context _add_group (context, gtk_group);

[+ add our own options. If you are using gettext for translation of your
* strings, use GETTEXT_PACKAGE here instead of NULL */
g_option_context_add_main_entries (context, cnd_options, NULL);

/+* now parse the commandl i ne options, note that this already
* calls gtk_init() and gst_init() =/
if (!g_option_context_parse (ctx, &argc, &argv, &err)) {
g_print ("Error initializing: %\n", err->nessage);
exit (1);
}

[+ any fil enames we got passed on the conmand |ine? parse them =/
if (cmd_filenanes !'= NULL) {

95

Chapter 23. Integration
guint i, num

num = g_strv_length (cnd_fil enanmes);

for (i =0; i < num ++i) {

/+* do sonething with the filenane ... */

g_print ("Adding to play queue: %\n", cnd_filenanes[i]);
}

g_strfreev (cnd_fil enanmes);
cnd_fil enames = NULL;

« GNOME stores the default video and audio sources and sinBEionf. GStreamer provides a number
of elements that create audio and video sources and sirgctlglibased on those GConf settings.
Those elements are: gconfaudiosink, gconfvideosink, fgeatiosrc and gconfvideosrc. You can
create them witlyst _el ement _fact ory_nake () and use them directly just like you would use
any other source or sink element. All GNOME applicationsracommended to use those elements.

- GStreamer provides data input/output elements for useth#lG1O VFS system. These elements are
called “giosrc” and “giosink”. The deprecated GNOME-VFS&m is supported too but shouldn’t be
used for any new applications.

23.3. KDE desktop

GStreamer has been proposed for inclusion in KDE-4.0. @tlyeGStreamer is included as an optional
component, and it's used by several KDE applications, gticlgt AmaroK (http://amarok.kde.org/), JuK
(http://developer.kde.org/~wheeler/juk.html), KMPéayhttp://www.xs4all.nl/~jjvrieze/kmplayer.html)
and Kaffeine (http://kaffeine.sourceforge.net/).

Although not yet as complete as the GNOME integration Hitsté are already some KDE integration

specifics available. This list will probably grow as GStreaustarts to be used in KDE-4.0:

« AmaroK contains a kiosrc element, which is a source elentattimtegrates with the KDE VFS
subsystem KIO.

23.4. OS X

GStreamer provides native video and audio output element®$ X. It builds using the standard
development tools for OS X.

96

Chapter 23. Integration

23.5. Windows

Warning

Note: this section is out of date. GStreamer-0.10 has much better support for
win32 than previous versions though and should usually compile and work
out-of-the-box both using MSYS/MinGW or Microsoft compilers. The GStreamer
web site (http:/gstreamer.freedesktop.org) and the mailing list archives
(http://news.gmane.org/gmane.comp.video.gstreamer.devel) are a good place to
check the latest win32-related news.

GStreamer builds using Microsoft Visual C .NET 2003 and g€ygwin.

23.5.1. Building GStreamer under Win32

There are different makefiles that can be used to build G@ewith the usual Microsoft compiling
tools.

The Makefile is meant to be used with the GNU make program amttéle version of the Microsoft
compiler (http://msdn.microsoft.com/visualc/vctooBA03/). You also have to modify your system
environment variables to use it from the command-line. Ydlalso need a working Platform SDK for
Windows that is available for free from Microsoft.

The projects/makefiles will generate automatically somee®files needed to compile GStreamer. That
requires that you have installed on your system some GNU$ tmad that they are available in your
system PATH.

The GStreamer project depends on other libraries, namely :

. GLib
+ libxml2
- libintl
« libiconv

Work is being done to provide pre-compiled GStreamer-Glr@ties as a packages for win32. Check
the GStreamer web site (http://gstreamer.freedesktgppaod check our mailing list
(http://news.gmane.org/gmane.comp.video.gstreamaslfor the latest developments in this respect.

Notes: GNU tools needed that you can find on http://gnuwin32.sourceforge.net/

+ GNU flex (tested with 2.5.4)
» GNU bison (tested with 1.35)

97

Chapter 23. Integration
and http://www.mingw.org/

» GNU make (tested with 3.80)

the generated files from the -auto makefiles will be available soon separately on the net for
convenience (people who don’t want to install GNU tools).

23.5.2. Installation on the system

FIXME: This section needs be updated for GStreamer-0.10.

98

Chapter 24. Licensing advisory

24.1. How to license the applications you build with
GStreamer

The licensing of GStreamer is no different from a lot of otlileraries out there like GTK+ or glibc: we
use the LGPL. What complicates things with regards to G8tegas its plugin-based design and the
heavily patented and proprietary nature of many multimediecs. While patents on software are
currently only allowed in a small minority of world countsi¢the US and Australia being the most
important of those), the problem is that due to the centedgthe US hold in the world economy and
the computing industry, software patents are hard to ignwerever you are. Due to this situation, many
companies, including major GNU/Linux distributions, getgped in a situation where they either get
bad reviews due to lacking out-of-the-box media playbagabdities (and attempts to educate the
reviewers have met with little success so far), or go agéiest own - and the free software movement'’s
- wish to avoid proprietary software. Due to competitivegsure, most choose to add some support.
Doing that through pure free software solutions would haeart risk heavy litigation and punishment
from patent owners. So when the decision is made to inclugpatifor patented codecs, it leaves them
the choice of either using special proprietary applicegjan try to integrate the support for these codecs
through proprietary plugins into the multimedia infrastiure provided by GStreamer. Faced with one of
these two evils the GStreamer community of course prefesdlsend option.

The problem which arises is that most free software and operts applications developed use the GPL
as their license. While this is generally a good thing, ibtes a dilemma for people who want to put
together a distribution. The dilemma they face is that if/tinelude proprietary plugins in GStreamer to
support patented formats in a way that is legal for them, tlwesisk running afoul of the GPL license of
the applications. We have gotten some conflicting repoots fiawyers on whether this is actually a
problem, but the official stance of the FSF is that it is a peablWe view the FSF as an authority on this
matter, so we are inclined to follow their interpretatiorttod GPL license.

So what does this mean for you as an application developélt?itMeeans you have to make an active
decision on whether you want your application to be usedthamgevith proprietary plugins or not. What
you decide here will also influence the chances of commed@aibutions and Unix vendors shipping
your application. The GStreamer community suggest yom$ieg/our software using a license that will
allow proprietary plugins to be bundled with GStreamer andnapplications, in order to make sure that
as many vendors as possible go with GStreamer instead dféessolutions. This in turn we hope and
think will let GStreamer be a vehicle for wider use of freenhats like the Xiph.org formats.

If you do decide that you want to allow for non-free plugindtused with your application you have a
variety of choices. One of the simplest is using licensesli6PL, MPL or BSD for your application
instead of the GPL. Or you can add an exception clause to yBurli@ense stating that you except
GStreamer plugins from the obligations of the GPL.

99

Chapter 24. Licensing advisory

A good example of such a GPL exception clause would be, uemddtem video player project as an
example: The authors of the Totem video player project hegeénts permission for
non-GPL-compatible GStreamer plugins to be used andlisérdl together with GStreamer and Totem.
This permission goes above and beyond the permissionegrbythe GPL license Totem is covered by.

Our suggestion among these choices is to use the LGPL licas#es what resembles the GPL most
and it makes it a good licensing fit with the major GNU/Linusktop projects like GNOME and KDE.

It also allows you to share code more openly with projectstiase compatible licenses. Obviously, pure
GPL code without the above-mentioned clause is not usalyleuinapplication as such. By choosing the
LGPL, there is no need for an exception clause and thus codbecahared more freely.

| have above outlined the practical reasons for why the G8tez community suggests you allow
non-free plugins to be used with your applications. We fieat in the multimedia arena, the free
software community is still not strong enough to set the dgeand that blocking non-free plugins to be
used in our infrastructure hurts us more than it hurts thergatwners and their ilk.

This view is not shared by everyone. The Free Software Fdiordarges you to use an unmodified GPL
for your applications, so as to push back against the teiopttd use non-free plug-ins. They say that
since not everyone else has the strength to reject them $etaey are unethical, they ask your help to
give them a legal reason to do so.

This advisory is part of a bigger advisory with a FAQ which yaan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentaticeriiging.html)

100

Chapter 25. Quotes from the Developers

As well as being a cool piece of software, GStreamer is aflipebject, with developers from around the
globe very actively contributing. We often hang out on thetégamer IRC channel on irc.freenode.net:
the following are a selection of amusfnguotes from our conversations.

6 Mar 2006

When | opened my eyes | was in a court room. There were masteisoyland Thompson sitting

in the jury and master Kernighan too. There were the GStredmelopers standing in the
defendant’s place, accused of violating several laws okphilosophy and customer lock-down
via running on a proprietary pipeline, different from thattee Unix systems. | heard Eric Raymond
whispering "got to add this case to my book.

behdad’s blog

22 May 2007

<__tim> Uraeus: amusing, isn't it?
<Uraeus>__tim: | wrote that :)

<__tim> Uraeus: of course you did; your refusal to surrender to th@exsive regime of the
third-person-singular-rule is so unique in its persisestat it's hard to miss :)

12 Sep 2005

<wingo> we just need to get rid of that mmap stuff
<wingo> i think gnomevfssrc is faster for files even
<BBB> wingo, no

<BBB> and no

<wingo> good points ronald

23 Jun 2005

* wingo back

* thomasvdack

101

Chapter 25. Quotes from the Developers

--- You are now known as everybody

* everybodyback back

<everybody>now break it down

--- You are now known as thomasvs

* bilboed back

--- bilboed is now known as john-sebastian

* john-sebastiarbach

--- john-sebastian is now known as bilboed

--- You are now known as scratch_my

* scratch_myback

--- bilboed is now known as lllbe

--- You are now known as thomasvs

* |llbe back

--- lllbe is now known as bilboed

20 Apr 2005

thomasjrb, somehow his screenshotsrc grabs whatever X is shaavidgnakes it available as a
stream of frames

jrb: thomas: so, is the point that the screenshooter takes a¥hi# won't the dialog be in the
video? oh, nevermind. I'll just send mail...

thomasijrb, well, it would shoot first and ask questions later

102

Chapter 25. Quotes from the Developers

2 Nov 2004

zaheermwtay: unfair u fixed the bug i was using as a feature!

14 Oct 2004

* zaheermwonders how he can break gstreamer today :)

ensoniczaheerm, spider is always a good starting point

14 Jun 2004

teuf: ok, things work much better when | don’t write incrediblypgid and buggy code

thaytan | find that too

23 Nov 2003

Uraeus ah yes, the sleeping part, my mind is not multitasking sog stél thinking about exercise

dolphy Uraeus: your mind is multitasking

dolphy Uraeus: you just miss low latency patches

14 Sep 2002

--- wingo-partyis now known asvingo

* wingoholds head

4 Jun 2001

taaz:you witchdoctors and your voodoo mpeg2 black magic...

omega_um. | count three, no four different cults there <g>

ajmitch: hehe

omega_witchdoctors, voodoo, black magic,

omega_and mpeg

103

Chapter 25. Quotes from the Developers

16 Feb 2001

wtay: | shipped a few commerical products to >40000 people now [8it€amer is way more
exciting...

16 Feb 2001

* tool-manis a gstreamer groupie

14 Jan 2001

Omega:did you run Idconfig? maybe it talks to init?

wtay: not sure, don'’t think so... I did run gstreamer-registeutjio:-)
Omega:ah, that did it then ;-)

wtay: right

Omegaprobably not, but in case GStreamer starts turning into ars@®eone please let me know?

9 Jan 2001

wtay: me tar, you rpm?
wtay: hehe, forgot "zan"
Omega:?

wtay: me tar"zan", you ...

7 Jan 2001

Omegathat means probably building an agreggating, cache-migsggeue to shove N buffers
across all at once, forcing cache transfer.

wtay: never done that before...
Omega:nope, but it's easy to do in gstreamer <g>

wtay: sure, | need to rewrite cp with gstreamer too, someday :-)

104

Chapter 25. Quotes from the Developers

7 Jan 2001

wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001

wtay: we need to cut down the time to create an mp3 player down toslsco
richardb: :)

Omega:l’m wanting to something more interesting soon, | did thea\dian mp3 player in 15sec”
back in October '99.

wtay: by the time Omega gets his hands on the editor, you'll see glaienaudio mixer in the
editor :-)

richardb: Well, it clearly has the potential...

Omega:Working on it... ;-)

28 Dec 2000

MPAA: We will sue you now, you have violated our IP rights!

wtay: hehehe

MPAA: How dare you laugh at us? We have lawyers! We have CongresstieehaveL ARS
wtay: I'm so sorry your honor

MPAA: Hrumph.

* wtaybows before thy

Notes

1. No guarantee of sense of humour compatibility is given.

105

	GStreamer Application Development Manual (0.10.29)
	Table of Contents
	List of Figures
	Foreword
	Introduction
	1. Who should read this manual?
	2. Preliminary reading
	3. Structure of this manual

	I. About GStreamer
	Chapter 1. What is GStreamer?
	Chapter 2. Design principles
	2.1. Clean and powerful
	2.2. Object oriented
	2.3. Extensible
	2.4. Allow binaryonly plugins
	2.5. High performance
	2.6. Clean core/plugins separation
	2.7. Provide a framework for codec experimentation

	Chapter 3. Foundations
	3.1. Elements
	3.2. Pads
	3.3. Bins and pipelines
	3.4. Communication

	II. Building an Application
	Chapter 4. Initializing GStreamer
	4.1. Simple initialization
	4.2. The GOption interface

	Chapter 5. Elements
	5.1. What are elements?
	5.1.1. Source elements
	5.1.2. Filters, convertors, demuxers, muxers and codecs
	5.1.3. Sink elements

	5.2. Creating a GstElement
	5.3. Using an element as a GObject
	5.4. More about element factories
	5.4.1. Getting information about an element using a factory
	5.4.2. Finding out what pads an element can contain

	5.5. Linking elements
	5.6. Element States

	Chapter 6. Bins
	6.1. What are bins
	6.2. Creating a bin
	6.3. Custom bins

	Chapter 7. Bus
	7.1. How to use a bus
	7.2. Message types

	Chapter 8. Pads and capabilities
	8.1. Pads
	8.1.1. Dynamic (or sometimes) pads
	8.1.2. Request pads

	8.2. Capabilities of a pad
	8.2.1. Dissecting capabilities
	8.2.2. Properties and values

	8.3. What capabilities are used for
	8.3.1. Using capabilities for metadata
	8.3.2. Creating capabilities for filtering

	8.4. Ghost pads

	Chapter 9. Buffers and Events
	9.1. Buffers
	9.2. Events

	Chapter 10. Your first application
	10.1. Hello world
	10.2. Compiling and Running helloworld.c
	10.3. Conclusion

	III. Advanced GStreamer concepts
	Chapter 11. Position tracking and seeking
	11.1. Querying: getting the position or length of a stream
	11.2. Events: seeking (and more)

	Chapter 12. Metadata
	12.1. Metadata reading
	12.2. Tag writing

	Chapter 13. Interfaces
	13.1. The URI interface
	13.2. The Mixer interface
	13.3. The Tuner interface
	13.4. The Color Balance interface
	13.5. The Property Probe interface
	13.6. The X Overlay interface

	Chapter 14. Clocks in GStreamer
	14.1. Clock providers
	14.2. Clock slaves

	Chapter 15. Dynamic Controllable Parameters
	15.1. Getting Started
	15.2. Setting up parameter control

	Chapter 16. Threads
	16.1. When would you want to force a thread?
	16.2. Scheduling in GStreamer

	Chapter 17. Autoplugging
	17.1. MIMEtypes as a way to identity streams
	17.2. Media stream type detection
	17.3. Plugging together dynamic pipelines

	Chapter 18. Pipeline manipulation
	18.1. Data probing
	18.2. Manually adding or removing data from/to a pipeline
	18.2.1. Inserting or grabbing data
	18.2.2. Forcing a format
	18.2.3. Example application

	18.3. Embedding static elements in your application

	IV. Higherlevel interfaces for GStreamer applications
	Chapter 19. Components
	19.1. Playbin
	19.2. Decodebin

	Chapter 20. XML in GStreamer
	20.1. Turning GstElements into XML
	20.2. Loading a GstElement from an XML file
	20.3. Adding custom XML tags into the core XML data

	V. Appendices
	Chapter 21. Things to check when writing an application
	21.1. Good programming habits
	21.2. Debugging
	21.3. Conversion plugins
	21.4. Utility applications provided with GStreamer
	21.4.1. gstlaunch
	21.4.2. gstinspect
	21.4.3. GstEditor

	Chapter 22. Porting 0.8 applications to 0.10
	22.1. List of changes

	Chapter 23. Integration
	23.1. Linux and UNIXlike operating systems
	23.2. GNOME desktop
	23.3. KDE desktop
	23.4. OS X
	23.5. Windows
	23.5.1. Building GStreamer under Win32
	23.5.2. Installation on the system

	Chapter 24. Licensing advisory
	24.1. How to license the applications you build with GStreamer

	Chapter 25. Quotes from the Developers

