
GStreamer Plugin Writer’s Guide
(0.10.29)

Richard John Boulton

Erik Walthinsen

Steve Baker

Leif Johnson

Ronald S. Bultje

Stefan Kost

Tim-Philipp MÃ¼ller

GStreamer Plugin Writer’s Guide (0.10.29)
by Richard John Boulton, Erik Walthinsen, Steve Baker, LeifJohnson, Ronald S. Bultje, Stefan Kost, and
Tim-Philipp MÃ¼ller

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0or later (the latest version

is presently available at http://www.opencontent.org/openpub/).

Table of Contents
I. Introduction ...vi

1. Preface..1
1.1. What is GStreamer?...1
1.2. Who Should Read This Guide?...1
1.3. Preliminary Reading..2
1.4. Structure of This Guide...2

2. Foundations..5
2.1. Elements and Plugins..5
2.2. Pads..5
2.3. Data, Buffers and Events...6
2.4. Mimetypes and Properties...8

II. Building a Plugin ..12

3. Constructing the Boilerplate..13
3.1. Getting the GStreamer Plugin Templates..13
3.2. Using the Project Stamp..13
3.3. Examining the Basic Code..14
3.4. GstElementDetails...15
3.5. GstStaticPadTemplate..16
3.6. Constructor Functions...18
3.7. The plugin_init function..18

4. Specifying the pads..20
4.1. The setcaps-function..21

5. The chain function...23
6. What are states?...25

6.1. Managing filter state..25
7. Adding Arguments...28
8. Signals..31
9. Building a Test Application...32

III. Advanced Filter Concepts ..36

10. Caps negotiation...37
10.1. Caps negotiation use cases..37
10.2. Fixed caps..38
10.3. Downstream caps negotiation..39
10.4. Upstream caps (re)negotiation...41
10.5. Implementing a getcaps function...42

11. Different scheduling modes...43
11.1. The pad activation stage..43
11.2. Pads driving the pipeline...44
11.3. Providing random access...46

12. Types and Properties..49
12.1. Building a Simple Format for Testing...49
12.2. Typefind Functions and Autoplugging..49
12.3. List of Defined Types..51

13. Request and Sometimes pads...62
13.1. Sometimes pads...62

iii

13.2. Request pads..65
14. Clocking...67

14.1. Types of time...67
14.2. Clocks..67
14.3. Flow of data between elements and time...67
14.4. Obligations of each element..68

15. Supporting Dynamic Parameters..69
15.1. Getting Started...69
15.2. The Data Processing Loop...69

16. Interfaces..71
16.1. How to Implement Interfaces..71
16.2. URI interface...72
16.3. Mixer Interface..73
16.4. Tuner Interface...76
16.5. Color Balance Interface...78
16.6. Property Probe Interface..78
16.7. X Overlay Interface...81
16.8. Navigation Interface..83

17. Tagging (Metadata and Streaminfo)...84
17.1. Overview...84
17.2. Reading Tags from Streams...84
17.3. Writing Tags to Streams..86

18. Events: Seeking, Navigation and More..90
18.1. Downstream events..90
18.2. Upstream events..91
18.3. All Events Together...92

IV. Creating special element types ...97

19. Pre-made base classes..98
19.1. Writing a sink..98
19.2. Writing a source..100
19.3. Writing a transformation element..101

20. Writing a Demuxer or Parser...102
21. Writing a N-to-1 Element or Muxer...103
22. Writing a Manager...104

V. Appendices...105

23. Things to check when writing an element...106
23.1. About states...106
23.2. Debugging...106
23.3. Querying, events and the like..107
23.4. Testing your element...107

24. Porting 0.8 plug-ins to 0.10..109
24.1. List of changes...109

25. GStreamer licensing...111
25.1. How to license the code you write for GStreamer...111

iv

List of Tables
2-1. Table of Example Types...8
12-1. Table of Audio Types...51
12-2. Table of Video Types..55
12-3. Table of Container Types..59
12-4. Table of Subtitle Types...60
12-5. Table of Other Types..60

v

I. Introduction
GStreamer is an extremely powerful and versatile frameworkfor creating streaming media applications.
Many of the virtues of the GStreamer framework come from its modularity: GStreamer can seamlessly
incorporate new plugin modules. But because modularity andpower often come at a cost of greater
complexity (consider, for example, CORBA (http://www.omg.org/)), writing new plugins is not always
easy.

This guide is intended to help you understand the GStreamer framework (version 0.10.29) so you can
develop new plugins to extend the existing functionality. The guide addresses most issues by following
the development of an example plugin - an audio filter plugin -written in C. However, the later parts of
the guide also present some issues involved in writing othertypes of plugins, and the end of the guide
describes some of the Python bindings for GStreamer.

Chapter 1. Preface

1.1. What is GStreamer?

GStreamer is a framework for creating streaming media applications. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, as well as some ideas from DirectShow.

GStreamer’s development framework makes it possible to write any type of streaming multimedia
application. The GStreamer framework is designed to make iteasy to write applications that handle audio
or video or both. It isn’t restricted to audio and video, and can process any kind of data flow. The pipeline
design is made to have little overhead above what the appliedfilters induce. This makes GStreamer a
good framework for designing even high-end audio applications which put high demands on latency.

One of the the most obvious uses of GStreamer is using it to build a media player. GStreamer already
includes components for building a media player that can support a very wide variety of formats,
including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, mod,and more. GStreamer, however, is much
more than just another media player. Its main advantages arethat the pluggable components can be
mixed and matched into arbitrary pipelines so that it’s possible to write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the various codec and other functionality. The
plugins can be linked and arranged in a pipeline. This pipeline defines the flow of the data. Pipelines can
also be edited with a GUI editor and saved as XML so that pipeline libraries can be made with a
minimum of effort.

The GStreamer core function is to provide a framework for plugins, data flow and media type
handling/negotiation. It also provides an API to write applications using the various plugins.

1.2. Who Should Read This Guide?

This guide explains how to write new modules for GStreamer. The guide is relevant to several groups of
people:

• Anyone who wants to add support for new ways of processing data in GStreamer. For example, a
person in this group might want to create a new data format converter, a new visualization tool, or a
new decoder or encoder.

• Anyone who wants to add support for new input and output devices. For example, people in this group
might want to add the ability to write to a new video output system or read data from a digital camera
or special microphone.

1

Chapter 1. Preface

• Anyone who wants to extend GStreamer in any way. You need to have an understanding of how the
plugin system works before you can understand the constraints that the plugin system places on the
rest of the code. Also, you might be surprised after reading this at how much can be done with plugins.

This guide is not relevant to you if you only want to use the existing functionality of GStreamer, or if you
just want to use an application that uses GStreamer. If you are only interested in using existing plugins to
write a new application - and there are quite a lot of plugins already - you might want to check the
GStreamer Application Development Manual. If you are just trying to get help with a GStreamer
application, then you should check with the user manual for that particular application.

1.3. Preliminary Reading

This guide assumes that you are somewhat familiar with the basic workings of GStreamer. For a gentle
introduction to programming concepts in GStreamer, you maywish to read theGStreamer Application
Development Manualfirst. Also check out the other documentation available on the GStreamer web site
(http://gstreamer.freedesktop.org/documentation/).

In order to understand this manual, you will need to have a basic understanding of the C language. Since
GStreamer adheres to the GObject programming model, this guide also assumes that you understand the
basics of GObject (http://developer.gnome.org/doc/API/2.0/gobject/index.html) programming. You may
also want to have a look at Eric Harlow’s bookDeveloping Linux Applications with GTK+ and GDK.

1.4. Structure of This Guide

To help you navigate through this guide, it is divided into several large parts. Each part addresses a
particular broad topic concerning GStreamer plugin development. The parts of this guide are laid out in
the following order:

• Building a Plugin- Introduction to the structure of a plugin, using an exampleaudio filter for
illustration.

This part covers all the basic steps you generally need to perform to build a plugin, such as registering
the element with GStreamer and setting up the basics so it canreceive data from and send data to
neighbour elements. The discussion begins by giving examples of generating the basic structures and
registering an element inConstructing the Boilerplate. Then, you will learn how to write the code to
get a basic filter plugin working inChapter 4, Chapter 5andChapter 6.

After that, we will show some of the GObject concepts on how tomake an element configurable for
applications and how to do application-element interaction in Adding ArgumentsandChapter 8. Next,
you will learn to build a quick test application to test all that you’ve just learned inChapter 9. We will
just touch upon basics here. For full-blown application development, you should look at the

2

Chapter 1. Preface

Application Development Manual
(http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/index.html).

• Advanced Filter Concepts- Information on advanced features of GStreamer plugin development.

After learning about the basic steps, you should be able to create a functional audio or video filter
plugin with some nice features. However, GStreamer offers more for plugin writers. This part of the
guide includes chapters on more advanced topics, such as scheduling, media type definitions in
GStreamer, clocks, interfaces and tagging. Since these features are purpose-specific, you can read
them in any order, most of them don’t require knowledge from other sections.

The first chapter, namedDifferent scheduling modes, will explain some of the basics of element
scheduling. It is not very in-depth, but is mostly some sort of an introduction on why other things work
as they do. Read this chapter if you’re interested in GStreamer internals. Next, we will apply this
knowledge and discuss another type of data transmission than what you learned inChapter 5:
Different scheduling modes. Loop-based elements will give you more control over input rate. This is
useful when writing, for example, muxers or demuxers.

Next, we will discuss media identification in GStreamer inChapter 12. You will learn how to define
new media types and get to know a list of standard media types defined in GStreamer.

In the next chapter, you will learn the concept of request- and sometimes-pads, which are pads that are
created dynamically, either because the application askedfor it (request) or because the media stream
requires it (sometimes). This will be inChapter 13.

The next chapter,Chapter 14, will explain the concept of clocks in GStreamer. You need this
information when you want to know how elements should achieve audio/video synchronization.

The next few chapters will discuss advanced ways of doing application-element interaction.
Previously, we learned on the GObject-ways of doing this inAdding ArgumentsandChapter 8. We
will discuss dynamic parameters, which are a way of defining element behaviour over time in advance,
in Chapter 15. Next, you will learn about interfaces inChapter 16. Interfaces are very target- specific
ways of application-element interaction, based on GObject’s GInterface. Lastly, you will learn about
how metadata is handled in GStreamer inChapter 17.

The last chapter,Chapter 18, will discuss the concept of events in GStreamer. Events are, on the one
hand, another way of doing application-element interaction. It takes care of seeking, for example. On
the other hand, it is also a way in which elements interact with each other, such as letting each other
know about media stream discontinuities, forwarding tags inside a pipeline and so on.

• Creating special element types- Explanation of writing other plugin types.

3

Chapter 1. Preface

Because the first two parts of the guide use an audio filter as anexample, the concepts introduced
apply to filter plugins. But many of the concepts apply equally to other plugin types, including
sources, sinks, and autopluggers. This part of the guide presents the issues that arise when working on
these more specialized plugin types. The chapter starts with a special focus on elements that can be
written using a base-class (Pre-made base classes), and later also goes into writing special types of
elements inWriting a Demuxer or Parser, Writing a N-to-1 Element or MuxerandWriting a Manager.

• Appendices- Further information for plugin developers.

The appendices contain some information that stubbornly refuses to fit cleanly in other sections of the
guide. Most of this section is not yet finished.

The remainder of this introductory part of the guide presents a short overview of the basic concepts
involved in GStreamer plugin development. Topics covered includeElements and Plugins, Pads,
Data, Buffers and EventsandTypes and Properties. If you are already familiar with this information, you
can use this short overview to refresh your memory, or you canskip toBuilding a Plugin.

As you can see, there a lot to learn, so let’s get started!

• Creating compound and complex elements by extending from a GstBin. This will allow you to create
plugins that have other plugins embedded in them.

• Adding new mime-types to the registry along with typedetectfunctions. This will allow your plugin to
operate on a completely new media type.

4

Chapter 2. Foundations

This chapter of the guide introduces the basic concepts of GStreamer. Understanding these concepts will
help you grok the issues involved in extending GStreamer. Many of these concepts are explained in
greater detail in theGStreamer Application Development Manual; the basic concepts presented here
serve mainly to refresh your memory.

2.1. Elements and Plugins

Elements are at the core of GStreamer. In the context of plugin development, anelementis an object
derived from the GstElement (../../gstreamer/html/GstElement.html) class. Elements provide some
sort of functionality when linked with other elements: For example, a source element provides data to a
stream, and a filter element acts on the data in a stream. Without elements, GStreamer is just a bunch of
conceptual pipe fittings with nothing to link. A large numberof elements ship with GStreamer, but extra
elements can also be written.

Just writing a new element is not entirely enough, however: You will need to encapsulate your element in
a plugin to enable GStreamer to use it. A plugin is essentially a loadable block of code, usually called a
shared object file or a dynamically linked library. A single plugin may contain the implementation of
several elements, or just a single one. For simplicity, thisguide concentrates primarily on plugins
containing one element.

A filter is an important type of element that processes a stream of data. Producers and consumers of data
are calledsourceandsinkelements, respectively.Bin elements contain other elements. One type of bin is
responsible for scheduling the elements that they contain so that data flows smoothly. Another type of
bin, calledautopluggerelements, automatically add other elements to the bin and links them together so
that they act as a filter between two arbitrary stream types.

The plugin mechanism is used everywhere in GStreamer, even if only the standard packages are being
used. A few very basic functions reside in the core library, and all others are implemented in plugins. A
plugin registry is used to store the details of the plugins inan XML file. This way, a program using
GStreamer does not have to load all plugins to determine which are needed. Plugins are only loaded
when their provided elements are requested.

See theGStreamer Library Referencefor the current implementation details ofGstElement
(../../gstreamer/html/GstElement.html) andGstPlugin (../../gstreamer/html/GstPlugin.html).

2.2. Pads

Padsare used to negotiate links and data flow between elements in GStreamer. A pad can be viewed as a

5

Chapter 2. Foundations

“place” or “port” on an element where links may be made with other elements, and through which data
can flow to or from those elements. Pads have specific data handling capabilities: A pad can restrict the
type of data that flows through it. Links are only allowed between two pads when the allowed data types
of the two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug or jack on a physical device. Consider, for
example, a home theater system consisting of an amplifier, a DVD player, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed because both devices have audio jacks, and linking
the projector to the DVD player is allowed because both devices have compatible video jacks. Links
between the projector and the amplifier may not be made because the projector and amplifier have
different types of jacks. Pads in GStreamer serve the same purpose as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way through alink between elements. Data flows out
of one element through one or moresource pads, and elements accept incoming data through one or
moresink pads. Source and sink elements have only source and sink pads, respectively.

See theGStreamer Library Referencefor the current implementation details of aGstPad
(../../gstreamer/html/GstPad.html).

2.3. Data, Buffers and Events

All streams of data in GStreamer are chopped up into chunks that are passed from a source pad on one
element to a sink pad on another element.Dataare structures used to hold these chunks of data.

Data contains the following important types:

• An exact type indicating what type of data (control, content, ...) this Data is.

• A reference count indicating the number of elements currently holding a reference to the buffer. When
the buffer reference count falls to zero, the buffer will be unlinked, and its memory will be freed in
some sense (see below for more details).

There are two types of data defined: events (control) and buffers (content).

Buffers may contain any sort of data that the two linked pads know how to handle. Normally, a buffer
contains a chunk of some sort of audio or video data that flows from one element to another.

Buffers also contain metadata describing the buffer’s contents. Some of the important types of metadata
are:

• A pointer to the buffer’s data.

6

Chapter 2. Foundations

• An integer indicating the size of the buffer’s data.

• A timestamp indicating the preferred display timestamp of the content in the buffer.

Events contain information on the state of the stream flowingbetween the two linked pads. Events will
only be sent if the element explicitly supports them, else the core will (try to) handle the events
automatically. Events are used to indicate, for example, a clock discontinuity, the end of a media stream
or that the cache should be flushed.

Events may contain several of the following items:

• A subtype indicating the type of the contained event.

• The other contents of the event depend on the specific event type.

Events will be discussed extensively inChapter 18. Until then, the only event that will be used is the
EOSevent, which is used to indicate the end-of-stream (usuallyend-of-file).

See theGStreamer Library Referencefor the current implementation details of aGstMiniObject
(../../gstreamer/html/gstreamer-GstMiniObject.html),GstBuffer
(../../gstreamer/html/gstreamer-GstBuffer.html) andGstEvent

(../../gstreamer/html/gstreamer-GstEvent.html).

2.3.1. Buffer Allocation

Buffers are able to store chunks of memory of several different types. The most generic type of buffer
contains memory allocated by malloc(). Such buffers, although convenient, are not always very fast,
since data often needs to be specifically copied into the buffer.

Many specialized elements create buffers that point to special memory. For example, the filesrc element
usually maps a file into the address space of the application (using mmap()), and creates buffers that
point into that address range. These buffers created by filesrc act exactly like generic buffers, except that
they are read-only. The buffer freeing code automatically determines the correct method of freeing the
underlying memory. Downstream elements that receive thesekinds of buffers do not need to do anything
special to handle or unreference it.

Another way an element might get specialized buffers is to request them from a downstream peer. These
are called downstream-allocated buffers. Elements can aska peer connected to a source pad to create an
empty buffer of a given size. If a downstream element is able to create a special buffer of the correct size,
it will do so. Otherwise GStreamer will automatically create a generic buffer instead. The element that
requested the buffer can then copy data into the buffer, and push the buffer to the source pad it was
allocated from.

7

Chapter 2. Foundations

Many sink elements have accelerated methods for copying data to hardware, or have direct access to
hardware. It is common for these elements to be able to createdownstream-allocated buffers for their
upstream peers. One such example is ximagesink. It creates buffers that contain XImages. Thus, when an
upstream peer copies data into the buffer, it is copying directly into the XImage, enabling ximagesink to
draw the image directly to the screen instead of having to copy data into an XImage first.

Filter elements often have the opportunity to either work ona buffer in-place, or work while copying
from a source buffer to a destination buffer. It is optimal toimplement both algorithms, since the
GStreamer framework can choose the fastest algorithm as appropriate. Naturally, this only makes sense
for strict filters -- elements that have exactly the same format on source and sink pads.

2.4. Mimetypes and Properties

GStreamer uses a type system to ensure that the data passed between elements is in a recognized format.
The type system is also important for ensuring that the parameters required to fully specify a format
match up correctly when linking pads between elements. Eachlink that is made between elements has a
specified type and optionally a set of properties.

2.4.1. The Basic Types

GStreamer already supports many basic media types. Following is a table of a few of the the basic types
used for buffers in GStreamer. The table contains the name ("mime type") and a description of the type,
the properties associated with the type, and the meaning of each property. A full list of supported types is
included inList of Defined Types.

Table 2-1. Table of Example Types

Mime Type Description Property Property
Type

Property
Values

Property
Description

audio/* All audio types rate integer greater than 0 The sample
rate of the data,
in samples (per
channel) per
second.

channels integer greater than 0 The number of
channels of
audio data.

8

Chapter 2. Foundations

Mime Type Description Property Property
Type

Property
Values

Property
Description

audio/x-raw-int Unstructured
and
uncompressed
raw integer
audio data.

endianness integer G_BIG_ENDIAN
(4321) or
G_LITTLE_ENDIAN
(1234)

The order of
bytes in a
sample. The
value
G_LITTLE_ENDIAN
(1234) means
“little-endian”
(byte-order is
“least
significant byte
first”). The
value
G_BIG_ENDIAN
(4321) means
“big-endian”
(byte order is
“most
significant byte
first”).

signed boolean TRUE or
FALSE

Whether the
values of the
integer samples
are signed or
not. Signed
samples use
one bit to
indicate sign
(negative or
positive) of the
value.
Unsigned
samples are
always positive.

width integer greater than 0 Number of bits
allocated per
sample.

9

Chapter 2. Foundations

Mime Type Description Property Property
Type

Property
Values

Property
Description

depth integer greater than 0 The number of
bits used per
sample. This
must be less
than or equal to
the width: If the
depth is less
than the width,
the low bits are
assumed to be
the ones used.
For example, a
width of 32 and
a depth of 24
means that each
sample is
stored in a 32
bit word, but
only the low 24
bits are actually
used.

audio/mpeg Audio data
compressed
using the
MPEG audio
encoding
scheme.

mpegversion integer 1, 2 or 4 The
MPEG-version
used for
encoding the
data. The value
1 refers to
MPEG-1, -2
and -2.5 layer
1, 2 or 3. The
values 2 and 4
refer to the
MPEG-AAC
audio encoding
schemes.

10

Chapter 2. Foundations

Mime Type Description Property Property
Type

Property
Values

Property
Description

framed boolean 0 or 1 A true value
indicates that
each buffer
contains
exactly one
frame. A false
value indicates
that frames and
buffers do not
necessarily
match up.

layer integer 1, 2, or 3 The
compression
scheme layer
used to
compress the
data(only if
mpegver-
sion=1).

bitrate integer greater than 0 The bitrate, in
bits per second.
For VBR
(variable
bitrate) MPEG
data, this is the
average bitrate.

audio/x-vorbis Vorbis audio
data

There are
currently no
specific
properties
defined for this
type.

11

II. Building a Plugin
You are now ready to learn how to build a plugin. In this part ofthe guide, you will learn how to apply
basic GStreamer programming concepts to write a simple plugin. The previous parts of the guide have
contained no explicit example code, perhaps making things abit abstract and difficult to understand. In
contrast, this section will present both applications and code by following the development of an
example audio filter plugin called “MyFilter”.

The example filter element will begin with a single input pad and a single output pad. The filter will, at
first, simply pass media and event data from its sink pad to itssource pad without modification. But by
the end of this part of the guide, you will learn to add some more interesting functionality, including
properties and signal handlers. And after reading the next part of the guide,Advanced Filter Concepts,
you will be able to add even more functionality to your plugins.

The example code used in this part of the guide can be found inexamples/pwg/examplefilter/ in
your GStreamer directory.

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimum code for a new plugin. Starting from
ground zero, you will see how to get the GStreamer template source. Then you will learn how to use a
few basic tools to copy and modify a template plugin to createa new plugin. If you follow the examples
here, then by the end of this chapter you will have a functional audio filter plugin that you can compile
and use in GStreamer applications.

3.1. Getting the GStreamer Plugin Templates

There are currently two ways to develop a new plugin for GStreamer: You can write the entire plugin by
hand, or you can copy an existing plugin template and write the plugin code you need. The second
method is by far the simpler of the two, so the first method willnot even be described here. (Errm, that is,
“it is left as an exercise to the reader.”)

The first step is to check out a copy of thegst-template git module to get an important tool and the
source code template for a basic GStreamer plugin. To check out thegst-template module, make sure
you are connected to the internet, and type the following commands at a command console:

shell $ git clone git://anongit.freedesktop.org/gstreamer/gst-template.git

Initialized empty Git repository in /some/path/gst-template/.git/
remote: Counting objects: 373, done.
remote: Compressing objects: 100% (114/114), done.
remote: Total 373 (delta 240), reused 373 (delta 240)
Receiving objects: 100% (373/373), 75.16 KiB | 78 KiB/s, done.
Resolving deltas: 100% (240/240), done.

This command will check out a series of files and directories intogst-template. The template you will
be using is in thegst-template/gst-plugin/ directory. You should look over the files in that
directory to get a general idea of the structure of a source tree for a plugin.

If for some reason you can’t access the git repository, you can also download a snapshot of the latest
revision (http://cgit.freedesktop.org/gstreamer/gst-template/commit/) via the cgit web interface.

3.2. Using the Project Stamp

The first thing to do when making a new element is to specify some basic details about it: what its name
is, who wrote it, what version number it is, etc. We also need to define an object to represent the element
and to store the data the element needs. These details are collectively known as theboilerplate.

13

Chapter 3. Constructing the Boilerplate

The standard way of defining the boilerplate is simply to write some code, and fill in some structures. As
mentioned in the previous section, the easiest way to do thisis to copy a template and add functionality
according to your needs. To help you do so, there is a tool in the./gst-plugins/tools/ directory.
This tool,make_element, is a command line utility that creates the boilerplate codefor you.

To usemake_element, first open up a terminal window. Change to the
gst-template/gst-plugin/src directory, and then run themake_element command. The
arguments to themake_element are:

1. the name of the plugin, and

2. the source file that the tool will use. By default,gstplugin is used.

Note that capitalization is important for the name of the plugin. Under some operating systems,
capitalization is also important when specifying directory names. For example, the following commands
create the MyFilter plugin based on the plugin template and put the output files in the
gst-template/gst-plugin/src directory:

shell $ cd gst-template/gst-plugin/src

shell $../tools/make_element MyFilter

The last command creates two files:gstexamplefilter.c andgstexamplefilter.h.

Note: It is recommended that you create a copy of the gst-plugin directory before continuing.

Now one needs to adjust theMakefile.am to use the new filenames and runautogen.sh to bootstrap
the build environment. After that the project can be built using the well knownmake && sudo make

install.

Note: Be aware that by default autogen.sh and configure would choose /usr/local as a default
location. One would need to add /usr/local/lib/gstreamer-0.10 to GST_PLUGIN_PATH in
order to make the new plugin show up in gstreamer.

3.3. Examining the Basic Code

First we will examine the code you would be likely to place in aheader file (although since the interface
to the code is entirely defined by the plugin system, and doesn’t depend on reading a header file, this is
not crucial.) The code here can be found in
examples/pwg/examplefilter/boiler/gstexamplefilter.h.

14

Chapter 3. Constructing the Boilerplate

Example 3-1. Example Plugin Header File

#include <gst/gst.h>

/* Definition of structure storing data for this element. */
typedef struct _GstMyFilter {

GstElement element;

GstPad *sinkpad, *srcpad;

gboolean silent;

} GstMyFilter;

/* Standard definition defining a class for this element. */
typedef struct _GstMyFilterClass {

GstElementClass parent_class;
} GstMyFilterClass;

/* Standard macros for defining types for this element. */
#define GST_TYPE_MY_FILTER (gst_my_filter_get_type())
#define GST_MY_FILTER(obj) \

(G_TYPE_CHECK_INSTANCE_CAST((obj),GST_TYPE_MY_FILTER,GstMyFilter))
#define GST_MY_FILTER_CLASS(klass) \

(G_TYPE_CHECK_CLASS_CAST((klass),GST_TYPE_MY_FILTER,GstMyFilterClass))
#define GST_IS_MY_FILTER(obj) \

(G_TYPE_CHECK_INSTANCE_TYPE((obj),GST_TYPE_MY_FILTER))
#define GST_IS_MY_FILTER_CLASS(klass) \

(G_TYPE_CHECK_CLASS_TYPE((klass),GST_TYPE_MY_FILTER))

/* Standard function returning type information. */
GType gst_my_filter_get_type (void);

Using this header file, you can use the following macro to setup theGObject basics in your source file
so that all functions will be called appropriately:

#include "filter.h"

GST_BOILERPLATE (GstMyFilter, gst_my_filter, GstElement, GST_TYPE_ELEMENT);

3.4. GstElementDetails

The GstElementDetails structure gives a hierarchical typefor the element, a human-readable description
of the element, as well as author and version data. The entries are:

15

Chapter 3. Constructing the Boilerplate

• A long, English, name for the element.

• The type of the element, see the docs/design/draft-klass.txt document in the GStreamer core source
tree for details and examples.

• A brief description of the purpose of the element.

• The name of the author of the element, optionally followed bya contact email address in angle
brackets.

For example:

static const GstElementDetails my_filter_details = {
"An example plugin",
"Example/FirstExample",
"Shows the basic structure of a plugin",
"your name <your.name@your.isp>"

};

The element details are registered with the plugin during the_base_init () function, which is part of
the GObject system. The_base_init () function should be set for this GObject in the function where
you register the type with GLib.

static void
gst_my_filter_base_init (gpointer klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

static const GstElementDetails my_filter_details = {
[..]

};

[..]
gst_element_class_set_details (element_class, &my_filter_details);

}

3.5. GstStaticPadTemplate

A GstStaticPadTemplate is a description of a pad that the element will (or might) create and use. It
contains:

• A short name for the pad.

• Pad direction.

• Existence property. This indicates whether the pad exists always (an “always” pad), only in some
cases (a “sometimes” pad) or only if the application requested such a pad (a “request” pad).

16

Chapter 3. Constructing the Boilerplate

• Supported types by this element (capabilities).

For example:

static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (

"sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
GST_STATIC_CAPS ("ANY")

);

Those pad templates are registered during the_base_init () function. Pads are created from these
templates in the element’s_init () function usinggst_pad_new_from_template (). The
template can be retrieved from the element class usinggst_element_class_get_pad_template

(). See below for more details on this. In order to create a new pad from this template using
gst_pad_new_from_template (), you will need to declare the pad template as a global variable.
More on this subject inChapter 4.

static GstStaticPadTemplate sink_factory = [..],
src_factory = [..];

static void
gst_my_filter_base_init (gpointer klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
[..]

gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&src_factory));
gst_element_class_add_pad_template (element_class,

gst_static_pad_template_get (&sink_factory));
}

The last argument in a template is its type or list of supported types. In this example, we use ’ANY’,
which means that this element will accept all input. In real-life situations, you would set a mimetype and
optionally a set of properties to make sure that only supported input will come in. This representation
should be a string that starts with a mimetype, then a set of comma-separates properties with their
supported values. In case of an audio filter that supports rawinteger 16-bit audio, mono or stereo at any
samplerate, the correct template would look like this:

static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (

"sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,

17

Chapter 3. Constructing the Boilerplate

GST_STATIC_CAPS (
"audio/x-raw-int, "
"width = (int) 16, "
"depth = (int) 16, "
"endianness = (int) BYTE_ORDER, "
"channels = (int) { 1, 2 }, "
"rate = (int) [8000, 96000]"

)
);

Values surrounded by curly brackets (“{” and “}”) are lists,values surrounded by square brackets (“[”
and “]”) are ranges. Multiple sets of types are supported too, and should be separated by a semicolon
(“;”). Later, in the chapter on pads, we will see how to use types to know the exact format of a stream:
Chapter 4.

3.6. Constructor Functions

Each element has three functions which are used for construction of an element. These are the
_base_init() function which is meant to initialize class and child class properties during each new
child class creation; the_class_init() function, which is used to initialise the class only once
(specifying what signals, arguments and virtual functionsthe class has and setting up global state); and
the_init() function, which is used to initialise a specific instance of this type.

3.7. The plugin_init function

Once we have written code defining all the parts of the plugin,we need to write the plugin_init()
function. This is a special function, which is called as soonas the plugin is loaded, and should return
TRUE or FALSE depending on whether it loaded initialized anydependencies correctly. Also, in this
function, any supported element type in the plugin should beregistered.

static gboolean
plugin_init (GstPlugin *plugin)
{

return gst_element_register (plugin, "my_filter",
GST_RANK_NONE,
GST_TYPE_MY_FILTER);

}

GST_PLUGIN_DEFINE (
GST_VERSION_MAJOR,
GST_VERSION_MINOR,
"my_filter",
"My filter plugin",
plugin_init,
VERSION,

18

Chapter 3. Constructing the Boilerplate

"LGPL",
"GStreamer",
"http://gstreamer.net/"

)

Note that the information returned by the plugin_init() function will be cached in a central registry. For
this reason, it is important that the same information is always returned by the function: for example, it
must not make element factories available based on runtime conditions. If an element can only work in
certain conditions (for example, if the soundcard is not being used by some other process) this must be
reflected by the element being unable to enter the READY stateif unavailable, rather than the plugin
attempting to deny existence of the plugin.

19

Chapter 4. Specifying the pads

As explained before, pads are the port through which data goes in and out of your element, and that
makes them a very important item in the process of element creation. In the boilerplate code, we have
seen how static pad templates take care of registering pad templates with the element class. Here, we will
see how to create actual elements, use a_setcaps ()-functions to configure for a particular format and
how to register functions to let data flow through the element.

In the element_init () function, you create the pad from the pad template that has been registered
with the element class in the_base_init () function. After creating the pad, you have to set a
_setcaps () function pointer and optionally a_getcaps () function pointer. Also, you have to set a
_chain () function pointer. Alternatively, pads can also operate in looping mode, which means that
they can pull data themselves. More on this topic later. After that, you have to register the pad with the
element. This happens like this:

static gboolean gst_my_filter_setcaps (GstPad *pad,
GstCaps *caps);

static GstFlowReturn gst_my_filter_chain (GstPad *pad,
GstBuffer *buf);

static void
gst_my_filter_init (GstMyFilter *filter, GstMyFilterClass *filter_klass)
{

GstElementClass *klass = GST_ELEMENT_CLASS (filter_klass);

/* pad through which data comes in to the element */
filter->sinkpad = gst_pad_new_from_template (

gst_element_class_get_pad_template (klass, "sink"), "sink");
gst_pad_set_setcaps_function (filter->sinkpad, gst_my_filter_setcaps);
gst_pad_set_chain_function (filter->sinkpad, gst_my_filter_chain);

gst_element_add_pad (GST_ELEMENT (filter), filter->sinkpad);

/* pad through which data goes out of the element */
filter->srcpad = gst_pad_new_from_template (

gst_element_class_get_pad_template (klass, "src"), "src");

gst_element_add_pad (GST_ELEMENT (filter), filter->srcpad);

/* properties initial value */
filter->silent = FALSE;

20

Chapter 4. Specifying the pads

}

4.1. The setcaps-function

The_setcaps ()-function is called during caps negotiation, which is discussed in great detail in
Caps negotiation. This is the process where the linked pads decide on the streamtype that will transfer
between them. A full list of type-definitions can be found inChapter 12. A _link () receives a pointer
to aGstCaps (../../gstreamer/html/gstreamer-GstCaps.html) structthat defines the proposed streamtype,
and can respond with either “yes” (TRUE) or “no” (FALSE). If the element responds positively towards
the streamtype, that type will be used on the pad. An example:

static gboolean
gst_my_filter_setcaps (GstPad *pad,

GstCaps *caps)
{

GstStructure *structure = gst_caps_get_structure (caps, 0);
GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
const gchar *mime;

/* Since we’re an audio filter, we want to handle raw audio

* and from that audio type, we need to get the samplerate and

* number of channels. */
mime = gst_structure_get_name (structure);
if (strcmp (mime, "audio/x-raw-int") != 0) {

GST_WARNING ("Wrong mimetype %s provided, we only support %s",
mime, "audio/x-raw-int");
return FALSE;

}

/* we’re a filter and don’t touch the properties of the data.

* That means we can set the given caps unmodified on the next

* element, and use that negotiation return value as ours. */
if (!gst_pad_set_caps (filter->srcpad, caps))

return FALSE;

/* Capsnego succeeded, get the stream properties for internal

* usage and return success. */
gst_structure_get_int (structure, "rate", &filter->samplerate);
gst_structure_get_int (structure, "channels", &filter->channels);

g_print ("Caps negotiation succeeded with %d Hz @ %d channels\n",
filter->samplerate, filter->channels);

return TRUE;
}

21

Chapter 4. Specifying the pads

In here, we check the mimetype of the provided caps. Normally, you don’t need to do that in your own
plugin/element, because the core does that for you. We simply use it to show how to retrieve the
mimetype from a provided set of caps. Types are stored inGstStructure

(../../gstreamer/html/gstreamer-GstStructure.html) internally. AGstCaps
(../../gstreamer/html/gstreamer-GstCaps.html) is nothing more than a small wrapper for 0 or more
structures/types. From the structure, you can also retrieve properties, as is shown above with the function
gst_structure_get_int ().

If your _link () function does not need to perform any specific operation (i.e. it will only forward
caps), you can set it togst_pad_proxy_link (). This is a link forwarding function implementation
provided by the core. It is useful for elements such asidentity.

22

Chapter 5. The chain function

The chain function is the function in which all data processing takes place. In the case of a simple filter,
_chain () functions are mostly linear functions - so for each incomingbuffer, one buffer will go out,
too. Below is a very simple implementation of a chain function:

static GstFlowReturn
gst_my_filter_chain (GstPad *pad,

GstBuffer *buf)
{

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

if (!filter->silent)
g_print ("Have data of size %u bytes!\n", GST_BUFFER_SIZE (buf));

return gst_pad_push (filter->srcpad, buf);
}

Obviously, the above doesn’t do much useful. Instead of printing that the data is in, you would normally
process the data there. Remember, however, that buffers arenot always writeable. In more advanced
elements (the ones that do event processing), you may want toadditionally specify an event handling
function, which will be called when stream-events are sent (such as end-of-stream, discontinuities, tags,
etc.).

static void
gst_my_filter_init (GstMyFilter * filter)
{
[..]

gst_pad_set_event_function (filter->sinkpad,
gst_my_filter_event);

[..]
}

static gboolean
gst_my_filter_event (GstPad *pad,

GstEvent *event)
{

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:
/* end-of-stream, we should close down all stream leftovers here */
gst_my_filter_stop_processing (filter);
break;

default:
break;

23

Chapter 5. The chain function

}

return gst_pad_event_default (pad, event);
}

static GstFlowReturn
gst_my_filter_chain (GstPad *pad,

GstBuffer *buf)
{

GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
GstBuffer *outbuf;

outbuf = gst_my_filter_process_data (filter, buf);
gst_buffer_unref (buf);
if (!outbuf) {

/* something went wrong - signal an error */
GST_ELEMENT_ERROR (GST_ELEMENT (filter), STREAM, FAILED, (NULL), (NULL));
return GST_FLOW_ERROR;

}

return gst_pad_push (filter->srcpad, outbuf);
}

In some cases, it might be useful for an element to have control over the input data rate, too. In that case,
you probably want to write a so-calledloop-basedelement. Source elements (with only source pads) can
also beget-basedelements. These concepts will be explained in the advanced section of this guide, and
in the section that specifically discusses source pads.

24

Chapter 6. What are states?

A state describes whether the element instance is initialized, whether it is ready to transfer data and
whether it is currently handling data. There are four statesdefined in GStreamer:

• GST_STATE_NULL

• GST_STATE_READY

• GST_STATE_PAUSED

• GST_STATE_PLAYING

which will from now on be referred to simply as “NULL”, “READY”, “PAUSED” and “PLAYING”.

GST_STATE_NULL is the default state of an element. In this state, it has not allocated any runtime
resources, it has not loaded any runtime libraries and it canobviously not handle data.

GST_STATE_READY is the next state that an element can be in. In the READY state, an element has all
default resources (runtime-libraries, runtime-memory) allocated. However, it has not yet allocated or
defined anything that is stream-specific. When going from NULL to READY state
(GST_STATE_CHANGE_NULL_TO_READY), an element should allocate any non-stream-specific
resources and should load runtime-loadable libraries (if any). When going the other way around (from
READY to NULL, GST_STATE_CHANGE_READY_TO_NULL), an element should unload these
libraries and free all allocated resources. Examples of such resources are hardware devices. Note that
files are generally streams, and these should thus be considered as stream-specific resources; therefore,
they shouldnot be allocated in this state.

GST_STATE_PAUSED is the state in which an element is ready toaccept and handle data. For most
elements this state is the same as PLAYING. The only exception to this rule are sink elements. Sink
elements only accept one single buffer of data and then block. At this point the pipeline is ’prerolled’ and
ready to render data immediately.

GST_STATE_PLAYING is the highest state that an element can be in. For most elements this state is
exactly the same as PAUSED, they accept and process events and buffers with data. Only sink elements
need to differentiate between PAUSED and PLAYING state. In PLAYING state, sink elements actually
render incoming data, e.g. output audio to a sound card or render video pictures to an image sink.

6.1. Managing filter state

If at all possible, your element should derive from one of thenew base classes (Pre-made base classes).
There are ready-made general purpose base classes for different types of sources, sinks and
filter/transformation elements. In addition to those, specialised base classes exist for audio and video
elements and others.

25

Chapter 6. What are states?

If you use a base class, you will rarely have to handle state changes yourself. All you have to do is
override the base class’s start() and stop() virtual functions (might be called differently depending on the
base class) and the base class will take care of everything for you.

If, however, you do not derive from a ready-made base class, but from GstElement or some other class
not built on top of a base class, you will most likely have to implement your own state change function to
be notified of state changes. This is definitively necessary if your plugin is a decoder or an encoder, as
there are no base classes for decoders or encoders yet.

An element can be notified of state changes through a virtual function pointer. Inside this function, the
element can initialize any sort of specific data needed by theelement, and it can optionally fail to go
from one state to another.

Do not g_assert for unhandled state changes; this is taken care of by the GstElement base class.

static GstStateChangeReturn
gst_my_filter_change_state (GstElement *element, GstStateChange transition);

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

element_class->change_state = gst_my_filter_change_state;
}

static GstStateChangeReturn
gst_my_filter_change_state (GstElement *element, GstStateChange transition)
{

GstStateChangeReturn ret = GST_STATE_CHANGE_SUCCESS;
GstMyFilter *filter = GST_MY_FILTER (element);

switch (transition) {
case GST_STATE_CHANGE_NULL_TO_READY:
if (!gst_my_filter_allocate_memory (filter))

return GST_STATE_CHANGE_FAILURE;
break;

default:
break;

}

ret = GST_ELEMENT_CLASS (parent_class)->change_state (element, transition);
if (ret == GST_STATE_CHANGE_FAILURE)

return ret;

switch (transition) {
case GST_STATE_CHANGE_READY_TO_NULL:
gst_my_filter_free_memory (filter);

26

Chapter 6. What are states?

break;
default:
break;

}

return ret;
}

Note that upwards (NULL=>READY, READY=>PAUSED, PAUSED=>PLAYING) and downwards
(PLAYING=>PAUSED, PAUSED=>READY, READY=>NULL) state changes are handled in two
separate blocks with the downwards state change handled only after we have chained up to the parent
class’s state change function. This is necessary in order tosafely handle concurrent access by multiple
threads.

The reason for this is that in the case of downwards state changes you don’t want to destroy allocated
resources while your plugin’s chain function (for example)is still accessing those resources in another
thread. Whether your chain function might be running or not depends on the state of your plugin’s pads,
and the state of those pads is closely linked to the state of the element. Pad states are handled in the
GstElement class’s state change function, including proper locking, that’s why it is essential to chain up
before destroying allocated resources.

27

Chapter 7. Adding Arguments

The primary and most important way of controlling how an element behaves, is through GObject
properties. GObject properties are defined in the_class_init () function. The element optionally
implements a_get_property () and a_set_property () function. These functions will be
notified if an application changes or requests the value of a property, and can then fill in the value or take
action required for that property to change value internally.

/* properties */
enum {

ARG_0,
ARG_SILENT
/* FILL ME */

};

static void gst_my_filter_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec);

static void gst_my_filter_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec);

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{

GObjectClass *object_class = G_OBJECT_CLASS (klass);

/* define properties */
g_object_class_install_property (object_class, ARG_SILENT,

g_param_spec_boolean ("silent", "Silent",
"Whether to be very verbose or not",
FALSE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));

/* define virtual function pointers */
object_class->set_property = gst_my_filter_set_property;
object_class->get_property = gst_my_filter_get_property;

}

static void
gst_my_filter_set_property (GObject *object,

guint prop_id,
const GValue *value,
GParamSpec *pspec)

{
GstMyFilter *filter = GST_MY_FILTER (object);

switch (prop_id) {
case ARG_SILENT:

28

Chapter 7. Adding Arguments

filter->silent = g_value_get_boolean (value);
g_print ("Silent argument was changed to %s\n",

filter->silent ? "true" : "false");
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;

}
}

static void
gst_my_filter_get_property (GObject *object,

guint prop_id,
GValue *value,
GParamSpec *pspec)

{
GstMyFilter *filter = GST_MY_FILTER (object);

switch (prop_id) {
case ARG_SILENT:
g_value_set_boolean (value, filter->silent);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;

}
}

The above is a very simple example of how arguments are used. Graphical applications - for example
GStreamer Editor - will use these properties and will display a user-controllable widget with which these
properties can be changed. This means that - for the propertyto be as user-friendly as possible - you
should be as exact as possible in the definition of the property. Not only in defining ranges in between
which valid properties can be located (for integers, floats,etc.), but also in using very descriptive (better
yet: internationalized) strings in the definition of the property, and if possible using enums and flags
instead of integers. The GObject documentation describes these in a very complete way, but below, we’ll
give a short example of where this is useful. Note that using integers here would probably completely
confuse the user, because they make no sense in this context.The example is stolen from videotestsrc.

typedef enum {
GST_VIDEOTESTSRC_SMPTE,
GST_VIDEOTESTSRC_SNOW,
GST_VIDEOTESTSRC_BLACK

} GstVideotestsrcPattern;

[..]

#define GST_TYPE_VIDEOTESTSRC_PATTERN (gst_videotestsrc_pattern_get_type ())
static GType
gst_videotestsrc_pattern_get_type (void)
{

29

Chapter 7. Adding Arguments

static GType videotestsrc_pattern_type = 0;

if (!videotestsrc_pattern_type) {
static GEnumValue pattern_types[] = {
{ GST_VIDEOTESTSRC_SMPTE, "SMPTE 100% color bars", "smpte" },
{ GST_VIDEOTESTSRC_SNOW, "Random (television snow)", "snow" },
{ GST_VIDEOTESTSRC_BLACK, "0% Black", "black" },
{ 0, NULL, NULL },

};

videotestsrc_pattern_type =
g_enum_register_static ("GstVideotestsrcPattern",

pattern_types);
}

return videotestsrc_pattern_type;
}

[..]

static void
gst_videotestsrc_class_init (GstvideotestsrcClass *klass)
{
[..]

g_object_class_install_property (G_OBJECT_CLASS (klass), ARG_TYPE,
g_param_spec_enum ("pattern", "Pattern",

"Type of test pattern to generate",
GST_TYPE_VIDEOTESTSRC_PATTERN, 1, G_PARAM_READWRITE |

G_PARAM_STATIC_STRINGS));
[..]
}

30

Chapter 8. Signals

GObject signals can be used to notify applications of eventsspecific to this object. Note, however, that
the application needs to be aware of signals and their meaning, so if you’re looking for a generic way for
application-element interaction, signals are probably not what you’re looking for. In many cases,
however, signals can be very useful. See the GObject documentation
(http://www.le-hacker.org/papers/gobject/index.html) for all internals about signals.

31

Chapter 9. Building a Test Application

Often, you will want to test your newly written plugin in an assmall setting as possible. Usually,
gst-launch is a good first step at testing a plugin. If you have not installed your plugin in a directory
that GStreamer searches, then you will need to set the pluginpath. Either set GST_PLUGIN_PATH to
the directory containing your plugin, or use the command-line option --gst-plugin-path. If you based
your plugin off of the gst-plugin template, then this will look something likegst-launch
--gst-plugin-path=$HOME/gst-template/gst-plugin/src/.libs TESTPIPELINE However, you will
often need more testing features than gst-launch can provide, such as seeking, events, interactivity and
more. Writing your own small testing program is the easiest way to accomplish this. This section
explains - in a few words - how to do that. For a complete application development guide, see the
Application Development Manual (../../manual/html/index.html).

At the start, you need to initialize the GStreamer core library by callinggst_init (). You can
alternatively callgst_init_with_popt_tables (), which will return a pointer to popt tables. You
can then use libpopt to handle the given argument table, and this will finish the GStreamer initialization.

You can create elements usinggst_element_factory_make (), where the first argument is the
element type that you want to create, and the second argumentis a free-form name. The example at the
end uses a simple filesource - decoder - soundcard output pipeline, but you can use specific debugging
elements if that’s necessary. For example, anidentity element can be used in the middle of the
pipeline to act as a data-to-application transmitter. Thiscan be used to check the data for misbehaviours
or correctness in your test application. Also, you can use afakesink element at the end of the pipeline
to dump your data to the stdout (in order to do this, set thedump property to TRUE). Lastly, you can use
theefence element (indeed, an eletric fence memory debugger wrapper element) to check for memory
errors.

During linking, your test application can use fixation or filtered caps as a way to drive a specific type of
data to or from your element. This is a very simple and effective way of checking multiple types of input
and output in your element.

Running the pipeline happens through thegst_bin_iterate () function. Note that during running,
you should connect to at least the “error” and “eos” signals on the pipeline and/or your plugin/element to
check for correct handling of this. Also, you should add events into the pipeline and make sure your
plugin handles these correctly (with respect to clocking, internal caching, etc.).

Never forget to clean up memory in your plugin or your test application. When going to the NULL state,
your element should clean up allocated memory and caches. Also, it should close down any references
held to possible support libraries. Your application should unref () the pipeline and make sure it
doesn’t crash.

#include <gst/gst.h>

static gboolean

32

Chapter 9. Building a Test Application

bus_call (GstBus *bus,
GstMessage *msg,
gpointer data)

{
GMainLoop *loop = data;

switch (GST_MESSAGE_TYPE (msg)) {
case GST_MESSAGE_EOS:
g_print ("End-of-stream\n");
g_main_loop_quit (loop);
break;

case GST_MESSAGE_ERROR: {
gchar *debug = NULL;
GError *err = NULL;

gst_message_parse_error (msg, &err, &debug);

g_print ("Error: %s\n", err->message);
g_error_free (err);

if (debug) {
g_print ("Debug details: %s\n", debug);
g_free (debug);

}

g_main_loop_quit (loop);
break;

}
default:
break;

}

return TRUE;
}

gint
main (gint argc,

gchar *argv[])
{

GstStateChangeReturn ret;
GstElement *pipeline, *filesrc, *decoder, *filter, *sink;
GstElement *convert1, *convert2, *resample;
GMainLoop *loop;
GstBus *bus;

/* initialization */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);
if (argc != 2) {

g_print ("Usage: %s <mp3 filename>\n", argv[0]);
return 01;

}

33

Chapter 9. Building a Test Application

/* create elements */
pipeline = gst_pipeline_new ("my_pipeline");

/* watch for messages on the pipeline’s bus (note that this will only

* work like this when a GLib main loop is running) */
bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline));
gst_bus_add_watch (bus, bus_call, loop);
gst_object_unref (bus);

filesrc = gst_element_factory_make ("filesrc", "my_filesource");
decoder = gst_element_factory_make ("mad", "my_decoder");

/* putting an audioconvert element here to convert the output of the

* decoder into a format that my_filter can handle (we are assuming it

* will handle any sample rate here though) */
convert1 = gst_element_factory_make ("audioconvert", "audioconvert1");

/* use "identity" here for a filter that does nothing */
filter = gst_element_factory_make ("my_filter", "my_filter");

/* there should always be audioconvert and audioresample elements before

* the audio sink, since the capabilities of the audio sink usually vary

* depending on the environment (output used, sound card, driver etc.) */
convert2 = gst_element_factory_make ("audioconvert", "audioconvert2");
resample = gst_element_factory_make ("audioresample", "audioresample");
sink = gst_element_factory_make ("osssink", "audiosink");

if (!sink || !decoder) {
g_print ("Decoder or output could not be found - check your install\n");
return -1;

} else if (!convert1 || !convert2 || !resample) {
g_print ("Could not create audioconvert or audioresample element, "

"check your installation\n");
return -1;

} else if (!filter) {
g_print ("Your self-written filter could not be found. Make sure it "

"is installed correctly in $(libdir)/gstreamer-0.10/ or "
"~/.gstreamer-0.10/plugins/ and that gst-inspect-0.10 lists it. "
"If it doesn’t, check with ’GST_DEBUG=*:2 gst-inspect-0.10’ for "
"the reason why it is not being loaded.");

return -1;
}

g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

gst_bin_add_many (GST_BIN (pipeline), filesrc, decoder, convert1, filter,
convert2, resample, sink, NULL);

/* link everything together */
if (!gst_element_link_many (filesrc, decoder, convert1, filter, convert2,

resample, sink, NULL)) {
g_print ("Failed to link one or more elements!\n");
return -1;

34

Chapter 9. Building a Test Application

}

/* run */
ret = gst_element_set_state (pipeline, GST_STATE_PLAYING);
if (ret == GST_STATE_CHANGE_FAILURE) {

GstMessage *msg;

g_print ("Failed to start up pipeline!\n");

/* check if there is an error message with details on the bus */
msg = gst_bus_poll (bus, GST_MESSAGE_ERROR, 0);
if (msg) {
GError *err = NULL;

gst_message_parse_error (msg, &err, NULL);
g_print ("ERROR: %s\n", err->message);
g_error_free (err);
gst_message_unref (msg);

}
return -1;

}

g_main_loop_run (loop);

/* clean up */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (pipeline);

return 0;
}

35

III. Advanced Filter Concepts
By now, you should be able to create basic filter elements thatcan receive and send data. This is the
simple model that GStreamer stands for. But GStreamer can domuch more than only this! In this
chapter, various advanced topics will be discussed, such asscheduling, special pad types, clocking,
events, interfaces, tagging and more. These topics are the sugar that makes GStreamer so easy to use for
applications.

Chapter 10. Caps negotiation

Caps negotiation is the process where elements configure themselves and each other for streaming a
particular media format over their pads. Since different types of elements have different requirements for
the media formats they can negotiate to, it is important thatthis process is generic and implements all
those use cases correctly.

In this chapter, we will discuss downstream negotiation andupstream negotiation from a pipeline
perspective, implicating the responsibilities of different types of elements in a pipeline, and we will
introduce the concept offixed caps.

10.1. Caps negotiation use cases

Let’s take the case of a file source, linked to a demuxer, linked to a decoder, linked to a converter with a
caps filter and finally an audio output. When data flow originally starts, the demuxer will parse the file
header (e.g. the Ogg headers), and notice that there is, for example, a Vorbis stream in this Ogg file.
Noticing that, it will create an output pad for the Vorbis elementary stream and set a Vorbis-caps on it.
Lastly, it adds the pad. As of this point, the pad is ready to beused to stream data, and so the Ogg
demuxer is now done. This pad isnot re-negotiable, since the type of the data stream is embeddedwithin
the data.

The Vorbis decoder will decode the Vorbis headers and the Vorbis data coming in on its sinkpad. Now,
some decoders may be able to output in multiple output formats, for example both 16-bit integer output
and floating-point output, whereas other decoders may be able to only decode into one specific format,
e.g. only floating-point (32-bit) audio. Those two cases have consequences for how caps negotiation
should be implemented in this decoder element. In the one case, it is possible to use fixed caps, and
you’re done. In the other case, however, you should implement the possibility forrenegotiationin this
element, which is the possibility for the data format to be changed to another format at some point in the
future. We will discuss how to do this in one of the sections further on in this chapter.

The filter can be used by applications to force, for example, aspecific channel configuration
(5.1/surround or 2.0/stereo), on the pipeline, so that the user can enjoy sound coming from all its
speakers. The audio sink, in this example, is a standard ALSAoutput element (alsasink). The converter
element supports any-to-any, and the filter will make sure that only a specifically wanted channel
configuration streams through this link (as provided by the user’s channel configuration preference). By
changing this preference while the pipeline is running, some elements will have to renegotiatewhile the
pipeline is running. This is done through upstream caps renegotiation. That, too, will be discussed in
detail in a section further below.

In order for caps negotiation on non-fixed links to work correctly, pads can optionally implement a
function that tells peer elements what formats it supports and/or prefers. When upstream renegotiation is
triggered, this becomes important.

37

Chapter 10. Caps negotiation

Downstream elements are notified of a newly set caps only whendata is actually passing their pad. This
is because caps is attached to buffers during data flow. So when the vorbis decoder sets a caps on its
source pad (to configure the output format), the converter will not yet be notified. Instead, the converter
will only be notified when the decoder pushes a buffer over itssource pad to the converter. Right before
calling the chain-function in the converter, GStreamer will check whether the format that was previously
negotiated still applies to this buffer. If not, it first calls the setcaps-function of the converter to configure
it for the new format. Only after that will it call the chain function of the converter.

10.2. Fixed caps

The simplest way in which to do caps negotiation is setting a fixed caps on a pad. After a fixed caps has
been set, the pad can not be renegotiated from the outside. The only way to reconfigure the pad is for the
element owning the pad to set a new fixed caps on the pad. Fixed caps is a setup property for pads, called
when creating the pad:

[..]
pad = gst_pad_new_from_template (..);
gst_pad_use_fixed_caps (pad);

[..]

The fixed caps can then be set on the pad by callinggst_pad_set_caps ().

[..]
caps = gst_caps_new_simple ("audio/x-raw-float",

"width", G_TYPE_INT, 32,
"endianness", G_TYPE_INT, G_BYTE_ORDER,
"buffer-frames", G_TYPE_INT, <bytes-per-frame>,
"rate", G_TYPE_INT, <samplerate>,
"channels", G_TYPE_INT, <num-channels>, NULL);

if (!gst_pad_set_caps (pad, caps)) {
GST_ELEMENT_ERROR (element, CORE, NEGOTIATION, (NULL),

("Some debug information here"));
return GST_FLOW_ERROR;

}
[..]

Elements that could implement fixed caps (on their source pads) are, in general, all elements that are not
renegotiable. Examples include:

• A typefinder, since the type found is part of the actual data stream and can thus not be re-negotiated.

• Pretty much all demuxers, since the contained elementary data streams are defined in the file headers,
and thus not renegotiable.

• Some decoders, where the format is embedded in the data stream and not part of the peercapsand
where the decoder itself is not reconfigurable, too.

38

Chapter 10. Caps negotiation

All other elements that need to be configured for the format should implement full caps negotiation,
which will be explained in the next few sections.

10.3. Downstream caps negotiation

Downstream negotiation takes place when a format needs to beset on a source pad to configure the
output format, but this element allows renegotiation because its format is configured on the sinkpad caps,
or because it supports multiple formats. The requirements for doing the actual negotiation differ slightly.

10.3.1. Negotiating caps embedded in input caps

Many elements, particularly effects and converters, will be able to parse the format of the stream from
their input caps, and decide the output format right at that time already. When renegotiation takes place,
some may merely need to "forward" the renegotiation backwards upstream (more on that later). For those
elements, all (downstream) caps negotiation can be done in something that we call the_setcaps ()

function. This function is called when a buffer is pushed over a pad, but the format on this buffer is not
the same as the format that was previously negotiated (or, similarly, no format was negotiated yet so far).

In the_setcaps ()-function, the element can forward the caps to the next element and, if that pad
accepts the format too, the element can parse the relevant parameters from the caps and configure itself
internally. The caps passed to this function isalwaysa subset of the template caps, so there’s no need for
extensive safety checking. The following example should give a clear indication of how such a function
can be implemented:

static gboolean
gst_my_filter_setcaps (GstPad *pad,

GstCaps *caps)
{

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
GstStructure *s;

/* forward-negotiate */
if (!gst_pad_set_caps (filter->srcpad, caps))

return FALSE;

/* negotiation succeeded, so now configure ourselves */
s = gst_caps_get_structure (caps, 0);
gst_structure_get_int (s, "rate", &filter->samplerate);
gst_structure_get_int (s, "channels", &filter->channels);

return TRUE;
}

39

Chapter 10. Caps negotiation

There may also be cases where the filter actually is able tochangethe format of the stream. In those
cases, it will negotiate a new format. Obviously, the element should first attempt to configure
“pass-through”, which means that it does not change the stream’s format. However, if that fails, then it
should callgst_pad_get_allowed_caps () on its sourcepad to get a list of supported formats on the
outputs, and pick the first. The return value of that functionis guaranteed to be a subset of the template
caps.

Let’s look at the example of an element that can convert between samplerates, so where input and output
samplerate don’t have to be the same:

static gboolean
gst_my_filter_setcaps (GstPad *pad,

GstCaps *caps)
{

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

if (gst_pad_set_caps (filter->sinkpad, caps)) {
filter->passthrough = TRUE;

} else {
GstCaps *othercaps, *newcaps;
GstStructure *s = gst_caps_get_structure (caps, 0), *others;

/* no passthrough, setup internal conversion */
gst_structure_get_int (s, "channels", &filter->channels);
othercaps = gst_pad_get_allowed_caps (filter->srcpad);
others = gst_caps_get_structure (othercaps, 0);
gst_structure_set (others,

"channels", G_TYPE_INT, filter->channels, NULL);

/* now, the samplerate value can optionally have multiple values, so

* we "fixate" it, which means that one fixed value is chosen */
newcaps = gst_caps_copy_nth (othercaps, 0);
gst_caps_unref (othercaps);
gst_pad_fixate_caps (filter->srcpad, newcaps);
if (!gst_pad_set_caps (filter->srcpad, newcaps))
return FALSE;

/* we are now set up, configure internally */
filter->passthrough = FALSE;
gst_structure_get_int (s, "rate", &filter->from_samplerate);
others = gst_caps_get_structure (newcaps, 0);
gst_structure_get_int (others, "rate", &filter->to_samplerate);

}

return TRUE;
}

static GstFlowReturn
gst_my_filter_chain (GstPad *pad,

GstBuffer *buf)
{

40

Chapter 10. Caps negotiation

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
GstBuffer *out;

/* push on if in passthrough mode */
if (filter->passthrough)

return gst_pad_push (filter->srcpad, buf);

/* convert, push */
out = gst_my_filter_convert (filter, buf);
gst_buffer_unref (buf);

return gst_pad_push (filter->srcpad, out);
}

10.3.2. Parsing and setting caps

Other elements, such as certain types of decoders, will not be able to parse the caps from their input,
simply because the input format does not contain the information required to know the output format yet;
rather, the data headers need to be parsed, too. In many cases, fixed-caps will be enough, but in some
cases, particularly in cases where such decoders are renegotiable, it is also possible to use full caps
negotiation.

Fortunately, the code required to do so is very similar to thelast code example in
Negotiating caps embedded in input caps, with the difference being that the caps is selected in the
_chain ()-function rather than in the_setcaps ()-function. The rest, as for getting all allowed caps
from the source pad, fixating and such, is all the same. Re-negotiation, which will be handled in the next
section, is very different for such elements, though.

10.4. Upstream caps (re)negotiation

Upstream negotiation’s primary use is to renegotiate (partof) an already-negotiated pipeline to a new
format. Some practical examples include to select a different video size because the size of the video
window changed, and the video output itself is not capable ofrescaling, or because the audio channel
configuration changed.

Upstream caps renegotiation is done in thegst_pad_alloc_buffer ()-function. The idea here is that
an element requesting a buffer from downstream, has to specify the type of that buffer. If renegotiation is
to take place, this type will no longer apply, and the downstream element will set a new caps on the
provided buffer. The element should then reconfigure itselfto push buffers with the returned caps. The
source pad’s setcaps will be called once the buffer is pushed.

41

Chapter 10. Caps negotiation

It is important to note here that different elements actually have different responsibilities here:

• Elements should implement a “padalloc”-function in order to be able to change format on
renegotiation. This is also true for filters and converters.

• Elements should allocate new buffers usinggst_pad_alloc_buffer ().

• Elements that are renegotiable should implement a “setcaps”-function on their sourcepad as well.

Unfortunately, not all details here have been worked out yet, so this documentation is incomplete.
FIXME.

10.5. Implementing a getcaps function

A _getcaps ()-function is called when a peer element would like to know which formats this element
supports, and in what order of preference. The return value should be all formats that this elements
supports, taking into account limitations of peer elementsfurther downstream or upstream, sorted by
order of preference, highest preference first.

static GstCaps *
gst_my_filter_getcaps (GstPad *pad)
{

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
GstPad *otherpad = (pad == filter->srcpad) ? filter->sinkpad :

filter->srcpad;
GstCaps *othercaps = gst_pad_get_allowed_caps (otherpad), *caps;
gint i;

/* We support *any* samplerate, indifferent from the samplerate

* supported by the linked elements on both sides. */
for (i = 0; i < gst_caps_get_size (othercaps); i++) {

GstStructure *structure = gst_caps_get_structure (othercaps, i);

gst_structure_remove_field (structure, "rate");
}
caps = gst_caps_intersect (othercaps, gst_pad_get_pad_template_caps (pad));
gst_caps_unref (othercaps);

return caps;
}

Using all the knowledge you’ve acquired by reading this chapter, you should be able to write an element
that does correct caps negotiation. If in doubt, look at other elements of the same type in our git
repository to get an idea of how they do what you want to do.

42

Chapter 11. Different scheduling modes

Scheduling is, in short, a method for making sure that every element gets called once in a while to
process data and prepare data for the next element. Likewise, a kernel has a scheduler for processes, and
your brain is a very complex scheduler too in a way. Randomly calling elements’ chain functions won’t
bring us far, however, so you’ll understand that the schedulers in GStreamer are a bit more complex than
this. However, as a start, it’s a nice picture.

So far, we have only discussed_chain ()-operating elements, i.e. elements that have a chain-function
set on their sink pad and push buffers on their source pad(s).Pads (or elements) can also operate in two
other scheduling modes, however. In this chapter, we will discuss what those scheduling modes are, how
they can be enabled and in what cases they are useful. The other two scheduling modes are random
access (_getrange ()-based) or task-runner (which means that this element is thedriving force in the
pipeline) mode.

11.1. The pad activation stage

The stage in which GStreamer decides in what scheduling modethe various elements will operate, is
called the pad-activation stage. In this stage, GStreamer will query the scheduling capabilities (i.e. it will
see in what modes each particular element/pad can operate) and decide on the optimal scheduling
composition for the pipeline. Next, each pad will be notifiedof the scheduling mode that was assigned to
it, and after that the pipeline will start running.

Pads can be assigned one of three modes, each mode putting several prerequisites on the pads. Pads
should implement a notification function (gst_pad_set_activatepull_function () and
gst_pad_set_activatepush_function ()) to be notified of the scheduling mode assignment.
Also, sinkpads assigned to do pull-based scheduling mode should start and stop their task in this function.

• If all pads of an element are assigned to do “push”-based scheduling, then this means that data will be
pushed by upstream elements to this element using the sinkpads_chain ()-function. Prerequisites
for this scheduling mode are that a chain-function was set for each sinkpad
usinggst_pad_set_chain_function () and that all downstream elements operate in the same
mode. Pads are assigned to do push-based scheduling in sink-to-source element order, and within an
element first sourcepads and then sinkpads. Sink elements can operate in this mode if their sinkpad is
activated for push-based scheduling. Source elements cannot be chain-based.

• Alternatively, sinkpads can be the driving force behind a pipeline by operating in “pull”-based mode,
while the sourcepads of the element still operate in push-based mode. In order to be the driving force,
those pads start aGstTask when their pads are being activated. This task is a thread, which will call a
function specified by the element. When called, this function will have random data access (through
gst_pad_get_range ()) over all sinkpads, and can push data over the sourcepads, which
effectively means that this element controls data flow in thepipeline. Prerequisites for this mode are
that all downstream elements can act in chain-based mode, and that all upstream elements allow
random access (see below). Source elements can be told to actin this mode if their sourcepads are

43

Chapter 11. Different scheduling modes

activated in push-based fashion. Sink elements can be told to act in this mode when their sinkpads are
activated in pull-mode.

• lastly, all pads in an element can be assigned to act in pull-mode. too. However, contrary to the above,
this does not mean that they start a task on their own. Rather,it means that they are pull slave for the
downstream element, and have to provide random data access to it from their_get_range
()-function. Requirements are that the a_get_range ()-function was set on this pad using the
functiongst_pad_set_getrange_function (). Also, if the element has any sinkpads, all those
pads (and thereby their peers) need to operate in random access mode, too. Note that the element is
supposed to activate those elements itself! GStreamer willnot do that for you.

In the next two sections, we will go closer into pull-based scheduling (elements/pads driving the
pipeline, and elements/pads providing random access), andsome specific use cases will be given.

11.2. Pads driving the pipeline

Sinkpads assigned to operate in pull-based mode, while noneof its sourcepads operate in pull-based
mode (or it has no sourcepads), can start a task that will drive the pipeline data flow. Within this function,
those elements have random access over all of their sinkpads, and push data over their sourcepads. This
can come in useful for several different kinds of elements:

• Demuxers, parsers and certain kinds of decoders where data comes in unparsed (such as MPEG-audio
or video streams), since those will prefer byte-exact (random) access from their input. If possible,
however, such elements should be prepared to operate in chain-based mode, too.

• Certain kind of audio outputs, which require control over their input data flow, such as the Jack sound
server.

In order to start this task, you will need to create it in the activation function.

#include "filter.h"
#include <string.h>

static gboolean gst_my_filter_activate (GstPad * pad);
static gboolean gst_my_filter_activate_pull (GstPad * pad,

gboolean active);
static void gst_my_filter_loop (GstMyFilter * filter);

GST_BOILERPLATE (GstMyFilter, gst_my_filter, GstElement, GST_TYPE_ELEMENT);

static void
gst_my_filter_init (GstMyFilter * filter)
{

[..]

44

Chapter 11. Different scheduling modes

gst_pad_set_activate_function (filter->sinkpad, gst_my_filter_activate);
gst_pad_set_activatepull_function (filter->sinkpad,

gst_my_filter_activate_pull);

[..]
}

[..]

static gboolean
gst_my_filter_activate (GstPad * pad)
{

if (gst_pad_check_pull_range (pad)) {
return gst_pad_activate_pull (pad, TRUE);

} else {
return FALSE;

}
}

static gboolean
gst_my_filter_activate_pull (GstPad *pad,

gboolean active)
{

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

if (active) {
filter->offset = 0;
return gst_pad_start_task (pad,

(GstTaskFunction) gst_my_filter_loop, filter);
} else {

return gst_pad_stop_task (pad);
}

}

Once started, your task has full control over input and output. The most simple case of a task function is
one that reads input and pushes that over its source pad. It’snot all that useful, but provides some more
flexibility than the old chain-based case that we’ve been looking at so far.

#define BLOCKSIZE 2048

static void
gst_my_filter_loop (GstMyFilter * filter)
{

GstFlowReturn ret;
guint64 len;
GstFormat fmt = GST_FORMAT_BYTES;
GstBuffer *buf = NULL;

if (!gst_pad_query_duration (filter->sinkpad, &fmt, &len)) {
GST_DEBUG_OBJECT (filter, "failed to query duration, pausing");

45

Chapter 11. Different scheduling modes

goto stop;
}

if (filter->offset >= len) {
GST_DEBUG_OBJECT (filter, "at end of input, sending EOS, pausing");
gst_pad_push_event (filter->srcpad, gst_event_new_eos ());
goto stop;

}

/* now, read BLOCKSIZE bytes from byte offset filter->offset */
ret = gst_pad_pull_range (filter->sinkpad, filter->offset,

BLOCKSIZE, &buf);

if (ret != GST_FLOW_OK) {
GST_DEBUG_OBJECT (filter, "pull_range failed: %s", gst_flow_get_name (ret));
goto stop;

}

/* now push buffer downstream */
ret = gst_pad_push (filter->srcpad, buf);

buf = NULL; /* gst_pad_push() took ownership of buffer */

if (ret != GST_FLOW_OK) {
GST_DEBUG_OBJECT (filter, "pad_push failed: %s", gst_flow_get_name (ret));
goto stop;

}

/* everything is fine, increase offset and wait for us to be called again */
filter->offset += BLOCKSIZE;
return;

stop:
GST_DEBUG_OBJECT (filter, "pausing task");
gst_pad_pause_task (filter->sinkpad);

}

11.3. Providing random access

In the previous section, we have talked about how elements (or pads) that are assigned to drive the
pipeline using their own task, have random access over theirsinkpads. This means that all elements
linked to those pads (recursively) need to provide random access functions. Requesting random access is
done using the functiongst_pad_pull_range (), which requests a buffer of a specified size and
offset. Source pads implementing and assigned to do random access will have a_get_range
()-function set usinggst_pad_set_getrange_function (), and that function will be called when
the peer pad requests some data. The element is then responsible for seeking to the right offset and
providing the requested data. Several elements can implement random access:

46

Chapter 11. Different scheduling modes

• Data sources, such as a file source, that can provide data fromany offset with reasonable low latency.

• Filters that would like to provide a pull-based-like scheduling mode over the whole pipeline. Note that
elements assigned to do random access-based scheduling arethemselves responsible for assigning this
scheduling mode to their upstream peers! GStreamer will notdo that for you.

• Parsers who can easily provide this by skipping a small part of their input and are thus essentially
"forwarding" random access requests literally without anyown processing involved. Examples include
tag readers (e.g. ID3) or single output parsers, such as a WAVE parser.

The following example will show how a_get_range ()-function can be implemented in a source
element:

#include "filter.h"
static GstFlowReturn

gst_my_filter_get_range (GstPad * pad,
guint64 offset,
guint length,
GstBuffer ** buf);

GST_BOILERPLATE (GstMyFilter, gst_my_filter, GstElement, GST_TYPE_ELEMENT);

static void
gst_my_filter_init (GstMyFilter * filter)
{

GstElementClass *klass = GST_ELEMENT_GET_CLASS (filter);

filter->srcpad = gst_pad_new_from_template (
gst_element_class_get_pad_template (klass, "src"), "src");

gst_pad_set_getrange_function (filter->srcpad,
gst_my_filter_get_range);

gst_element_add_pad (GST_ELEMENT (filter), filter->srcpad);

[..]
}

static gboolean
gst_my_filter_get_range (GstPad * pad,

guint64 offset,
guint length,
GstBuffer ** buf)

{

GstMyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

[.. here, you would fill *buf ..]

return GST_FLOW_OK;
}

47

Chapter 11. Different scheduling modes

In practice, many elements that could theoretically do random access, may in practice often be assigned
to do push-based scheduling anyway, since there is no downstream element able to start its own task.
Therefore, in practice, those elements should implement both a_get_range ()-function and a_chain
()-function (for filters and parsers) or a_get_range ()-function and be prepared to start their own
task by providing_activate_* ()-functions (for source elements), so that GStreamer can decide for
the optimal scheduling mode and have it just work fine in practice.

48

Chapter 12. Types and Properties

There is a very large set of possible types that may be used to pass data between elements. Indeed, each
new element that is defined may use a new data format (though unless at least one other element
recognises that format, it will be most likely be useless since nothing will be able to link with it).

In order for types to be useful, and for systems like autopluggers to work, it is necessary that all elements
agree on the type definitions, and which properties are required for each type. The GStreamer framework
itself simply provides the ability to define types and parameters, but does not fix the meaning of types
and parameters, and does not enforce standards on the creation of new types. This is a matter for a policy
to decide, not technical systems to enforce.

For now, the policy is simple:

• Do not create a new type if you could use one which already exists.

• If creating a new type, discuss it first with the other GStreamer developers, on at least one of: IRC,
mailing lists.

• Try to ensure that the name for a new format is as unlikely to conflict with anything else created
already, and is not a more generalised name than it should be.For example: "audio/compressed"
would be too generalised a name to represent audio data compressed with an mp3 codec. Instead
"audio/mp3" might be an appropriate name, or "audio/compressed" could exist and have a property
indicating the type of compression used.

• Ensure that, when you do create a new type, you specify it clearly, and get it added to the list of known
types so that other developers can use the type correctly when writing their elements.

12.1. Building a Simple Format for Testing

If you need a new format that has not yet been defined in ourList of Defined Types, you will want to
have some general guidelines on mimetype naming, properties and such. A mimetype would ideally be
one defined by IANA; else, it should be in the form type/x-name, where type is the sort of data this
mimetype handles (audio, video, ...) and name should be something specific for this specific type. Audio
and video mimetypes should try to support the general audio/video properties (see the list), and can use
their own properties, too. To get an idea of what properties we think are useful, see (again) the list.

Take your time to find the right set of properties for your type. There is no reason to hurry. Also,
experimenting with this is generally a good idea. Experience learns that theoretically thought-out types
are good, but they still need practical use to assure that they serve their needs. Make sure that your
property names do not clash with similar properties used in other types. If they match, make sure they
mean the same thing; properties with different types but thesame names arenot allowed.

49

Chapter 12. Types and Properties

12.2. Typefind Functions and Autoplugging

With only definingthe types, we’re not yet there. In order for a random data file to be recognized and
played back as such, we need a way of recognizing their type out of the blue. For this purpose,
“typefinding” was introduced. Typefinding is the process of detecting the type of a data stream.
Typefinding consists of two separate parts: first, there’s anunlimited number of functions that we call
typefind functions, which are each able to recognize one or more types from an input stream. Then,
secondly, there’s a small engine which registers and calls each of those functions. This is the typefind
core. On top of this typefind core, you would normally write anautoplugger, which is able to use this
type detection system to dynamically build a pipeline around an input stream. Here, we will focus only
on typefind functions.

A typefind function usually lives in
gst-plugins-base/gst/typefind/gsttypefindfunctions.c, unless there’s a good reason (like
library dependencies) to put it elsewhere. The reason for this centralization is to reduce the number of
plugins that need to be loaded in order to detect a stream’s type. Below is an example that will recognize
AVI files, which start with a “RIFF” tag, then the size of the file and then an “AVI ” tag:

static void
gst_my_typefind_function (GstTypeFind *tf,

gpointer data)
{

guint8 *data = gst_type_find_peek (tf, 0, 12);

if (data &&
GUINT32_FROM_LE (&((guint32 *) data)[0]) == GST_MAKE_FOURCC (’R’,’I’,’F’,’F’) &&
GUINT32_FROM_LE (&((guint32 *) data)[2]) == GST_MAKE_FOURCC (’A’,’V’,’I’,’ ’)) {

gst_type_find_suggest (tf, GST_TYPE_FIND_MAXIMUM,
gst_caps_new_simple ("video/x-msvideo", NULL));

}
}

static gboolean
plugin_init (GstPlugin *plugin)
{

static gchar *exts[] = { "avi", NULL };
if (!gst_type_find_register (plugin, "", GST_RANK_PRIMARY,

gst_my_typefind_function, exts,
gst_caps_new_simple ("video/x-msvideo",
NULL), NULL))

return FALSE;
}

Note thatgst-plugins/gst/typefind/gsttypefindfunctions.c has some simplification
macros to decrease the amount of code. Make good use of those if you want to submit typefinding
patches with new typefind functions.

50

Chapter 12. Types and Properties

Autoplugging has been discussed in great detail in the Application Development Manual.

12.3. List of Defined Types

Below is a list of all the defined types in GStreamer. They are split up in separate tables for audio, video,
container, subtitle and other types, for the sake of readability. Below each table might follow a list of
notes that apply to that table. In the definition of each type,we try to follow the types and rules as
defined by IANA (http://www.iana.org/assignments/media-types) for as far as possible.

Jump directly to a specific table:

• Table of Audio Types

• Table of Video Types

• Table of Container Types

• Table of Subtitle Types

• Table of Other Types

Note that many of the properties are notrequired, but ratheroptionalproperties. This means that most of
these properties can be extracted from the container header, but that - in case the container header does
not provide these - they can also be extracted by parsing the stream header or the stream content. The
policy is that your element should provide the data that it knows about by only parsing its own content,
not another element’s content. Example: the AVI header provides samplerate of the contained audio
stream in the header. MPEG system streams don’t. This means that an AVI stream demuxer would
provide samplerate as a property for MPEG audio streams, whereas an MPEG demuxer would not. A
decoder needing this data would require a stream parser in between two extract this from the header or
calculate it from the stream.

Table 12-1. Table of Audio Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

All audio types.

audio/* All
audio
types

rate integer greater
than 0

The sample rate of the data, in samples (per channel)
per second.

channelsinteger greater
than 0

The number of channels of audio data.

All raw audio types.

51

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
raw-int

Un-
struc-
tured
and
uncom-
pressed
raw
fixed-
integer
audio
data.

endiannessinteger G_BIG_ENDIAN
(4321)
or
G_LITTLE_ENDIAN
(1234)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (1234) means “little-endian”
(byte-order is “least significant byte first”). The value
G_BIG_ENDIAN (4321) means “big-endian” (byte
order is “most significant byte first”).

signed boolean TRUE
or
FALSE

Whether the values of the integer samples are signed or
not. Signed samples use one bit to indicate sign
(negative or positive) of the value. Unsigned samples
are always positive.

width integer greater
than 0

Number of bits allocated per sample.

depth integer greater
than 0

The number of bits used per sample. This must be less
than or equal to the width: If the depth is less than the
width, the low bits are assumed to be the ones used. For
example, a width of 32 and a depth of 24 means that
each sample is stored in a 32 bit word, but only the low
24 bits are actually used.

audio/x-
raw-
float

Un-
struc-
tured
and
uncom-
pressed
raw
floating-
point
audio
data.

endiannessinteger G_BIG_ENDIAN
(4321)
or
G_LITTLE_ENDIAN
(1234)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (1234) means “little-endian”
(byte-order is “least significant byte first”). The value
G_BIG_ENDIAN (4321) means “big-endian” (byte
order is “most significant byte first”).

width integer greater
than 0

The
amount
of bits
used
and al-
located
per
sample.

All encoded audio types.

52

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
ac3

AC-3
or A52
audio
streams.

There are currently no specific properties defined or
needed for this type.

audio/x-
adpcm

ADPCM
Audio
streams.

layout string
“quick-
time”,
“dvi”,
“mi-
crosoft”
or
“4xm”.

The layout defines the packing of the samples in the
stream. In ADPCM, most formats store multiple
samples per channel together. This number of samples
differs per format, hence the different layouts. On the
long term, we probably want this variable to die and use
something more descriptive, but this will do for now.

block_aligninteger Any Chunk buffer size.

audio/x-
cinepak

Audio
as pro-
vided
in a
Cinepak
(Quick-
time)
stream.

There are currently no specific properties defined or
needed for this type.

audio/x-
dv

Audio
as pro-
vided
in a
Digital
Video
stream.

There are currently no specific properties defined or
needed for this type.

audio/x-
flac

Free
Loss-
less
Audio
codec
(FLAC).

There are currently no specific properties defined or
needed for this type.

53

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
gsm

Data
en-
coded
by the
GSM
codec.

There are currently no specific properties defined or
needed for this type.

audio/x-
alaw

A-Law
Audio.

There are currently no specific properties defined or
needed for this type.

audio/x-
mulaw

Mu-
Law
Audio.

There are currently no specific properties defined or
needed for this type.

audio/x-
mace

MACE
Audio
(used in
Quick-
time).

maceversioninteger 3 or 6 The version of the MACE audio codec used to encode
the stream.

audio/mpegAudio
data
com-
pressed
using
the
MPEG
audio
encod-
ing
scheme.

mpegversioninteger 1, 2 or
4

The MPEG-version used for encoding the data. The
value 1 refers to MPEG-1, -2 and -2.5 layer 1, 2 or 3.
The values 2 and 4 refer to the MPEG-AAC audio
encoding schemes.

framed boolean 0 or 1 A true value indicates that each buffer contains exactly
one frame. A false value indicates that frames and
buffers do not necessarily match up.

layer integer 1, 2, or
3

The compression scheme layer used to compress the
data(only if mpegversion=1).

bitrate integer greater
than 0

The bitrate, in bits per second. For VBR (variable
bitrate) MPEG data, this is the average bitrate.

audio/x-
qdm2

Data
en-
coded
by the
QDM
version
2
codec.

There are currently no specific properties defined or
needed for this type.

54

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
pn-
realaudio

Realmedia
Audio
data.

raversioninteger 1 or 2 The version of the Real Audio codec used to encode
the stream. 1 stands for a 14k4 stream, 2 stands for a
28k8 stream.

audio/x-
speex

Data
en-
coded
by the
Speex
audio
codec

There are currently no specific properties defined or
needed for this type.

audio/x-
vorbis

Vorbis
audio
data

There are currently no specific properties defined or
needed for this type.

audio/x-
wma

Windows
Media
Audio

wmaversioninteger 1,2 or 3 The version of the WMA codec used to encode the
stream.

audio/x-
paris

Ensoniq
PARIS
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
svx

Amiga
IFF /
SVX8 /
SV16
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
nist

Sphere
NIST
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
voc

Sound
Blaster
VOC
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
ircam

Berkeley/IRCAM/CARL
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
w64

Sonic
Foundry’s
64 bit
RIFF/WAV

There are currently no specific properties defined or
needed for this type.

55

Chapter 12. Types and Properties

Table 12-2. Table of Video Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

All video types.

video/* All
video
types

width integer greater
than 0

The width of the video image

height integer greater
than 0

The height of the video image

frameratefraction greater
or
equal 0

The (average) framerate in frames per second. Note
that this property does not guarantee inanyway that it
will actually come close to this value. If you need a
fixed framerate, please use an element that provides that
(such as “videodrop”). 0 means a variable framerate.

All raw video types.

video/x-
raw-
yuv

YUV
(or
Y’Cb’Cr)
video
format.

format fourcc YUY2,
YVYU,
UYVY,
Y41P,
IYU2,
Y42B,
YV12,
I420,
Y41B,
YUV9,
YVU9,
Y800

The layout of the video. See FourCC definition site
(http://www.fourcc.org/) for references and definitions.
YUY2, YVYU and UYVY are 4:2:2 packed-pixel,
Y41P is 4:1:1 packed-pixel and IYU2 is 4:4:4
packed-pixel. Y42B is 4:2:2 planar, YV12 and I420 are
4:2:0 planar, Y41B is 4:1:1 planar and YUV9 and
YVU9 are 4:1:0 planar. Y800 contains Y-samples only
(black/white).

video/x-
raw-rgb

Red-
Green-
Blue
(RBG)
video.

bpp integer greater
than 0

The number of bits allocated per pixel. This is usually
16, 24 or 32.

depth integer greater
than 0

The number of bits used per pixel by the R/G/B
components. This is usually 15, 16 or 24.

endiannessinteger G_BIG_ENDIAN
(4321)
or
G_LITTLE_ENDIAN
(1234)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (1234) means “little-endian”
(byte-order is “least significant byte first”). The value
G_BIG_ENDIAN (4321) means “big-endian” (byte
order is “most significant byte first”). For 24/32bpp,
this should always be big endian because the byte order
can be given in both.

red_mask,
green_mask
and
blue_mask

integer any The masks that cover all the bits used by each of the
samples. The mask should be given in the endianness
specified above. This means that for 24/32bpp, the
masks might be opposite to host byte order (if you are
working on little-endian computers).

All encoded video types.

56

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

video/x-
3ivx

3ivx
video.

There are currently no specific properties defined or
needed for this type.

video/x-
divx

DivX
video.

divxversioninteger 3, 4 or
5

Version of the DivX codec used to encode the stream.

video/x-
dv

Digital
Video.

systemstreamboolean FALSE Indicates that this stream isnot a system container
stream.

video/x-
ffv

FFMpeg
video.

ffvversioninteger 1 Version of the FFMpeg video codec used to encode the
stream.

video/x-
h263

H-263
video.

variant string itu,
lead,
mi-
crosoft,
vdolive,
vivo,
xirlink

Vendor specific variant of the format. ’itu’ is the
standard.

h263versionstring h263,
h263p,
h263pp

Enhanced versions of the h263 codec.

video/x-
h264

H-264
video.

variant string itu,
videosoft

Vendor specific variant of the format. ’itu’ is the
standard.

video/x-
huffyuv

Huffyuv
video.

There are currently no specific properties defined or
needed for this type.

video/x-
indeo

Indeo
video.

indeoversioninteger 3 Version of the Indeo codec used to encode this stream.

video/x-
intel-
h263

H-263
video.

variant string intel Vendor specific variant of the format.

video/x-
jpeg

Motion-
JPEG
video.

There are currently no specific properties defined or
needed for this type. Note that video/x-jpeg only
applies to Motion-JPEG pictures (YUY2 colourspace).
RGB colourspace JPEG images are referred to as
image/jpeg (JPEG image).

57

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

video/mpegMPEG
video.

mpegversioninteger 1, 2 or
4

Version of the MPEG codec that this stream was
encoded with. Note that we have different mimetypes
for 3ivx, XviD, DivX and "standard" ISO MPEG-4.
This isnot a good thing and we’re fully aware of this.
However, we do not have a solution yet.

systemstreamboolean FALSE Indicates that this stream isnot a system container
stream.

video/x-
msmpeg

Microsoft
MPEG-
4 video
devia-
tions.

msmpegversioninteger 41, 42
or 43

Version of the MS-MPEG-4-like codec that was used
to encode this version. A value of 41 refers to MS
MPEG 4.1, 42 to 4.2 and 43 to version 4.3.

video/x-
msvideocodec

Microsoft
Video 1
(oldish
codec).

msvideoversioninteger 1 Version of the codec - always 1.

video/x-
pn-
realvideo

Realmedia
video.

rmversioninteger 1, 2 or
3

Version of the Real Video codec that this stream was
encoded with.

video/x-
rle

RLE
anima-
tion
format.

layout string "microsoft"
or
"quick-
time"

The RLE format inside the Microsoft AVI container
has a different byte layout than the RLE format inside
Apple’s Quicktime container; this property keeps track
of the layout.

depth integer 1 to 64 Bit depth of the used palette. This means that the
palette that belongs to this format defines 2^depth
colors.

palette_dataGstBuffer Buffer containing a color palette (in native-endian
RGBA) used by this format. The buffer is of size
4*2^depth.

video/x-
svq

Sorensen
Video.

svqversioninteger 1 or 3 Version of the Sorensen codec that the stream was
encoded with.

video/x-
tarkin

Tarkin
video.

There are currently no specific properties defined or
needed for this type.

video/x-
theora

Theora
video.

There are currently no specific properties defined or
needed for this type.

58

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

video/x-
vp3

VP-3
video.

There are currently no specific properties defined or
needed for this type. Note that we have different
mimetypes for VP-3 and Theora, which is not
necessarily a good idea. This could probably be
improved.

video/x-
wmv

Windows
Media
Video

wmvversioninteger 1,2 or 3 Version of the WMV codec that the stream was
encoded with.

video/x-
xvid

XviD
video.

There are currently no specific properties defined or
needed for this type.

All image types.

image/gifGraphics
Inter-
change
Format.

There are currently no specific properties defined or
needed for this type.

image/jpegJoint
Picture
Expert
Group
Image.

There are currently no specific properties defined or
needed for this type. Note that image/jpeg only applies
to RGB-colourspace JPEG images; YUY2-colourspace
JPEG pictures are referred to as video/x-jpeg ("Motion
JPEG").

image/pngPortable
Net-
work
Graph-
ics
Image.

There are currently no specific properties defined or
needed for this type.

image/tiffTagged
Image
File
Format.

There are currently no specific properties defined or
needed for this type.

Table 12-3. Table of Container Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

59

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

video/x-
ms-asf

Advanced
Stream-
ing
Format
(ASF).

There are currently no specific properties defined or
needed for this type.

video/x-
msvideo

AVI. There are currently no specific properties defined or
needed for this type.

video/x-
dv

Digital
Video.

systemstreamboolean TRUE Indicates that this is a container system stream rather
than an elementary video stream.

video/x-
matroska

Matroska. There are currently no specific properties defined or
needed for this type.

video/mpegMotion
Pic-
tures
Expert
Group
System
Stream.

systemstreamboolean TRUE Indicates that this is a container system stream rather
than an elementary video stream.

application/oggOgg. There are currently no specific properties defined or
needed for this type.

video/quicktimeQuicktime. There are currently no specific properties defined or
needed for this type.

application/vnd.rn-
realmedia

RealMedia. There are currently no specific properties defined or
needed for this type.

audio/x-
wav

WAV. There are currently no specific properties defined or
needed for this type.

Table 12-4. Table of Subtitle Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

None defined yet.

Table 12-5. Table of Other Types

60

Chapter 12. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

None defined yet.

61

Chapter 13. Request and Sometimes pads

Until now, we’ve only dealt with pads that are always available. However, there’s also pads that are only
being created in some cases, or only if the application requests the pad. The first is called asometimes;
the second is called arequestpad. The availability of a pad (always, sometimes or request) can be seen in
a pad’s template. This chapter will discuss when each of the two is useful, how they are created and when
they should be disposed.

13.1. Sometimes pads

A “sometimes” pad is a pad that is created under certain conditions, but not in all cases. This mostly
depends on stream content: demuxers will generally parse the stream header, decide what elementary
(video, audio, subtitle, etc.) streams are embedded insidethe system stream, and will then create a
sometimes pad for each of those elementary streams. At its own choice, it can also create more than one
instance of each of those per element instance. The only limitation is that each newly created pad should
have a unique name. Sometimes pads are disposed when the stream data is disposed, too (i.e. when going
from PAUSED to the READY state). You shouldnot dispose the pad on EOS, because someone might
re-activate the pipeline and seek back to before the end-of-stream point. The stream should still stay
valid after EOS, at least until the stream data is disposed. In any case, the element is always the owner of
such a pad.

The example code below will parse a text file, where the first line is a number (n). The next lines all start
with a number (0 to n-1), which is the number of the source pad over which the data should be sent.

3
0: foo
1: bar
0: boo
2: bye

The code to parse this file and create the dynamic “sometimes”pads, looks like this:

typedef struct _GstMyFilter {
[..]

gboolean firstrun;
GList *srcpadlist;

} GstMyFilter;

static void
gst_my_filter_base_init (GstMyFilterClass *klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
static GstStaticPadTemplate src_factory =
GST_STATIC_PAD_TEMPLATE (

62

Chapter 13. Request and Sometimes pads

"src_%02d",
GST_PAD_SRC,
GST_PAD_SOMETIMES,
GST_STATIC_CAPS ("ANY")

);
[..]

gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&src_factory));

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{
[..]

filter->firstrun = TRUE;
filter->srcpadlist = NULL;

}

/*
* Get one line of data - without newline.

*/

static GstBuffer *
gst_my_filter_getline (GstMyFilter *filter)
{

guint8 *data;
gint n, num;

/* max. line length is 512 characters - for safety */
for (n = 0; n < 512; n++) {

num = gst_bytestream_peek_bytes (filter->bs, &data, n + 1);
if (num != n + 1)
return NULL;

/* newline? */
if (data[n] == ’\n’) {
GstBuffer *buf = gst_buffer_new_and_alloc (n + 1);

gst_bytestream_peek_bytes (filter->bs, &data, n);
memcpy (GST_BUFFER_DATA (buf), data, n);
GST_BUFFER_DATA (buf)[n] = ’\0’;
gst_bytestream_flush_fast (filter->bs, n + 1);

return buf;
}

}
}

static void
gst_my_filter_loopfunc (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);

63

Chapter 13. Request and Sometimes pads

GstBuffer *buf;
GstPad *pad;
gint num, n;

/* parse header */
if (filter->firstrun) {

GstElementClass *klass;
GstPadTemplate *templ;
gchar *padname;

if (!(buf = gst_my_filter_getline (filter))) {
gst_element_error (element, STREAM, READ, (NULL),

("Stream contains no header"));
return;

}
num = atoi (GST_BUFFER_DATA (buf));
gst_buffer_unref (buf);

/* for each of the streams, create a pad */
klass = GST_ELEMENT_GET_CLASS (filter);
templ = gst_element_class_get_pad_template (klass, "src_%02d");
for (n = 0; n < num; n++) {
padname = g_strdup_printf ("src_%02d", n);
pad = gst_pad_new_from_template (templ, padname);
g_free (padname);

/* here, you would set _getcaps () and _link () functions */

gst_element_add_pad (element, pad);
filter->srcpadlist = g_list_append (filter->srcpadlist, pad);

}
}

/* and now, simply parse each line and push over */
if (!(buf = gst_my_filter_getline (filter))) {

GstEvent *event = gst_event_new (GST_EVENT_EOS);
GList *padlist;

for (padlist = srcpadlist;
padlist != NULL; padlist = g_list_next (padlist)) {

pad = GST_PAD (padlist->data);
gst_event_ref (event);
gst_pad_push (pad, GST_DATA (event));

}
gst_event_unref (event);
gst_element_set_eos (element);

return;
}

/* parse stream number and go beyond the ’:’ in the data */
num = atoi (GST_BUFFER_DATA (buf));
if (num >= 0 && num < g_list_length (filter->srcpadlist)) {

64

Chapter 13. Request and Sometimes pads

pad = GST_PAD (g_list_nth_data (filter->srcpadlist, num);

/* magic buffer parsing foo */
for (n = 0; GST_BUFFER_DATA (buf)[n] != ’:’ &&

GST_BUFFER_DATA (buf)[n] != ’\0’; n++) ;
if (GST_BUFFER_DATA (buf)[n] != ’\0’) {
GstBuffer *sub;

/* create subbuffer that starts right past the space. The reason

* that we don’t just forward the data pointer is because the

* pointer is no longer the start of an allocated block of memory,

* but just a pointer to a position somewhere in the middle of it.

* That cannot be freed upon disposal, so we’d either crash or have

* a memleak. Creating a subbuffer is a simple way to solve that. */
sub = gst_buffer_create_sub (buf, n + 1, GST_BUFFER_SIZE (buf) - n - 1);
gst_pad_push (pad, GST_DATA (sub));

}
}
gst_buffer_unref (buf);

}

Note that we use a lot of checks everywhere to make sure that the content in the file is valid. This has two
purposes: first, the file could be erroneous, in which case we prevent a crash. The second and most
important reason is that - in extreme cases - the file could be used maliciously to cause undefined
behaviour in the plugin, which might lead to security issues. Alwaysassume that the file could be used to
do bad things.

13.2. Request pads

“Request” pads are similar to sometimes pads, except that request are created on demand of something
outside of the element rather than something inside the element. This concept is often used in muxers,
where - for each elementary stream that is to be placed in the output system stream - one sink pad will be
requested. It can also be used in elements with a variable number of input or outputs pads, such as the
tee (multi-output),switch or aggregator (both multi-input) elements. At the time of writing this, itis
unclear to me who is responsible for cleaning up the created pad and how or when that should be done.
Below is a simple example of an aggregator based on request pads.

static GstPad * gst_my_filter_request_new_pad (GstElement *element,
GstPadTemplate *templ,
const gchar *name);

static void
gst_my_filter_base_init (GstMyFilterClass *klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

65

Chapter 13. Request and Sometimes pads

static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (

"sink_%d",
GST_PAD_SINK,
GST_PAD_REQUEST,
GST_STATIC_CAPS ("ANY")

);
[..]

gst_element_class_add_pad_template (klass,
gst_static_pad_template_get (&sink_factory));

}

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
[..]

element_class->request_new_pad = gst_my_filter_request_new_pad;
}

static GstPad *
gst_my_filter_request_new_pad (GstElement *element,

GstPadTemplate *templ,
const gchar *name)

{
GstPad *pad;
GstMyFilterInputContext *context;

context = g_new0 (GstMyFilterInputContext, 1);
pad = gst_pad_new_from_template (templ, name);
gst_pad_set_element_private (pad, context);

/* normally, you would set _link () and _getcaps () functions here */

gst_element_add_pad (element, pad);

return pad;
}

66

Chapter 14. Clocking

When playing complex media, each sound and video sample mustbe played in a specific order at a
specific time. For this purpose, GStreamer provides a synchronization mechanism.

14.1. Types of time

There are two kinds of time in GStreamer.Clock time is an absolute time. By contrast,element time is
the relative time, usually to the start of the current media stream. The element time represents the time
that should have a media sample that is being processed by theelement at this time. The element time is
calculated by adding an offset to the clock time.

14.2. Clocks

GStreamer can use different clocks. Though the system time can be used as a clock, soundcards and
other devices provides a better time source. For this reasonsome elements provide a clock. The method
get_clock is implemented in elements that provide one.

As clocks return an absolute measure of time, they are not usually used directly. Instead, a reference to a
clock is stored in any element that needs it, and it is used internally by GStreamer to calculate the
element time.

14.3. Flow of data between elements and time

Now we will see how time information travels the pipeline in different states.

The pipeline starts playing. The source element typically knows the time of each sample.1 First, the
source element sends a discontinuous event. This event carries information about the current relative
time of the next sample. This relative time is arbitrary, butit must be consistent with the timestamp that
will be placed in buffers. It is expected to be the relative time to the start of the media stream, or
whatever makes sense in the case of each media. When receiving it, the other elements adjust their offset
of the element time so that this time matches the time writtenin the event.

Then the source element sends media samples in buffers. Thiselement places a timestamp in each buffer
saying when the sample should be played. When the buffer reaches the sink pad of the last element, this
element compares the current element time with the timestamp of the buffer. If the timestamp is higher or
equal it plays the buffer, otherwise it waits until the time to place the buffer arrives with
gst_element_wait().

67

Chapter 14. Clocking

If the stream is seeked, the next samples sent will have a timestamp that is not adjusted with the element
time. Therefore, the source element must send a discontinuous event.

14.4. Obligations of each element.

Let us clarify the contract between GStreamer and each element in the pipeline.

14.4.1. Source elements

Source elements (or parsers of formats that provide notion of time, such as MPEG, as explained above)
must place a timestamp in each buffer that they deliver. The origin of the time used is arbitrary, but it
must match the time delivered in the discontinuous event (see below). However, it is expected that the
origin is the origin of the media stream.

In order to initialize the element time of the rest of the pipeline, a source element must send a
discontinuous event before starting to play. In addition, after seeking, a discontinuous event must be sent,
because the timestamp of the next element does not match the element time of the rest of the pipeline.

14.4.2. Sink elements

If the element is intended to emit samples at a specific time (real time playing), the element should
require a clock, and thus implement the methodset_clock.

In addition, before playing each sample, if the current element time is less than the timestamp in the
sample, it wait until the current time arrives should callgst_element_wait() 2

Notes
1. Sometimes it is a parser element the one that knows the time, for instance if a pipeline contains a

filesrc element connected to a MPEG decoder element, the former is the one that knows the time of
each sample, because the knowledge of when to play each sample is embedded in the MPEG format.
In this case this element will be regarded as the source element for this discussion.

2. With some schedulers,gst_element_wait() blocks the pipeline. For instance, if there is one
audio sink element and one video sink element, while the audio element is waiting for a sample the
video element cannot play other sample. This behaviour is under discussion, and might change in a
future release.

68

Chapter 15. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough to control the parameters that affect the behaviour
of your element. When this is the case you can mark these parameters as being Controllable. Aware
applications can use the controller subsystem to dynamically adjust the property values over time.

15.1. Getting Started

The controller subsystem is contained within thegstcontroller library. You need to include the
header in your element’s source file:

...
#include <gst/gst.h>
#include <gst/controller/gstcontroller.h>
...

Even though thegstcontroller library may be linked into the host application, you should make sure
it is initialized in yourplugin_init function:

static gboolean
plugin_init (GstPlugin *plugin)
{

...
/* initialize library */
gst_controller_init (NULL, NULL);
...

}

It makes not sense for all GObject parameter to be real-time controlled. Therefore the next step is to
mark controllable parameters. This is done by using the special flagGST_PARAM_CONTROLLABLE. when
setting up GObject params in the_class_init method.

g_object_class_install_property (gobject_class, PROP_FREQ,
g_param_spec_double ("freq", "Frequency", "Frequency of test signal",

0.0, 20000.0, 440.0,
G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));

69

Chapter 15. Supporting Dynamic Parameters

15.2. The Data Processing Loop

In the last section we learned how to mark GObject params as controllable. Application developers can
then queue parameter changes for these parameters. The approach the controller subsystem takes is to
make plugins responsible for pulling the changes in. This requires just one action:

gst_object_sync_values(element,timestamp);

This call makes all parameter-changes for the given timestamp active by adjusting the GObject
properties of the element. Its up to the element to determinethe synchronisation rate.

15.2.1. The Data Processing Loop for Video Elements

For video processing elements it is the best to synchronise for every frame. That means one would add
thegst_object_sync_values() call described in the previous section to the data processing function
of the element.

15.2.2. The Data Processing Loop for Audio Elements

For audio processing elements the case is not as easy as for video processing elements. The problem here
is that audio has a much higher rate. For PAL video one will e.g. process 25 full frames per second, but
for standard audio it will be 44100 samples. It is rarely useful to synchronise controllable parameters that
often. The easiest solution is also to have just one synchronisation call per buffer processing. This makes
the control-rate depend on the buffer size.

Elements that need a specific control-rate need to break their data processing loop to synchronise every
n-samples.

70

Chapter 16. Interfaces

Previously, in the chapterAdding Arguments, we have introduced the concept of GObject properties of
controlling an element’s behaviour. This is very powerful,but it has two big disadvantages: first of all, it
is too generic, and second, it isn’t dynamic.

The first disadvantage is related to the customizability of the end-user interface that will be built to
control the element. Some properties are more important than others. Some integer properties are better
shown in a spin-button widget, whereas others would be better represented by a slider widget. Such
things are not possible because the UI has no actual meaning in the application. A UI widget that
represents a bitrate property is the same as a UI widget that represents the size of a video, as long as both
are of the sameGParamSpec type. Another problem, is that things like parameter grouping, function
grouping, or parameter coupling are not really possible.

The second problem with parameters are that they are not dynamic. In many cases, the allowed values for
a property are not fixed, but depend on things that can only be detected at runtime. The names of inputs
for a TV card in a video4linux source element, for example, can only be retrieved from the kernel driver
when we’ve opened the device; this only happens when the element goes into the READY state. This
means that we cannot create an enum property type to show thisto the user.

The solution to those problems is to create very specializedtypes of controls for certain often-used
controls. We use the concept of interfaces to achieve this. The basis of this all is the glib
GTypeInterface type. For each case where we think it’s useful, we’ve createdinterfaces which can be
implemented by elements at their own will. We’ve also created a small extension toGTypeInterface
(which is static itself, too) which allows us to query for interface availability based on runtime properties.
This extension is calledGstImplementsInterface
(../../gstreamer/html/GstImplementsInterface.html).

One important note: interfaces donot replace properties. Rather, interfaces should be builtnext to
properties. There are two important reasons for this. Firstof all, properties can be saved in XML files.
Second, properties can be specified on the commandline (gst-launch).

16.1. How to Implement Interfaces

Implementing interfaces is initiated in the_get_type () of your element. You can register one or more
interfaces after having registered the type itself. Some interfaces have dependencies on other interfaces
or can only be registered by certain types of elements. You will be notified of doing that wrongly when
using the element: it will quit with failed assertions, which will explain what went wrong. In the case of
GStreamer, the only dependency thatsomeinterfaces have isGstImplementsInterface
(../../gstreamer/html/GstImplementsInterface.html).Per interface, we will indicate clearly when it
depends on this extension. If it does, you need to register support forthat interface before registering
support for the interface that you’re wanting to support. The example below explains how to add support

71

Chapter 16. Interfaces

for a simple interface with no further dependencies. For a small explanation on
GstImplementsInterface (../../gstreamer/html/GstImplementsInterface.html),see the next section
about the mixer interface:Mixer Interface.

static void gst_my_filter_some_interface_init (GstSomeInterface *iface);

GType
gst_my_filter_get_type (void)
{

static GType my_filter_type = 0;

if (!my_filter_type) {
static const GTypeInfo my_filter_info = {
sizeof (GstMyFilterClass),
(GBaseInitFunc) gst_my_filter_base_init,
NULL,
(GClassInitFunc) gst_my_filter_class_init,
NULL,
NULL,
sizeof (GstMyFilter),
0,
(GInstanceInitFunc) gst_my_filter_init

};
static const GInterfaceInfo some_interface_info = {
(GInterfaceInitFunc) gst_my_filter_some_interface_init,
NULL,
NULL

};

my_filter_type =
g_type_register_static (GST_TYPE_MY_FILTER,

"GstMyFilter",
&my_filter_info, 0);
g_type_add_interface_static (my_filter_type,
GST_TYPE_SOME_INTERFACE,

&some_interface_info);
}

return my_filter_type;
}

static void
gst_my_filter_some_interface_init (GstSomeInterface *iface)
{

/* here, you would set virtual function pointers in the interface */
}

72

Chapter 16. Interfaces

16.2. URI interface

WRITEME

16.3. Mixer Interface

The goal of the mixer interface is to provide a simple yet powerful API to applications for audio
hardware mixer/volume control. Most soundcards have hardware mixers, where volume can be changed,
they can be muted, inputs can be modified to mix their content into what will be read from the device by
applications (in our case: audio source plugins). The mixerinterface is the way to control those. The
mixer interface can also be used for volume control in software (e.g. the “volume” element). The end
goal of this interface is to allow development of hardware volume control applications and for the control
of audio volume and input/output settings.

The mixer interface requires theGstImplementsInterface
(../../gstreamer/html/GstImplementsInterface.html) interface to be implemented by the element. The
example below will feature both, so it serves as an example for the GstImplementsInterface

(../../gstreamer/html/GstImplementsInterface.html),too. In this interface, it is required to set a function
pointer for the supported () function. If you don’t, this function will always return FALSE (default
implementation) and the mixer interface implementation will not work. For the mixer interface, the only
required function islist_tracks (). All other function pointers in the mixer interface are optional,
although it is strongly recommended to set function pointers for at least theget_volume () and
set_volume () functions. The API reference for this interface documents the goal of each function, so
we will limit ourselves to the implementation here.

The following example shows a mixer implementation for a software N-to-1 element. It does not show
the actual process of stream mixing, that is far too complicated for this guide.

#include <gst/mixer/mixer.h>

typedef struct _GstMyFilter {
[..]

gint volume;
GList *tracks;

} GstMyFilter;

static void gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface);
static void gst_my_filter_mixer_interface_init (GstMixerClass *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo implements_interface_info = {
(GInterfaceInitFunc) gst_my_filter_implements_interface_init,
NULL,

73

Chapter 16. Interfaces

NULL
};
static const GInterfaceInfo mixer_interface_info = {
(GInterfaceInitFunc) gst_my_filter_mixer_interface_init,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_IMPLEMENTS_INTERFACE,
&implements_interface_info);
g_type_add_interface_static (my_filter_type,
GST_TYPE_MIXER,
&mixer_interface_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{

GstMixerTrack *track = NULL;
[..]

filter->volume = 100;
filter->tracks = NULL;
track = g_object_new (GST_TYPE_MIXER_TRACK, NULL);
track->label = g_strdup ("MyTrack");
track->num_channels = 1;
track->min_volume = 0;
track->max_volume = 100;
track->flags = GST_MIXER_TRACK_SOFTWARE;
filter->tracks = g_list_append (filter->tracks, track);

}

static gboolean
gst_my_filter_interface_supported (GstImplementsInterface *iface,

GType iface_type)
{

g_return_val_if_fail (iface_type == GST_TYPE_MIXER, FALSE);

/* for the sake of this example, we’ll always support it. However, normally,

* you would check whether the device you’ve opened supports mixers. */
return TRUE;

}

static void
gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface)
{

iface->supported = gst_my_filter_interface_supported;
}

/*
* This function returns the list of support tracks (inputs, outputs)

* on this element instance. Elements usually build this list during

74

Chapter 16. Interfaces

* _init () or when going from NULL to READY.

*/

static const GList *
gst_my_filter_mixer_list_tracks (GstMixer *mixer)
{

GstMyFilter *filter = GST_MY_FILTER (mixer);

return filter->tracks;
}

/*
* Set volume. volumes is an array of size track->num_channels, and

* each value in the array gives the wanted volume for one channel

* on the track.

*/

static void
gst_my_filter_mixer_set_volume (GstMixer *mixer,

GstMixerTrack *track,
gint *volumes)

{
GstMyFilter *filter = GST_MY_FILTER (mixer);

filter->volume = volumes[0];

g_print ("Volume set to %d\n", filter->volume);
}

static void
gst_my_filter_mixer_get_volume (GstMixer *mixer,

GstMixerTrack *track,
gint *volumes)

{
GstMyFilter *filter = GST_MY_FILTER (mixer);

volumes[0] = filter->volume;
}

static void
gst_my_filter_mixer_interface_init (GstMixerClass *iface)
{

/* the mixer interface requires a definition of the mixer type:

* hardware or software? */
GST_MIXER_TYPE (iface) = GST_MIXER_SOFTWARE;

/* virtual function pointers */
iface->list_tracks = gst_my_filter_mixer_list_tracks;
iface->set_volume = gst_my_filter_mixer_set_volume;
iface->get_volume = gst_my_filter_mixer_get_volume;

}

75

Chapter 16. Interfaces

The mixer interface is very audio-centric. However, with the software flag set, the mixer can be used to
mix any kind of stream in a N-to-1 element to join (not aggregate!) streams together into one output
stream. Conceptually, that’s called mixing too. You can always use the element factory’s “category” to
indicate type of your element. In a software element that mixes random streams, you would not be
required to implement the_get_volume () or _set_volume () functions. Rather, you would only
implement the_set_record () to enable or disable tracks in the output stream. to make surethat a
mixer-implementing element is of a certain type, check the element factory’s category.

16.4. Tuner Interface

As opposed to the mixer interface, that’s used to join together N streams into one output stream by
mixing all streams together, the tuner interface is used in N-to-1 elements too, but instead of mixing the
input streams, it will select one stream and push the data of that stream to the output stream. It will
discard the data of all other streams. There is a flag that indicates whether this is a software-tuner (in
which case it is a pure software implementation, with N sink pads and 1 source pad) or a hardware-tuner,
in which case it only has one source pad, and the whole stream selection process is done in hardware.
The software case can be used in elements such asswitch. The hardware case can be used in elements
with channel selection, such as video source elements (v4lsrc, v4l2src, etc.). If you need a specific
element type, use the element factory’s “category” to make sure that the element is of the type that you
need. Note that the interface itself is highly analog-video-centric.

This interface requires theGstImplementsInterface
(../../gstreamer/html/GstImplementsInterface.html) interface to work correctly.

The following example shows how to implement the tuner interface in an element. It does not show the
actual process of stream selection, that is irrelevant for this section.

#include <gst/tuner/tuner.h>

typedef struct _GstMyFilter {
[..]

gint active_input;
GList *channels;

} GstMyFilter;

static void gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface);
static void gst_my_filter_tuner_interface_init (GstTunerClass *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo implements_interface_info = {
(GInterfaceInitFunc) gst_my_filter_implements_interface_init,
NULL,
NULL

};

76

Chapter 16. Interfaces

static const GInterfaceInfo tuner_interface_info = {
(GInterfaceInitFunc) gst_my_filter_tuner_interface_init,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_IMPLEMENTS_INTERFACE,
&implements_interface_info);
g_type_add_interface_static (my_filter_type,
GST_TYPE_TUNER,
&tuner_interface_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{

GstTunerChannel *channel = NULL;
[..]

filter->active_input = 0;
filter->channels = NULL;
channel = g_object_new (GST_TYPE_TUNER_CHANNEL, NULL);
channel->label = g_strdup ("MyChannel");
channel->flags = GST_TUNER_CHANNEL_INPUT;
filter->channels = g_list_append (filter->channels, channel);

}

static gboolean
gst_my_filter_interface_supported (GstImplementsInterface *iface,

GType iface_type)
{

g_return_val_if_fail (iface_type == GST_TYPE_TUNER, FALSE);

/* for the sake of this example, we’ll always support it. However, normally,

* you would check whether the device you’ve opened supports tuning. */
return TRUE;

}

static void
gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface)
{

iface->supported = gst_my_filter_interface_supported;
}

static const GList *
gst_my_filter_tuner_list_channels (GstTuner *tuner)
{

GstMyFilter *filter = GST_MY_FILTER (tuner);

return filter->channels;
}

77

Chapter 16. Interfaces

static GstTunerChannel *
gst_my_filter_tuner_get_channel (GstTuner *tuner)
{

GstMyFilter *filter = GST_MY_FILTER (tuner);

return g_list_nth_data (filter->channels,
filter->active_input);

}

static void
gst_my_filter_tuner_set_channel (GstTuner *tuner,

GstTunerChannel *channel)
{

GstMyFilter *filter = GST_MY_FILTER (tuner);

filter->active_input = g_list_index (filter->channels, channel);
g_assert (filter->active_input >= 0);

}

static void
gst_my_filter_tuner_interface_init (GstTunerClass *iface)
{

iface->list_channels = gst_my_filter_tuner_list_channels;
iface->get_channel = gst_my_filter_tuner_get_channel;
iface->set_channel = gst_my_filter_tuner_set_channel;

}

As said, the tuner interface is very analog video-centric. It features functions for selecting an input or
output, and on inputs, it features selection of a tuning frequency if the channel supports frequency-tuning
on that input. Likewise, it allows signal-strength-acquiring if the input supports that. Frequency tuning
can be used for radio or cable-TV tuning. Signal-strength isan indication of the signal and can be used
for visual feedback to the user or for autodetection. Next tothat, it also features norm selection, which is
only useful for analog video elements.

16.5. Color Balance Interface

WRITEME

16.6. Property Probe Interface

Property probing is a generic solution to the problem that properties’ value lists in an enumeration are
static. We’ve shown enumerations inAdding Arguments. Property probing tries to accomplish a goal
similar to enumeration lists: to have a limited, explicit list of allowed values for a property. There are two
differences between enumeration lists and probing. Firstly, enumerations only allow strings as values;
property probing works for any value type. Secondly, the contents of a probed list of allowed values may

78

Chapter 16. Interfaces

change during the life of an element. The contents of an enumeration list are static. Currently, property
probing is being used for detection of devices (e.g. for OSS elements, Video4linux elements, etc.). It
could - in theory - be used for any property, though.

Property probing stores the list of allowed (or recommended) values in aGValueArray and returns that
to the user. NULL is a valid return value, too. The process of property probing is separated over two
virtual functions: one for probing the property to create aGValueArray, and one to retrieve the current
GValueArray. Those two are separated because probing might take a long time (several seconds). Also,
this simplifies interface implementation in elements. For the application, there are functions that wrap
those two. For more information on this, have a look at the APIreference for theGstPropertyProbe
interface.

Below is a example of property probing for the audio filter element; it will probe for allowed values for
the “silent” property. Indeed, this value is a gboolean so itdoesn’t make much sense. Then again, it’s
only an example.

#include <gst/propertyprobe/propertyprobe.h>

static void gst_my_filter_probe_interface_init (GstPropertyProbeInterface *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo probe_interface_info = {
(GInterfaceInitFunc) gst_my_filter_probe_interface_init,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_PROPERTY_PROBE,
&probe_interface_info);

[..]
}

static const GList *
gst_my_filter_probe_get_properties (GstPropertyProbe *probe)
{

GObjectClass *klass = G_OBJECT_GET_CLASS (probe);
static GList *props = NULL;

if (!props) {
GParamSpec *pspec;

pspec = g_object_class_find_property (klass, "silent");
props = g_list_append (props, pspec);

}

return props;

79

Chapter 16. Interfaces

}

static gboolean
gst_my_filter_probe_needs_probe (GstPropertyProbe *probe,

guint prop_id,
const GParamSpec *pspec)

{
gboolean res = FALSE;

switch (prop_id) {
case ARG_SILENT:
res = FALSE;
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}

return res;
}

static void
gst_my_filter_probe_probe_property (GstPropertyProbe *probe,

guint prop_id,
const GParamSpec *pspec)

{
switch (prop_id) {

case ARG_SILENT:
/* don’t need to do much here... */
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}
}

static GValueArray *
gst_my_filter_get_silent_values (GstMyFilter *filter)
{

GValueArray *array = g_value_array_new (2);
GValue value = { 0 };

g_value_init (&value, G_TYPE_BOOLEAN);

/* add TRUE */
g_value_set_boolean (&value, TRUE);
g_value_array_append (array, &value);

/* add FALSE */
g_value_set_boolean (&value, FALSE);
g_value_array_append (array, &value);

g_value_unset (&value);

80

Chapter 16. Interfaces

return array;
}

static GValueArray *
gst_my_filter_probe_get_values (GstPropertyProbe *probe,

guint prop_id,
const GParamSpec *pspec)

{
GstMyFilter *filter = GST_MY_FILTER (probe);
GValueArray *array = NULL;

switch (prop_id) {
case ARG_SILENT:
array = gst_my_filter_get_silent_values (filter);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}

return array;
}

static void
gst_my_filter_probe_interface_init (GstPropertyProbeInterface *iface)
{

iface->get_properties = gst_my_filter_probe_get_properties;
iface->needs_probe = gst_my_filter_probe_needs_probe;
iface->probe_property = gst_my_filter_probe_probe_property;
iface->get_values = gst_my_filter_probe_get_values;

}

You don’t need to support any functions for getting or setting values. All that is handled via the standard
GObject _set_property () and_get_property () functions.

16.7. X Overlay Interface

An X Overlay is basically a video output in a XFree86 drawable. Elements implementing this interface
will draw video in a X11 window. Through this interface, applications will be proposed 2 different
modes to work with a plugin implementing it. The first mode is apassive mode where the plugin owns,
creates and destroys the X11 window. The second mode is an active mode where the application handles
the X11 window creation and then tell the plugin where it should output video. Let’s get a bit deeper in
those modes...

A plugin drawing video output in a X11 window will need to havethat window at one stage or another.
Passive mode simply means that no window has been given to theplugin before that stage, so the plugin

81

Chapter 16. Interfaces

created the window by itself. In that case the plugin is responsible of destroying that window when it’s
not needed any more and it has to tell the applications that a window has been created so that the
application can use it. This is done using thehave_xwindow_id signal that can be emitted from the
plugin with thegst_x_overlay_got_xwindow_idmethod.

As you probably guessed already active mode just means sending a X11 window to the plugin so that
video output goes there. This is done using thegst_x_overlay_set_xwindow_idmethod.

It is possible to switch from one mode to another at any moment, so the plugin implementing this
interface has to handle all cases. There are only 2 methods that plugins writers have to implement and
they most probably look like that :

static void
gst_my_filter_set_xwindow_id (GstXOverlay *overlay, XID xwindow_id)
{

GstMyFilter *my_filter = GST_MY_FILTER (overlay);

if (my_filter->window)
gst_my_filter_destroy_window (my_filter->window);

my_filter->window = xwindow_id;
}

static void
gst_my_filter_get_desired_size (GstXOverlay *overlay,

guint *width, guint *height)
{

GstMyFilter *my_filter = GST_MY_FILTER (overlay);

*width = my_filter->width;

*height = my_filter->height;
}

static void
gst_my_filter_xoverlay_init (GstXOverlayClass *iface)
{

iface->set_xwindow_id = gst_my_filter_set_xwindow_id;
iface->get_desired_size = gst_my_filter_get_desired_size;

}

You will also need to use the interface methods to fire signalswhen needed such as in the pad link
function where you will know the video geometry and maybe create the window.

static MyFilterWindow *
gst_my_filter_window_create (GstMyFilter *my_filter, gint width, gint height)
{

MyFilterWindow *window = g_new (MyFilterWindow, 1);
...
gst_x_overlay_got_xwindow_id (GST_X_OVERLAY (my_filter), window->win);

82

Chapter 16. Interfaces

}

static GstPadLinkReturn
gst_my_filter_sink_link (GstPad *pad, const GstCaps *caps)
{

GstMyFilter *my_filter = GST_MY_FILTER (overlay);
gint width, height;
gboolean ret;
...
ret = gst_structure_get_int (structure, "width", &width);
ret &= gst_structure_get_int (structure, "height", &height);
if (!ret) return GST_PAD_LINK_REFUSED;

if (!my_filter->window)
my_filter->window = gst_my_filter_create_window (my_filter, width, height);

gst_x_overlay_got_desired_size (GST_X_OVERLAY (my_filter),
width, height);

...
}

16.8. Navigation Interface

WRITEME

83

Chapter 17. Tagging (Metadata and Streaminfo)

17.1. Overview

Tags are pieces of information stored in a stream that are notthe content itself, but they ratherdescribe
the content. Most media container formats support tagging in one way or another. Ogg uses
VorbisComment for this, MP3 uses ID3, AVI and WAV use RIFF’s INFO list chunk, etc. GStreamer
provides a general way for elements to read tags from the stream and expose this to the user. The tags (at
least the metadata) will be part of the stream inside the pipeline. The consequence of this is that
transcoding of files from one format to another will automatically preserve tags, as long as the input and
output format elements both support tagging.

Tags are separated in two categories in GStreamer, even though applications won’t notice anything of
this. The first are calledmetadata, the second are calledstreaminfo. Metadata are tags that describe the
non-technical parts of stream content. They can be changed without needing to re-encode the stream
completely. Examples are “author”, “title” or “album”. Thecontainer format might still need to be
re-written for the tags to fit in, though. Streaminfo, on the other hand, are tags that describe the stream
contents technically. To change them, the stream needs to bere-encoded. Examples are “codec” or
“bitrate”. Note that some container formats (like ID3) store various streaminfo tags as metadata in the
file container, which means that they can be changed so that they don’t match the content in the file any
more. Still, they are called metadata becausetechnically, they can be changed without re-encoding the
whole stream, even though that makes them invalid. Files with such metadata tags will have the same tag
twice: once as metadata, once as streaminfo.

There is no special name for tag reading elements in GStreamer. There are specialised elements (e.g.
id3demux) that do nothing besides tag reading, but any GStreamer element may extract tags while
processing data, and most decoders, demuxers and parsers do.

A tag writer is calledTagSetter (../../gstreamer/html/GstTagSetter.html). An element supporting both
can be used in a tag editor for quick tag changing (note: in-place tag editing is still poorly supported at
the time of writing and usually requires tag extraction/stripping and remuxing of the stream with new
tags).

17.2. Reading Tags from Streams

The basic object for tags is aGstTagList (../../gstreamer/html/gstreamer-GstTagList.html). An
element that is reading tags from a stream should create an empty taglist and fill this with individual tags.
Empty tag lists can be created withgst_tag_list_new (). Then, the element can fill the list using
gst_tag_list_add () or gst_tag_list_add_values (). Note that elements often read
metadata as strings, but the values in the taglist might not necessarily be strings - they need to be of the
type the tag was registered as (the API documentation for each predefined tag should contain the type).

84

Chapter 17. Tagging (Metadata and Streaminfo)

Be sure to use functions likegst_value_transform () to make sure that your data is of the right
type. After data reading, the application can be notified of the new taglist by calling
gst_element_found_tags () or gst_element_found_tags_for_pad () (if they only refer to a
specific sub-stream). These functions will post a tag message on the pipeline’s GstBus for the application
to pick up, but also send tag events downstream, either over all source pad or the pad specified.

The following example program will parse a file and parse the data as metadata/tags rather than as actual
content-data. It will parse each line as “name:value”, where name is the type of metadata (title, author,
...) and value is the metadata value. The_getline () is the same as the one given inSometimes pads.

static void
gst_my_filter_task_func (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);
GstBuffer *buf;
GstTagList *taglist = gst_tag_list_new ();

/* get each line and parse as metadata */
while ((buf = gst_my_filter_getline (filter))) {

gchar *line = GST_BUFFER_DATA (buf), *colon_pos, *type = NULL;a

/* get the position of the ’:’ and go beyond it */
if (!(colon_pos = strchr (line, ’:’)))
goto next:

/* get the string before that as type of metadata */
type = g_strndup (line, colon_pos - line);

/* content is one character beyond the ’:’ */
colon_pos = &colon_pos[1];
if (*colon_pos == ’\0’)
goto next;

/* get the metadata category, it’s value type, store it in that

* type and add it to the taglist. */
if (gst_tag_exists (type)) {
GValue from = { 0 }, to = { 0 };
GType to_type;

to_type = gst_tag_get_type (type);
g_value_init (&from, G_TYPE_STRING);
g_value_set_string (&from, colon_pos);
g_value_init (&to, to_type);
g_value_transform (&from, &to);
g_value_unset (&from);
gst_tag_list_add_values (taglist, GST_TAG_MERGE_APPEND,

type, &to, NULL);
g_value_unset (&to);

}

next:

85

Chapter 17. Tagging (Metadata and Streaminfo)

g_free (type);
gst_buffer_unref (buf);

}

/* signal metadata */
gst_element_found_tags_for_pad (element, filter->srcpad, 0, taglist);
gst_tag_list_free (taglist);

/* send EOS */
gst_pad_send_event (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EOS)));
gst_element_set_eos (element);

}

We currently assume the core to alreadyknowthe mimetype (gst_tag_exists ()). You can add new
tags to the list of known tags usinggst_tag_register (). If you think the tag will be useful in more
cases than just your own element, it might be a good idea to addit to gsttag.c instead. That’s up to you
to decide. If you want to do it in your own element, it’s easiest to register the tag in one of your class init
functions, preferrably_class_init ().

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{
[..]

gst_tag_register ("my_tag_name", GST_TAG_FLAG_META,
G_TYPE_STRING,
_("my own tag"),
_("a tag that is specific to my own element"),
NULL);

[..]
}

17.3. Writing Tags to Streams

Tag writers are the opposite of tag readers. Tag writers onlytake metadata tags into account, since that’s
the only type of tags that have to be written into a stream. Tagwriters can receive tags in three ways:
internal, application and pipeline. Internal tags are tagsread by the element itself, which means that the
tag writer is - in that case - a tag reader, too. Application tags are tags provided to the element via the
TagSetter interface (which is just a layer). Pipeline tags are tags provided to the element from within the
pipeline. The element receives such tags via the GST_EVENT_TAG event, which means that tags
writers should automatically be event aware. The tag writeris responsible for combining all these three
into one list and writing them to the output stream.

86

Chapter 17. Tagging (Metadata and Streaminfo)

The example below will receive tags from both application and pipeline, combine them and write them to
the output stream. It implements the tag setter so applications can set tags, and retrieves pipeline tags
from incoming events.

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo tag_setter_info = {
NULL,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_TAG_SETTER,
&tag_setter_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{

GST_FLAG_SET (filter, GST_ELEMENT_EVENT_AWARE);
[..]
}

/*
* Write one tag.

*/

static void
gst_my_filter_write_tag (const GstTagList *taglist,

const gchar *tagname,
gpointer data)

{
GstMyFilter *filter = GST_MY_FILTER (data);
GstBuffer *buffer;
guint num_values = gst_tag_list_get_tag_size (list, tag_name), n;
const GValue *from;
GValue to = { 0 };

g_value_init (&to, G_TYPE_STRING);

for (n = 0; n < num_values; n++) {
from = gst_tag_list_get_value_index (taglist, tagname, n);
g_value_transform (from, &to);

buf = gst_buffer_new ();
GST_BUFFER_DATA (buf) = g_strdup_printf ("%s:%s", tagname,

g_value_get_string (&to));
GST_BUFFER_SIZE (buf) = strlen (GST_BUFFER_DATA (buf));

87

Chapter 17. Tagging (Metadata and Streaminfo)

gst_pad_push (filter->srcpad, GST_DATA (buf));
}

g_value_unset (&to);
}

static void
gst_my_filter_task_func (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);
GstTagSetter *tagsetter = GST_TAG_SETTER (element);
GstData *data;
GstEvent *event;
gboolean eos = FALSE;
GstTagList *taglist = gst_tag_list_new ();

while (!eos) {
data = gst_pad_pull (filter->sinkpad);

/* We’re not very much interested in data right now */
if (GST_IS_BUFFER (data))
gst_buffer_unref (GST_BUFFER (data));

event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_TAG:

gst_tag_list_insert (taglist, gst_event_tag_get_list (event),
GST_TAG_MERGE_PREPEND);
gst_event_unref (event);
break;

case GST_EVENT_EOS:
eos = TRUE;
gst_event_unref (event);
break;

default:
gst_pad_event_default (filter->sinkpad, event);
break;

}
}

/* merge tags with the ones retrieved from the application */
if ((gst_tag_setter_get_tag_list (tagsetter)) {

gst_tag_list_insert (taglist,
gst_tag_setter_get_tag_list (tagsetter),
gst_tag_setter_get_tag_merge_mode (tagsetter));

}

/* write tags */
gst_tag_list_foreach (taglist, gst_my_filter_write_tag, filter);

/* signal EOS */
gst_pad_push (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EOS)));
gst_element_set_eos (element);

88

Chapter 17. Tagging (Metadata and Streaminfo)

}

Note that normally, elements would not read the full stream before processing tags. Rather, they would
read from each sinkpad until they’ve received data (since tags usually come in before the first data
buffer) and process that.

89

Chapter 18. Events: Seeking, Navigation and
More

There are many different event types but only two ways they can travel in the pipeline: downstream or
upstream. It is very important to understand how both of these methods work because if one element in
the pipeline is not handling them correctly the whole event system of the pipeline is broken. We will try
to explain here how these methods work and how elements are supposed to implement them.

18.1. Downstream events

Downstream events are received through the sink pad’s eventhandler, as set using
gst_pad_set_event_function () when the pad was created.

Downstream events can travel in two ways: they can be in-band(serialised with the buffer flow) or
out-of-band (travelling through the pipeline instantly, possibly not in the same thread as the streaming
thread that is processing the buffers, skipping ahead of buffers being processed or queued in the
pipeline). The most common downstream events (NEWSEGMENT,EOS, TAG) are all serialised with
the buffer flow.

Here is a typical event function:

static gboolean
gst_my_filter_sink_event (GstPad *pad, GstEvent * event)
{

GstMyFilter *filter;
gboolean ret;

filter = GST_MY_FILTER (gst_pad_get_parent (pad));
...

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_NEWSEGMENT:
/* maybe save and/or update the current segment (e.g. for output

* clipping) or convert the event into one in a different format

* (e.g. BYTES to TIME) or drop it and set a flag to send a newsegment

* event in a different format later */
ret = gst_pad_push_event (filter->src_pad, event);
break;

case GST_EVENT_EOS:
/* end-of-stream, we should close down all stream leftovers here */
gst_my_filter_stop_processing (filter);
ret = gst_pad_push_event (filter->src_pad, event);
break;

case GST_EVENT_FLUSH_STOP:
gst_my_filter_clear_temporary_buffers (filter);

90

Chapter 18. Events: Seeking, Navigation and More

ret = gst_pad_push_event (filter->src_pad, event);
break;

default:
ret = gst_pad_event_default (pad, event);
break;

}

...
gst_object_unref (filter);
return ret;

}

If your element is chain-based, you will almost always have to implement a sink event function, since
that is how you are notified about new segments and the end of the stream.

If your element is exclusively loop-based, you may or may notwant a sink event function (since the
element is driving the pipeline it will know the length of thestream in advance or be notified by the flow
return value ofgst_pad_pull_range(). In some cases even loop-based element may receive events
from upstream though (for example audio decoders with an id3demux or apedemux element in front of
them, or demuxers that are being fed input from sources that send additional information about the
stream in custom events, as DVD sources do).

18.2. Upstream events

Upstream events are generated by an element somewhere downstream in the pipeline (example: a video
sink may generate navigation events that informs upstream elements about the current position of the
mouse pointer). This may also happen indirectly on request of the application, for example when the
application executes a seek on a pipeline this seek request will be passed on to a sink element which will
then in turn generate an upstream seek event.

The most common upstream events are seek events and Quality-of-Service (QoS) events.

An upstream event can be sent using thegst_pad_send_event function. This function simply call the
default event handler of that pad. The default event handlerof pads isgst_pad_event_default, and it
basically sends the event to the peer pad. So upstream eventsalways arrive on the src pad of your
element and are handled by the default event handler except if you override that handler to handle it
yourself. There are some specific cases where you have to do that :

• If you have multiple sink pads in your element. In that case you will have to decide which one of the
sink pads you will send the event to (if not all of them).

• If you need to handle that event locally. For example a navigation event that you will want to convert
before sending it upstream, or a QoS event that you want to handle.

91

Chapter 18. Events: Seeking, Navigation and More

The processing you will do in that event handler does not really matter but there are important rules you
have to absolutely respect because one broken element eventhandler is breaking the whole pipeline
event handling. Here they are :

• Always forward events you won’t handle upstream using the defaultgst_pad_event_default
method.

• If you are generating some new event based on the one you received don’t forget to gst_event_unref
the event you received.

• Event handler function are supposed to return TRUE or FALSEindicating if the event has been
handled or not. Never simply return TRUE/FALSE in that handler except if you really know that you
have handled that event.

• Remember that the event handler might be called from a different thread than the streaming thread, so
make sure you use appropriate locking everywhere and at the beginning of the function obtain a
reference to your element via thegst_pad_get_parent() (and release it again at the end of the
function withgst_object_unref ().

18.3. All Events Together

In this chapter follows a list of all defined events that are currently being used, plus how they should be
used/interpreted. You can check the what type a certain event is using the GST_EVENT_TYPE macro
(or if you need a string for debugging purposes you can use GST_EVENT_TYPE_NAME).

In this chapter, we will discuss the following events:

• End of Stream (EOS)

• Flush Start

• Flush Stop

• New Segment

• Seek Request

• Navigation

• Tag (metadata)

For more comprehensive information about events and how they should be used correctly in various
circumstances please consult the GStreamer design documentation. This section only gives a general
overview.

18.3.1. End of Stream (EOS)

End-of-stream events are sent if the stream that an element sends out is finished. An element receiving
this event (from upstream, so it receives it on its sinkpad) will generally just process any buffered data (if

92

Chapter 18. Events: Seeking, Navigation and More

there is any) and then forward the event further downstream.Thegst_pad_event_default () takes
care of all this, so most elements do not need to support this event. Exceptions are elements that
explicitly need to close a resource down on EOS, and N-to-1 elements. Note that the stream itself isnot a
resource that should be closed down on EOS! Applications might seek back to a point before EOS and
continue playing again.

The EOS event has no properties, which makes it one of the simplest events in GStreamer. It is created
using thegst_event_new_eos() function.

It is important to note thatonly elements driving the pipeline should ever send an EOS event. If your
element is chain-based, it is not driving the pipeline. Chain-based elements should just return
GST_FLOW_UNEXPECTED from their chain function at the end ofthe stream (or the configured
segment), the upstream element that is driving the pipelinewill then take care of sending the EOS event
(or alternatively post a SEGMENT_DONE message on the bus depending on the mode of operation). If
you are implementing your own source element, you also do notneed to ever manually send an EOS
event, you should also just return GST_FLOW_UNEXPECTED in your create function (assuming your
element derives from GstBaseSrc or GstPushSrc).

18.3.2. Flush Start

The flush start event is sent downstream if all buffers and caches in the pipeline should be emptied.
“Queue” elements will empty their internal list of buffers when they receive this event, for example. File
sink elements (e.g. “filesink”) will flush the kernel-to-disk cache (fdatasync () or fflush ()) when
they receive this event. Normally, elements receiving thisevent will simply just forward it, since most
filter or filter-like elements don’t have an internal cache ofdata.gst_pad_event_default () does
just that, so for most elements, it is enough to forward the event using the default event handler.

As a side-effect of flushing all data from the pipeline, this event unblocks the streaming thread by
making all pads reject data until they receive aFlush Stopsignal (elements trying to push data will get a
WRONG_STATE flow return and stop processing data).

The flush-start event is created with thegst_event_new_flush_start (). Like the EOS event, it has
no properties. This event is usually only created by elements driving the pipeline, like source elements
operating in push-mode or pull-range based demuxers/decoders.

18.3.3. Flush Stop

The flush-stop event is sent by an element driving the pipeline after a flush-start and tells pads and
elements downstream that they should accept events and buffers again (there will be at least a
NEWSEGMENT event before any buffers first though).

93

Chapter 18. Events: Seeking, Navigation and More

If your element keeps temporary caches of stream data, it should clear them when it receives a
FLUSH-STOP event (and also whenever its chain function receives a buffer with the DISCONT flag set).

The flush-stop event is created withgst_event_new_flush_stop (). Like the EOS event, it has no
properties.

18.3.4. New Segment

A new segment event is sent downstream to either announce a new segment of data in the data stream or
to update the current segment with new values. A new segment event must always be sent before the first
buffer of data and after a flush (see above).

The first new segment event is created by the element driving the pipeline, like a source operating in
push-mode or a demuxer/decoder operating pull-based. Thisnew segment event then travels down the
pipeline and may be transformed on the way (a decoder, for example, might receive a new-segment event
in BYTES format and might transform this into a new-segment event in TIMES format based on the
average bitrate).

New segment events may also be used to indicate ’gaps’ in the stream, like in a subtitle stream for
example where there may not be any data at all for a considerable amount of (stream) time. This is done
by updating the segment start of the current segment (see thedesign documentation for more details).

Depending on the element type, the event can simply be forwarded usinggst_pad_event_default
(), or it should be parsed and a modified event should be sent on. The last is true for demuxers, which
generally have a byte-to-time conversion concept. Their input is usually byte-based, so the incoming
event will have an offset in byte units (GST_FORMAT_BYTES),too. Elements downstream, however,
expect new segment events in time units, so that it can be usedto update the pipeline clock. Therefore,
demuxers and similar elements should not forward the event,but parse it, free it and send a new
newsegment event (in time units, GST_FORMAT_TIME) furtherdownstream.

The newsegment event is created using the functiongst_event_new_new_segment (). See the API
reference and design document for details about its parameters.

Elements parsing this event can use gst_event_parse_new_segment_full() to extract the event details.
Elements may find the GstSegment API useful to keep track of the current segment (if they want to use it
for output clipping, for example).

18.3.5. Seek Request

Seek events are meant to request a new stream position to elements. This new position can be set in
several formats (time, bytes or “default units” [a term indicating frames for video, channel-independent

94

Chapter 18. Events: Seeking, Navigation and More

samples for audio, etc.]). Seeking can be done with respect to the end-of-file, start-of-file or current
position, and usually happens in upstream direction (downstream seeking is done by sending a
NEWSEGMENT event with the appropriate offsets for elementsthat support that, like filesink).

Elements receiving seek events should, depending on the element type, either just forward it upstream
(filters, decoders), change the format in which the event is given and then forward it (demuxers), or
handle the event by changing the file pointer in their internal stream resource (file sources,
demuxers/decoders driving the pipeline in pull-mode) or something else.

Seek events are built up using positions in specified formats(time, bytes, units). They are created using
the functiongst_event_new_seek (). Note that many plugins do not support seeking from the end of
the stream or from the current position. An element not driving the pipeline and forwarding a seek
request should not assume that the seek succeeded or actually happened, it should operate based on the
NEWSEGMENT events it receives.

Elements parsing this event can do this usinggst_event_parse_seek().

18.3.6. Navigation

Navigation events are sent upstream by video sinks to informupstream elements of where the mouse
pointer is, if and where mouse pointer clicks have happened,or if keys have been pressed or released.

All this information is contained in the event structure which can be obtained with
gst_event_get_structure ().

Check out the navigationtest element in gst-plugins-good for an idea how to extract navigation
information from this event.

18.3.7. Tag (metadata)

Tagging events are being sent downstream to indicate the tags as parsed from the stream data. This is
currently used to preserve tags during stream transcoding from one format to the other. Tags are
discussed extensively inChapter 17. Most elements will simply forward the event by calling
gst_pad_event_default ().

The tag event is created using the functiongst_event_new_tag (), but more often elements will use
either thegst_element_found_tags () function or thegst_element_found_tags_for_pad (),
which will do both: post a tag message on the bus and send a tag event downstream. All of these
functions require a filled-in taglist as argument, which they will take ownership of.

95

Chapter 18. Events: Seeking, Navigation and More

Elements parsing this event can use the functiongst_event_parse_tag () to acquire the taglist that
the event contains.

96

IV. Creating special element types
By now, we have looked at pretty much any feature that can be embedded into a GStreamer element.
Most of this has been fairly low-level and given deep insights in how GStreamer works internally.
Fortunately, GStreamer contains some easier-to-use interfaces to create such elements. In order to do
that, we will look closer at the element types for which GStreamer provides base classes (sources, sinks
and transformation elements). We will also look closer at some types of elements that require no specific
coding such as scheduling-interaction or data passing, butrather require specific pipeline control (e.g.
N-to-1 elements and managers).

Chapter 19. Pre-made base classes

So far, we’ve been looking at low-level concepts of creatingany type of GStreamer element. Now, let’s
assume that all you want is to create an simple audiosink thatworks exactly the same as, say, “esdsink”,
or a filter that simply normalizes audio volume. Such elements are very general in concept and since they
do nothing special, they should be easier to code than to provide your own scheduler activation functions
and doing complex caps negotiation. For this purpose, GStreamer provides base classes that simplify
some types of elements. Those base classes will be discussedin this chapter.

19.1. Writing a sink

Sinks are special elements in GStreamer. This is because sink elements have to take care ofpreroll,
which is the process that takes care that elements going intotheGST_STATE_PAUSED state will have
buffers ready after the state change. The result of this is that such elements can start processing data
immediately after going into theGST_STATE_PLAYING state, without requiring to take some time to
initialize outputs or set up decoders; all that is done already before the state-change to
GST_STATE_PAUSED successfully completes.

Preroll, however, is a complex process that would require the same code in many elements. Therefore,
sink elements can derive from theGstBaseSink base-class, which does preroll and a few other utility
functions automatically. The derived class only needs to implement a bunch of virtual functions and will
work automatically.

TheGstBaseSink base-class specifies some limitations on elements, though:

• It requires that the sink only has one sinkpad. Sink elementsthat need more than one sinkpad, cannot
use this base-class.

• The base-class owns the pad, and specifies caps negotiation,data handling, pad allocation and such
functions. If you need more than the ones provided as virtualfunctions, then you cannot use this
base-class.

• By implementing thepad_allocate () function, it is possible for upstream elements to use special
memory, such as memory on the X server side that only the sink can allocate, or even hardware
memorymmap ()’ed from the kernel. Note that in almost all cases, you will want to subclass the
GstBuffer object, so that your own set of functions will be called when the buffer loses its last
reference.

Sink elements can derive fromGstBaseSink using the usualGObject type creation voodoo, or by
using the convenience macroGST_BOILERPLATE ():

GST_BOILERPLATE_FULL (GstMySink, gst_my_sink, GstBaseSink, GST_TYPE_BASE_SINK);

[..]

98

Chapter 19. Pre-made base classes

static void
gst_my_sink_class_init (GstMySinkClass * klass)
{

klass->set_caps = [..];
klass->render = [..];

[..]
}

The advantages of deriving fromGstBaseSink are numerous:

• Derived implementations barely need to be aware of preroll,and do not need to know anything about
the technical implementation requirements of preroll. Thebase-class does all the hard work.

Less code to write in the derived class, shared code (and thusshared bugfixes).

There are also specialized base classes for audio and video,let’s look at those a bit.

19.1.1. Writing an audio sink

Essentially, audio sink implementations are just a specialcase of a general sink. There are two audio base
classes that you can choose to derive from, depending on yourneeds:GstBaseAudiosink and
GstAudioSink. The baseaudiosink provides full control over how synchronization and scheduling is
handled, by using a ringbuffer that the derived class controls and provides. The audiosink base-class is a
derived class of the baseaudiosink, implementing a standard ringbuffer implementing default
synchronization and providing a standard audio-sample clock. Derived classes of this base class merely
need to provide a_open (), _close () and a_write () function implementation, and some optional
functions. This should suffice for many sound-server outputelements and even most interfaces. More
demanding audio systems, such as Jack, would want to implement theGstBaseAudioSink base-class.

TheGstBaseAusioSink has little to no limitations and should fit virtually every implementation, but is
hard to implement. TheGstAudioSink, on the other hand, only fits those systems with a simpleopen

() / close () / write () API (which practically means pretty much all of them), but has the
advantage that it is a lot easier to implement. The benefits ofthis second base class are large:

• Automatic synchronization, without any code in the derivedclass.

• Also automatically provides a clock, so that other sinks (e.g. in case of audio/video playback) are
synchronized.

• Features can be added to all audiosinks by making a change in the base class, which makes
maintainance easy.

• Derived classes require only three small functions, plus someGObject boilerplate code.

99

Chapter 19. Pre-made base classes

In addition to implementing the audio base-class virtual functions, derived classes can (should) also
implement theGstBaseSink set_caps () andget_caps () virtual functions for negotiation.

19.1.2. Writing a video sink

Writing a videosink can be done using theGstVideoSink base-class, which derives from
GstBaseSink internally. Currently, it does nothing yet but add another compile dependency, so derived
classes will need to implement all base-sink virtual functions. When they do this correctly, this will have
some positive effects on the end user experience with the videosink:

• Because of preroll (and thepreroll () virtual function), it is possible to display a video frame
already when going into theGST_STATE_PAUSED state.

• By adding new features toGstVideoSink, it will be possible to add extensions to videosinks that
affect all of them, but only need to be coded once, which is a huge maintainance benefit.

19.2. Writing a source

In the previous part, particularlyProviding random access, we have learned that some types of elements
can provide random access. This applies most definitely to source elements reading from a randomly
seekable location, such as file sources. However, other source elements may be better described as a live
source element, such as a camera source, an audio card sourceand such; those are not seekable and do
not provide byte-exact access. For all such use cases, GStreamer provides two base classes:
GstBaseSrc for the basic source functionality, andGstPushSrc, which is a non-byte exact source
base-class. The pushsource base class itself derives from basesource as well, and thus all statements
about the basesource apply to the pushsource, too.

The basesrc class does several things automatically for derived classes, so they no longer have to worry
about it:

• Fixes toGstBaseSrc apply to all derived classes automatically.

• Automatic pad activation handling, and task-wrapping in case we get assigned to start a task ourselves.

TheGstBaseSrc may not be suitable for all cases, though; it has limitations:

• There is one and only one sourcepad. Source elements requiring multiple sourcepads cannot use this
base-class.

• Since the base-class owns the pad and derived classes can only control it as far as the virtual functions
allow, you are limited to the functionality provided by the virtual functions. If you need more, you
cannot use this base-class.

100

Chapter 19. Pre-made base classes

It is possible to use special memory, such as X server memory pointers ormmap ()’ed memory areas, as
data pointers in buffers returned from thecreate() virtual function. In almost all cases, you will want
to subclassGstBuffer so that your own set of functions can be called when the bufferis destroyed.

19.2.1. Writing an audio source

An audio source is nothing more but a special case of a pushsource. Audio sources would be anything
that reads audio, such as a source reading from a soundserver, a kernel interface (such as ALSA) or a test
sound / signal generator. GStreamer provides two base classes, similar to the two audiosinks described in
Writing an audio sink; one is ringbuffer-based, and requires the derived class totake care of its own
scheduling, synchronization and such. The other is based onthisGstBaseAudioSrc and is called
GstAudioSrc, and provides a simpleopen (), close () andread () interface, which is rather
simple to implement and will suffice for most soundserver sources and audio interfaces (e.g. ALSA or
OSS) out there.

TheGstAudioSrc base-class has several benefits for derived classes, on top of the benefits of the
GstPushSrc base-class that it is based on:

• Does syncronization and provides a clock.

• New features can be added to it and will apply to all derived classes automatically.

19.3. Writing a transformation element

A third base-class that GStreamer provides is theGstBaseTransform. This is a base class for elements
with one sourcepad and one sinkpad which act as a filter of somesort, such as volume changing, audio
resampling, audio format conversion, and so on and so on. There is quite a lot of bookkeeping that such
elements need to do in order for things such as buffer allocation forwarding, passthrough, in-place
processing and such to all work correctly. This base class does all that for you, so that you just need to do
the actual processing.

Since theGstBaseTransform is based on the 1-to-1 model for filters, it may not apply well to elements
such as decoders, which may have to parse properties from thestream. Also, it will not work for
elements requiring more than one sourcepad or sinkpad.

101

Chapter 20. Writing a Demuxer or Parser

Demuxers are the 1-to-N elements that need very special care. They are responsible for timestamping
raw, unparsed data into elementary video or audio streams, and there are many things that you can
optimize or do wrong. Here, several culprits will be mentioned and common solutions will be offered.
Parsers are demuxers with only one source pad. Also, they only cut the stream into buffers, they don’t
touch the data otherwise.

As mentioned previously inCaps negotiation, demuxers should use fixed caps, since their data type will
not change.

As discussed inDifferent scheduling modes, demuxer elements can be written in multiple ways:

• They can be the driving force of the pipeline, by running their own task. This works particularly well
for elements that need random access, for example an AVI demuxer.

• They can also run in push-based mode, which means that an upstream element drives the pipeline.
This works particularly well for streams that may come from network, such as Ogg.

In addition, audio parsers with one output can, in theory, also be written in random access mode.
Although simple playback will mostly work if your element only accepts one mode, it may be required
to implement multiple modes to work in combination with all sorts of applications, such as editing. Also,
performance may become better if you implement multiple modes. SeeDifferent scheduling modesto
see how an element can accept multiple scheduling modes.

102

Chapter 21. Writing a N-to-1 Element or Muxer

N-to-1 elements have been previously mentioned and discussed in bothChapter 13and in
Different scheduling modes. The main noteworthy thing about N-to-1 elements is that each pad is
push-based in its own thread, and the N-to-1 element synchronizes those streams by
expected-timestamp-based logic. This means it lets all streams wait except for the one that provides the
earliest next-expected timestamp. When that stream has passwed one buffer, the next
earliest-expected-timestamp is calculated, and we start back where we were, until all streams have
reached EOS. There is a helper base class, calledGstCollectPads, that will help you to do this.

Note, however, that this helper class will only help you withgrabbing a buffer from each input and
giving you the one with earliest timestamp. If you need anything more difficult, such as
"don’t-grab-a-new-buffer until a given timestamp" or something like that, you’ll need to do this yourself.

103

Chapter 22. Writing a Manager

Managers are elements that add a function or unify the function of another (series of) element(s).
Managers are generally aGstBin with one or more ghostpads. Inside them is/are the actual element(s)
that matters. There is several cases where this is useful. For example:

• To add support for private events with custom event handlingto another element.

• To add support for custom pad_query () or _convert () handling to another element.

• To add custom data handling before or after another element’s data handler function (generally its
_chain () function).

• To embed an element, or a series of elements, into something that looks and works like a simple
element to the outside world.

Making a manager is about as simple as it gets. You can derive from aGstBin, and in most cases, you
can embed the required elements in the_init () already, including setup of ghostpads. If you need any
custom data handlers, you can connect signals or embed a second element which you control.

104

V. Appendices
This chapter contains things that don’t belong anywhere else.

Chapter 23. Things to check when writing an
element

This chapter contains a fairly random selection of things totake care of when writing an element. It’s up
to you how far you’re going to stick to those guidelines. However, keep in mind that when you’re writing
an element and hope for it to be included in the mainstream GStreamer distribution, ithas tomeet those
requirements. As far as possible, we will try to explain why those requirements are set.

23.1. About states
• Make sure the state of an element gets reset when going toNULL. Ideally, this should set all object

properties to their original state. This function should also be called from _init.

• Make sure an element forgetseverythingabout its contained stream when going fromPAUSED to
READY. In READY, all stream states are reset. An element that goes fromPAUSED to READY and back to
PAUSED should start reading the stream from he start again.

• People that usegst-launch for testing have the tendency to not care about cleaning up. This iswrong.
An element should be tested using various applications, where testing not only means to “make sure it
doesn’t crash”, but also to test for memory leaks using toolssuch asvalgrind. Elements have to be
reusable in a pipeline after having been reset.

23.2. Debugging
• Elements shouldneveruse their standard output for debugging (using functions such asprintf ()

or g_print ()). Instead, elements should use the logging functions provided by GStreamer, named
GST_DEBUG (), GST_LOG (), GST_INFO (), GST_WARNING () andGST_ERROR (). The various
logging levels can be turned on and off at runtime and can thusbe used for solving issues as they turn
up. Instead ofGST_LOG () (as an example), you can also useGST_LOG_OBJECT () to print the
object that you’re logging output for.

• Ideally, elements should use their own debugging category.Most elements use the following code to
do that:

GST_DEBUG_CATEGORY_STATIC (myelement_debug);
#define GST_CAT_DEFAULT myelement_debug

[..]

static void
gst_myelement_class_init (GstMyelementClass *klass)
{
[..]

GST_DEBUG_CATEGORY_INIT (myelement_debug, "myelement",
0, "My own element");

}

106

Chapter 23. Things to check when writing an element

At runtime, you can turn on debugging using the commandline option --gst-debug=myelement:5.

• Elements should use GST_DEBUG_FUNCPTR when setting pad functions or overriding element
class methods, for example:

gst_pad_set_event_func (myelement->srcpad,
GST_DEBUG_FUNCPTR (my_element_src_event));

This makes debug output much easier to read later on.

• Elements that are aimed for inclusion into one of the GStreamer modules should ensure consistent
naming of the element name, structures and function names. For example, if the element type is
GstYellowFooDec, functions should be prefixed with gst_yellow_foo_dec_ and the element should be
registered as ’yellowfoodec’. Separate words should be separate in this scheme, so it should be
GstFooDec and gst_foo_dec, and not GstFoodec and gst_foodec.

23.3. Querying, events and the like
• All elements to which it applies (sources, sinks, demuxers)should implement query functions on their

pads, so that applications and neighbour elements can request the current position, the stream length
(if known) and so on.

• Elements should make sure they forward events they do not handle with gst_pad_event_default (pad,
event) instead of just dropping them. Events should never bedropped unless specifically intended.

• Elements should make sure they forward queries they do not handle with gst_pad_query_default (pad,
query) instead of just dropping them.

• Elements should use gst_pad_get_parent() in event and query functions, so that they hold a reference
to the element while they are operating. Note that gst_pad_get_parent() increases the reference count
of the element, so you must be very careful to call gst_object_unref (element) before returning from
your query or event function, otherwise you will leak memory.

23.4. Testing your element
• gst-launch is not a good tool to show that your element is finished. Applications such as Rhythmbox

and Totem (for GNOME) or AmaroK (for KDE)are. gst-launch will not test various things such as
proper clean-up on reset, interrupt event handling, querying and so on.

• Parsers and demuxers should make sure to check their input. Input cannot be trusted. Prevent possible
buffer overflows and the like. Feel free to error out on unrecoverable stream errors. Test your demuxer
using stream corruption elements such asbreakmydata (included in gst-plugins). It will randomly
insert, delete and modify bytes in a stream, and is thereforea good test for robustness. If your element
crashes when adding this element, your element needs fixing.If it errors out properly, it’s good
enough. Ideally, it’d just continue to work and forward dataas much as possible.

107

Chapter 23. Things to check when writing an element

• Demuxers should not assume that seeking works. Be prepared to work with unseekable input streams
(e.g. network sources) as well.

• Sources and sinks should be prepared to be assigned another clock then the one they expose
themselves. Always use the provided clock for synchronization, else you’ll get A/V sync issues.

108

Chapter 24. Porting 0.8 plug-ins to 0.10

This section of the appendix will discuss shortly what changes to plugins will be needed to quickly and
conveniently port most applications from GStreamer-0.8 toGStreamer-0.10, with references to the
relevant sections in this Plugin Writer’s Guide where needed. With this list, it should be possible to port
most plugins to GStreamer-0.10 in less than a day. Exceptions are elements that will require a base class
in 0.10 (sources, sinks), in which case it may take a lot longer, depending on the coder’s skills (however,
when using theGstBaseSink andGstBaseSrc base-classes, it shouldn’t be all too bad), and elements
requiring the deprecated bytestream interface, which should take 1-2 days with random access. The
scheduling parts of muxers will also need a rewrite, which will take about the same amount of time.

24.1. List of changes
• Discont events have been replaced by newsegment events. In 0.10, it is essential that you send a

newsegment event downstream before you send your first buffer (in 0.8 the scheduler would invent
discont events if you forgot them, in 0.10 this is no longer the case).

• In 0.10, buffers have caps attached to them. Elements shouldallocate new buffers with
gst_pad_alloc_buffer (). SeeCaps negotiationfor more details.

• Most functions returning an object or an object property have been changed to return its own reference
rather than a constant reference of the one owned by the object itself. The reason for this change is
primarily thread-safety. This means effectively that return values of functions such as
gst_element_get_pad (), gst_pad_get_name (), gst_pad_get_parent (),
gst_object_get_parent (), and many more like these have to be free’ed or unreferenced after
use. Check the API references of each function to know for sure whether return values should be
free’ed or not.

• In 0.8, scheduling could happen in any way. Source elements could be_get ()-based or_loop
()-based, and any other element could be_chain ()-based or_loop ()-based, with no limitations.
Scheduling in 0.10 is simpler for the scheduler, and the element is expected to do some more work.
Pads get assigned a scheduling mode, based on which they can either operate in random access-mode,
in pipeline driving mode or in push-mode. all this is documented in detail in
Different scheduling modes. As a result of this, the bytestream object no longer exists.Elements
requiring byte-level access should now use random access ontheir sinkpads.

• Negotiation is asynchronous. This means that downstream negotiation is done as data comes in and
upstream negotiation is done whenever renegotiation is required. All details are described in
Caps negotiation.

• For as far as possible, elements should try to use existing base classes in 0.10. Sink and source
elements, for example, could derive fromGstBaseSrc andGstBaseSink. Audio sinks or sources
could even derive from audio-specific base classes. All existing base classes have been discussed in
Pre-made base classesand the next few chapters.

• In 0.10, event handling and buffers are separated once again. This means that in order to receive
events, one no longer has to set theGST_FLAG_EVENT_AWARE flag, but can simply set an event
handling function on the element’s sinkpad(s), using the functiongst_pad_set_event_function
(). The_chain ()-function will only receive buffers.

109

Chapter 24. Porting 0.8 plug-ins to 0.10

• Although core will wrap most threading-related locking foryou (e.g. it takes the stream lock before
calling your data handling functions), you are still responsible for locking around certain functions,
e.g. object properties. Be sure to lock properly here, sinceapplications will change those properties in
a different thread than the thread which does the actual datapassing! You can use the
GST_OBJECT_LOCK () andGST_OBJECT_UNLOCK () helpers in most cases, fortunately, which
grabs the default property lock of the element.

• GstValueFixedList and all*_fixed_list_* () functions were renamed toGstValueArray
and*_array_* ().

• The semantics of GST_STATE_PAUSED and GST_STATE_PLAYING have changed for elements
that are not sink elements. Non-sink elements need to be ableto accept and process data already in the
GST_STATE_PAUSED state now (i.e. when prerolling the pipeline). More details can be found in
Chapter 6.

• If your plugin’s state change function hasn’t been superseded by virtual start() and stop() methods of
one of the new base classes, then your plugin’s state change functions may need to be changed in order
to safely handle concurrent access by multiple threads. Your typical state change function will now
first handle upwards state changes, then chain up to the statechange function of the parent class
(usually GstElementClass in these cases), and only then handle downwards state changes. See the
vorbis decoder plugin in gst-plugins-base for an example.

The reason for this is that in the case of downwards state changes you don’t want to destroy allocated
resources while your plugin’s chain function (for example)is still accessing those resources in another
thread. Whether your chain function might be running or not depends on the state of your plugin’s
pads, and the state of those pads is closely linked to the state of the element. Pad states are handled in
the GstElement class’s state change function, including proper locking, that’s why it is essential to
chain up before destroying allocated resources.

As already mentioned above, you should really rewrite your plugin to derive from one of the new base
classes though, so you don’t have to worry about these things, as the base class will handle it for you.
There are no base classes for decoders and encoders yet, so the above paragraphs about state changes
definitively apply if your plugin is a decoder or an encoder.

• gst_pad_set_link_function (), which used to set a function that would be called when a
format was negotiated between twoGstPads, now sets a function that is called when two elements are
linked together in an application. For all practical purposes, you most likely want to use the function
gst_pad_set_setcaps_function (), nowadays, which sets a function that is called when the
format streaming over a pad changes (so similar to_set_link_function () in GStreamer-0.8).

If the element is derived from aGstBase class, then override theset_caps ().

• gst_pad_use_explicit_caps () has been replaced bygst_pad_use_fixed_caps (). You
can then set the fixed caps to use on a pad withgst_pad_set_caps ().

110

Chapter 25. GStreamer licensing

25.1. How to license the code you write for GStreamer

GStreamer is a plugin-based framework licensed under the LGPL. The reason for this choice in licensing
is to ensure that everyone can use GStreamer to build applications using licenses of their choice.

To keep this policy viable, the GStreamer community has madea few licensing rules for code to be
included in GStreamer’s core or GStreamer’s official modules, like our plugin packages. We require that
all code going into our core package is LGPL. For the plugin code, we require the use of the LGPL for
all plugins written from scratch or linking to external libraries. The only exception to this is when
plugins contain older code under more liberal licenses (like the MPL or BSD). They can use those
licenses instead and will still be considered for inclusion. We do not accept GPL code to be added to our
plugins module, but we do accept LGPL-licensed plugins using an external GPL library. The reason for
demanding plugins be licensed under the LGPL, even when using a GPL library, is that other developers
might want to use the plugin code as a template for plugins linking to non-GPL libraries.

We also plan on splitting out the plugins using GPL librariesinto a separate package eventually and
implement a system which makes sure an application will not be able to access these plugins unless it
uses some special code to do so. The point of this is not to block GPL-licensed plugins from being used
and developed, but to make sure people are not unintentionally violating the GPL license of said plugins.

This advisory is part of a bigger advisory with a FAQ which youcan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentation/licensing.html)

111

	GStreamer Plugin Writer's Guide (0.10.29)
	Table of Contents
	List of Tables
	I. Introduction
	Chapter 1. Preface
	1.1. What is GStreamer?
	1.2. Who Should Read This Guide?
	1.3. Preliminary Reading
	1.4. Structure of This Guide

	Chapter 2. Foundations
	2.1. Elements and Plugins
	2.2. Pads
	2.3. Data, Buffers and Events
	2.3.1. Buffer Allocation

	2.4. Mimetypes and Properties
	2.4.1. The Basic Types

	II. Building a Plugin
	Chapter 3. Constructing the Boilerplate
	3.1. Getting the GStreamer Plugin Templates
	3.2. Using the Project Stamp
	3.3. Examining the Basic Code
	3.4. GstElementDetails
	3.5. GstStaticPadTemplate
	3.6. Constructor Functions
	3.7. The plugininit function

	Chapter 4. Specifying the pads
	4.1. The setcapsfunction

	Chapter 5. The chain function
	Chapter 6. What are states?
	6.1. Managing filter state

	Chapter 7. Adding Arguments
	Chapter 8. Signals
	Chapter 9. Building a Test Application
	III. Advanced Filter Concepts
	Chapter 10. Caps negotiation
	10.1. Caps negotiation use cases
	10.2. Fixed caps
	10.3. Downstream caps negotiation
	10.3.1. Negotiating caps embedded in input caps
	10.3.2. Parsing and setting caps

	10.4. Upstream caps (re)negotiation
	10.5. Implementing a getcaps function

	Chapter 11. Different scheduling modes
	11.1. The pad activation stage
	11.2. Pads driving the pipeline
	11.3. Providing random access

	Chapter 12. Types and Properties
	12.1. Building a Simple Format for Testing
	12.2. Typefind Functions and Autoplugging
	12.3. List of Defined Types

	Chapter 13. Request and Sometimes pads
	13.1. Sometimes pads
	13.2. Request pads

	Chapter 14. Clocking
	14.1. Types of time
	14.2. Clocks
	14.3. Flow of data between elements and time
	14.4. Obligations of each element.
	14.4.1. Source elements
	14.4.2. Sink elements

	Chapter 15. Supporting Dynamic Parameters
	15.1. Getting Started
	15.2. The Data Processing Loop
	15.2.1. The Data Processing Loop for Video Elements
	15.2.2. The Data Processing Loop for Audio Elements

	Chapter 16. Interfaces
	16.1. How to Implement Interfaces
	16.2. URI interface
	16.3. Mixer Interface
	16.4. Tuner Interface
	16.5. Color Balance Interface
	16.6. Property Probe Interface
	16.7. X Overlay Interface
	16.8. Navigation Interface

	Chapter 17. Tagging (Metadata and Streaminfo)
	17.1. Overview
	17.2. Reading Tags from Streams
	17.3. Writing Tags to Streams

	Chapter 18. Events: Seeking, Navigation and More
	18.1. Downstream events
	18.2. Upstream events
	18.3. All Events Together
	18.3.1. End of Stream (EOS)
	18.3.2. Flush Start
	18.3.3. Flush Stop
	18.3.4. New Segment
	18.3.5. Seek Request
	18.3.6. Navigation
	18.3.7. Tag (metadata)

	IV. Creating special element types
	Chapter 19. Premade base classes
	19.1. Writing a sink
	19.1.1. Writing an audio sink
	19.1.2. Writing a video sink

	19.2. Writing a source
	19.2.1. Writing an audio source

	19.3. Writing a transformation element

	Chapter 20. Writing a Demuxer or Parser
	Chapter 21. Writing a Nto1 Element or Muxer
	Chapter 22. Writing a Manager
	V. Appendices
	Chapter 23. Things to check when writing an element
	23.1. About states
	23.2. Debugging
	23.3. Querying, events and the like
	23.4. Testing your element

	Chapter 24. Porting 0.8 plugins to 0.10
	24.1. List of changes

	Chapter 25. GStreamer licensing
	25.1. How to license the code you write for GStreamer

