openSUSE-KIWI Image System
Cookbook

Marcus Schifer

openSUSE-KIWI Image System: Cookbook

by Marcus Schifer
Thomas Schraitle <toms@suse.de>
Robert Schweikert <rjschwei@suse.com>

KIWI Version 7.01

License

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the
license version 1.2 is included in the appendix entitled “GNU Free Documentation License”.

SUSE®, openSUSE®, the openSUSE® logo, Novell®, the Novell® logo, the N® logo, are registered trademarks of Novell, Inc.
in the United States and other countries. Linux® is a registered trademark of Linus Torvalds. All other third party trademarks
are the property of their respective owners.

All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete
accuracy. Neither Novell, Inc., SUSE Linux Products GmbH, the authors, nor the translators shall be held liable for possible errors
or the consequences thereof.

Table of Contents

L. Concepts and BaSiCSeeeeeeiiiiieiiiiiiieieiitte ettt e e e et e e st e e e e rre e e s e are e e e e sarneeas 1
1. INEPOAUCTION .oo.eeeiiiiiiiiiiieeee ettt s s eee s s 5
1.1. What iS KIWI? ..oeiiiiiiiiiiiiiieeeeee e e eeeeietteee e e e e e e e s aeaanaeeeeeeeessssnnnsssnaneaaasaaanns)

1.2. What does KIWIL dO?eeeeiiriiiieiiniiteeeeenteeeeeineeesesinreessssnneeesssssnneessssnnnees 5

1.3. HOW dO T USE KIWI?ooiiiiiiiiiiiieeeeieteeeeeieeeeeesireeeeesssreeessssnsneeessssnnneessssnnns 5

2, INSLAllAtioN .cooiiiiiiiiiiieeeeeeeeeeeee e e e e e e s e s araraaaeeee s 7
2.1. Installing using Packagesccceeevuueeiiiiiiiieiiiiiieeeeeeee e 7

2.2. Installing from SOUTICEcccoeeiiiiiiiiiiiieieiiitee ettt e ere e e s 8

3. Basic WOTKFIOW ..ottt 9
3.1, INTFOAUCHION ..eevviiieeiieeeiiiiiiteeeeeeeeeeeeeerreeeeeeeeeeeeeanrreeeeeeeessssssnnnssreneeeeessanns 9

3.2. BUILA PIOCESS ...evveeeeiiieiiiiiiiieeteeee ettt e e e e e e e s ieeereeeeee e s e s s esenneeeaeeens 11

3.3. Boot Image HOOK-SCIIPLSeeeeeeeeriiiriiiiiiiiiiieeeeeeeeeerinnreeeeeeeeeeeesnnnneeeeeeens 14

3.4. Boot Image CuStOmMiZationcceeeeeeeeiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeereeeeeeeneeaaaaaaaes 17

3.5. Using Pre-built BOOt IMAZESceeeeeerrreieeeiiiiieeieeeeeeeeeeeririeeeeeeeeeeeeessnnneee 18

3.6. BOOt PArameterscccoieiiiimmmiiiiiiiiiiiieee ettt e et teree e e e ettt e e e e e 19

3.7. Common and Distribution Specific Codecccceeeeeeerieeeriiiiieeiieeeieeeeeeeeeeeee, 19

4. ITmage CacChescooooiiiiiiiiiiite ettt 21
4.1, INEFOAUCHION ..vvvrieieieiiiiieiiiiiireeeeeeeeeeeeeirrreeeeeeeeeeessssaasaraaaeeeeessssssssssssesaeaeees 21

B 05 211115 (U TR PUPUPPRRRINE 23

5. KIWI Image DeSCIiPLiONc.ccccuviiiiiriiiieiiniiiieeeeriiteeeeerireeeeesineeesssasreeessssnsneessnns 25
5.1. The config.Xml Filecccooirioiiiiiiiiieiieeeeeeeeee e e e e e e 26

6. Creating Appliances With KIWIcccoiiiiiiiiiiiiiiiiiiieeeceeceeeeieeee e 47
6.1, OVEIVIEW .eiiiiiiiiiiiiiieiiieeetieeieiirrttteeeeeesesesirreseeeeeeesseeessmnssrasaeeesssesssssnnnssnne 47

6.2. The KIWI MOdELccoiiiiiiiiiiiiieeeiitee ettt e e e e s e saneeeeeeaee 48

6.3. Cross Platform Appliance Buildcccccceiiiiiiiiiiiiiiiieeeeeeeesieeeeeeeee e 49

IL USCASES .eeeiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeee ettt ettt ettt ettt ettt e e bbb e b s b e s saasssas s asee 51
7. Maintenance of Operating System Imagescccceevvrieeerriiieeeenniieeeeensineeeenns 55
8. System Analysis/MiGIrationccccccceeiiiiiiiiiiriiiiiieeeiriiiteeeeereeeeeeenreeeeeeareeeeeas 59
8.1. Create a Clean RepoSitOry Set FirStcccccccceeeeerrieieeeenirieieeenrneeeeeesnneeeeenns 59

8.2. Watch the Custom Filesccccevviiiiiiiiiiiiiiiiiiiiiecee e 60

8.3, CRhECKIIST .eeeeiiiiiiiieeetteet ettt 60

8.4. Turn Into an IMage... ...eueeeii e eeeeeeeeeeeeeeeeeeeee 60

9. InStallation SOUICEcocociiiiiiiiiiiiiieeeeee et s e s 61
9.1. Adapt the Example’s config.Xmlccccooueiiiiiieeiiienniiiiiiieeeeeee e 61

9.2. Create a Local Installation SOUICEcccccvuveeeeeeeereeeniiiiiireeeeeeeeeeeeeeeeeeeee 61

10. ISO Image—Live SYSLEIMSc.cceeiiriiiieiiiiiiteeeeeiteeeeeiteeeeeerteeeeesrreeeesenneeeeens 63
10.1. Building the suse-live-iSO EXamplecccccceeeeeiiuieereniiiieeriniiieeeeenieeeeeenns 63
10.2. USINg the IMAGEceeeeriiiiiiiiiiiieeieitteeeeitee et e et e e e sre e e s e snneee e e e 63
10.3. FLAVOULS ...eviiiiiiiiiiiieiiteeett ettt ettt aae s ae e s e e e 63
10.4. USB StiCk iMAZES ..eeecuvrieerieirieeiieiieeeeeerteeeeertee e e eire e s eerre e e s e ssreeeseennaees 64

11. VMX Image—Virtual DiSKScccccoeiiiiiiiiiiiiiiinieeeeeeeeeeeeee e 67
11.1. Building the suse-vm-guest EXamplecccccceeeeeerirrreriiieireeeeeeeeensnnsineennes 67

iii

openSUSE-KIWI Image System

11.2. USING the IMAZE ..ccccuveeereeeriiiiiieiiieeeeeeeeeeeeeiirrereeeeeeeesssnneereeeeesessssnnns 67
O T) P 70 T 67

12. Linux Containers and DOCKELooiviuiiiiiiiiieiieriiereiereiesetneestneestnressaresenness 71
12.1. Building the suse-lxc-guest EXamplecccocovviiiiiiiiiiiiiiiiiiienniiieeeeneeee. 72
12.2. USing the IMAaGEeccceeiiiiiiiiiiiiiieieiiteeeeeiteee ettt e ee e s eeneeeeeees 72
12.3. Image Configuration Detailscceeevurriiiieeeiiiiirriiiiieeeeeeee e eecieeeeeeeee 72

13. PXE Image—Thin ClLEeNtsccccccevriiiiiiiiiiiiiieeeeiteeeeeieee e e seeineee e s senees 73
13.1. Setting Up the Required ServiCesccceeevvvmereeeeeerreenieriinreeeeeeeeeessennnnns 73
13.2. Building the suse-pxe-client EXampleccoeevvumriieeeeieienieiiineeeeeeeeeeennn. 74
13.3. USING the IMAZE ...cccouveerreeeeeriieieiiiireeteeeeeeeeeeierereeeeeeeesssnnrereeeeeesssssnnnes 74
G 2 T Ll 170 T 75
13.5. Hardware GIOUPINEccueeeeeeeeeerreeeerrrunrreeeeeeeeeesssssnnsreeeeeeessssssssssssseeeeeesens 84

14. OEM Image—Preload SYStEIMSccccceerreiiiieiiiiiiiiieiiiieeeeeeireeeeeeieeeeeeesneeeeeas 91
14.1. Building the suse-oem-preload Examplecccccceeeeeiiiiiiriiiininneeeeeeeesennnnnn. 91
14.2. USING the IMAZE ..ccccvvrrriieieeiiiiiiiiirtteeeeeeeesssrirreeeeeeeeesssssnssssaesseesssssssnnns 91
B T 2l 701 N 92

15. Xen Image—Paravirtual SYStEmMSccccceerrviiiieiiiiiiiieiinrieeeeeeireeesesieeeseeane 95
15.1. Building the suse-xen-guest EXampleccccceeeeeeeriineiiiiniieeeeeeeeeennesnenne 95
15.2. USING the IMAZE ..ccccuveeeieeerieiiiieiiiiieeeeeeeeeeeeeiireeeeeeeeeeesssnnreeeeeeeeesassnnnes 95
BT T Ll P 70 T TP 96

16. EC2 Image — Amazon Elastic Compute Cloudcccocouiiiiiiiiiiiiniineeeennnne 97
16.1. Building the suse-ec2-guest EXamplecccccceeeeieiernniiiieenenineeeeenineeeennn. 98
16.2. Using EC2 and the created imagecccceeeeureeerieiieieeenniiiieeeeeeeeeeeeeeeeen 99

17. KIWI RAID SUPPOTT ..ottt e ettt e e e e et eeenee e e e e e e e nemanaees 107
18. KIWI CUSLtOM PATITIONScovvvniiiiiniiiiiieeiiiiieeeetineeeeraneeeetnneeerranseeesaneessssnesees 109
18.1. Custom Partitioning via LVMcccciiiiiiiiiiiiiimmmemmmeemiiieeee 109
18.2. Custom Partitioning via Brfscccccceeeeiiiiieirriiiieeeiiieeeeceeeeeeeeeeeeeene 110

19. KIWI ENCryption SUPPOTTLcccoerriiiriiiiiiiiiieeeeeeeeeeiireeeeeeeeeeesesannneeeeeesesssssnnns 111
III. Examples and Best PracCtiCeSscceevevurrireeeeeeiierriiiiereeeeeeeeeeesssinrereeeeeeesssssssnsssseeeeeens 113
20. Start COOKINGccoiiiiiiiiiiiiiiiieeeiiiteeeeeettee e et e e e e erbteeeessaateeesssasneeesesaseeeeanns 117
20.1. General Preparation for All RECIPEScceeiiieeeeiuiireiieeeeeeieeecciieeeeeeeee e 117
20.2. Get ready to Start COOKINEcecvueerrrriureerieiiieeeneriieeeeeerireeeseesneeessesnnne 118

A, KIWI Man PAgeScoooiiiiiiiiiieiiieeee ettt e e ettt e s s e e et eeane e e s e e e et eannneeseeeeeenannns 121
KIWWE ettt ettt ettt ettt e e et e e e taaeseeanaesetanasssaannassasannssssssnessesannesessnnnssesennessesnnns 122
KIWiiCONTAZ. SR et e e e e e e e s s s s e 130
KiWiiimMAaZeSs.Sh ceeeeeiieeiiiieeeeeee ettt e e e e e s e e e e e e e s s s aaaeaeaees 134
KIWILIKITWITC wenviiieiiiieeiie ettt ettt et e et ettt e e et e e taaestaaestanestanessasesesnesesnnssennssesnssennssennns 137
53 U (<) G 139

iv

Part I. Concepts and Basics

Table of Contents

1. INEPOAUCHION .coeeiiiiiiiiiiiieeecee ettt et re e e st e s re e s e e e e seseeeeenee 5
1.1. What iS KIWI? ..oeiiiiiiiiiiiiiiitteeeee e e e ceeiitreeeee e e e s e seenasasaeeeeesseessesnnnsssnneeaessessansnnnnns)
1.2. What does KIWI dO? ..ccceeiieiiriiiieeieiiieeeeeiiteeessieteeessstreeeessnsaeessssssneessssnnnaesssnns 5
1.3. HOW dO T USE KIWI? coiiiiiiiiiiiiiieeeeeiieeeeeeeteeeeeeiteeeesssreeeessnsneeeessnneeesssnsnaasenns 5
2, INSTALIAtION .ooiiiiiiiiiiiceecee et e e e e e et e e e e e e e e s st b e e e e e e e eess s nnnns 7
2.1. Installing usSing PacCKagescceeeeuiiiiiiiiiiiiiieiiteee ettt st e s e e s 7
2.2. Installing from SOUICEccooviiiiiiiiiiiiiieieeteee ettt e et e e e eaneee e 8
3. BasiC WOTKFIOWooomiiiiiiee ettt 9
3.1, INLFOAUCTION ..eevriiieiiiieieeiiieeteeeeeeeeeeeeeeereeeeeeeeeeeennsrreeeeeeesessssnnnsrreaeeesessssssnnnsens 9
3.2, BUILA PIOCESS ...evveiieieeeiieieiiiiieteeeeeeeeeeeiteeteeee e e e eeesenanrreeeeeeeesesssssnnssneeeeeessssssnns 11
3.3. Boot Image HOOK-SCIIPLS ...uuuereereeerrriiiiiiiiiieeeeeeeeeeeeeeinrreeeeeeeeeeesssnnneneeeeeeesessnns 14
3.4. Boot Image CuStOmMIZationcceeeeiieeiiiiiiiiiiiiiiiiiiiieeieeeteeeteeereeereeereeeeeeenaeennaaanaas 17
3.5. Using Pre-built BOOt IMAZESeuuuvrririeereiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeenrreeeeeens 18
3.6. BOOt PArameterscoooiiiiiimmiiiiiiiiiiiiie ettt ettt e s e e et e s e e et enenees 19
3.7. Common and Distribution Specific COdeceeeeeiiiiiiiiiiiiiiieeeeeeeeeeeereeeeereeeeereeen, 19
4. ITmage CaChescoooiiiiiii ettt e st e e 21
4.1, INEFOAUCHION ..vvviiieeiiiiieieiiirteeeeeeeeeesesiiirrteeeeeeeeesesssssrrsaeeeeeesssssssssssssaaeeeeesssssssnnnes 21
4.2, EXAIMNPLE nneiiiiiiiiiiieeeeeteeeeett ettt ettt e e s bt e e e e arbt e e e e nreeeeenas 23
5. KIWI Image DeSCIIPLIONccooviiiiiiiiiiiiieeeniiieeeeriiteeeeesireeeessnreeeesssnrreeesssnsseeeesssnseeens 25
5.1. The config.Xml Fileccoouiriiiiiiiiiiiiieeeee e e e e e e ereee e e e e e e e eees 26
6. Creating Appliances with KIWIcccccciiiiiiiiiiiiiiiiiiiiieee et sereee s 47
G 17 74 1< PO 47
6.2. The KIWI MOdelccooouiiiiiiiiiiiiiiiiieccrecntecre et ine s 48
6.3. Cross Platform Appliance Buildccccovuiiiiieeiiiiiiiiiiiiieeeeeeceeeeesreeeeeeee e e 49

1 Introduction

Table of Contents

T.T. WHRAL 1S KIWI? oeeiiiieiiiee ettt etee et e et e et e staesaaessnnessanesannesennnsannesesnnsesnnssnnnsesnnsennnsenn 5
1.2. What d0OeS KIWI dO? ...oeevuueiieiieeeiiiieeettnieeeeeneeeeraneseeranesesrssnesesssssssessnsssssssnesssssnossssnes 5
1.3. HOW dO T USE KIWI? ..oiirieiiiiieieiitiieeeettieeeeeuneeeenuneseeessneeseessnssessssessessnsssssssssssssnssssennnes 5

1.1. What is KIWI?

KIWI is an image build system for Linux.

A Linux image may present itself in many different formats, for example the *.iso file you
download to burn a distribution installation file to optical media is an image. A file used by
virtualization systems such as KVM, Xen, or VMware is an image. The installation of a Linux
system on your hard drive can be turned into an image using the dd command.

Basically, you can think of an image as a Linux system in a file. Depending on the type of the
image you are dealing with you have different options for using the image. For example you
can burn an ISO image to optical media and then boot your computer from the CD/DVD, or
you can run a Virtual Machine from the *. iso file (image) stored on your hard drive.

1.2. What does KIWI do?

KIWI builds images in a variety of formats.

As an image build tool, KIWI builds images in a relatively large number of supported image
formats. The details of the image creation process are explained in the Chapter 3, Basic Work-
flow chapter. The image format of the image produced by KIWI is defined within a configura-
tion file named config.xml as described in Chapter 5, KIWI Image Description.

Note that not all elements and attributes that may be used in the KIWI config.xml config-
uration file are listed or described in this document. The complete schema documentation
can be accessed on the web at http://doc.opensuse.org/projects/kiwi/schema-doc/, latest ver-
sion, or on you local system using the file:///usr/share/doc/packages/kiwi/schema/
kiwi.html path as the URL in the browser.

1.3. How do I use KIWI?

KIWI is a command line tool that is invoked with the kiwi command in your shell. KIWI needs
to be executed as the root user, as administrative privileges are required for many operations

http://doc.opensuse.org/projects/kiwi/schema-doc/

How do I use KIWI?

that need to take place to create an image. Therefore, when using KIWI you need to be aware
of what you are doing and a certain amount of caution is in order. Running KIWI on your
system is not inherently dangerous to your system, just keep in mind that you are running
as the root user.

An image is created in a two step process as described in the Chapter 3, Basic Workflow chap-
ter. Use kiwi --prepare for the first step and kiwi --create for the second step. For user con-
venience KIWI also has the - -build that combines the prepare and create steps.

Additional introductory information can also be found on the web at http://en.opensuse.org/
SDB:KIWI_Cookbook_Start_Cooking.

http://en.opensuse.org/SDB:KIWI_Cookbook_Start_Cooking
http://en.opensuse.org/SDB:KIWI_Cookbook_Start_Cooking

2 Installation

Table of Contents

2.1. Installing uSing PaCKAZESccuuveeirriiiiiieieeiiiteeeeitteeeeeitee e e et e e e st e eeeesaseeeesssannaeessnns 7
2.2. Installing from SOUICEceeiiieiiiieiieiieereeree e eerreee e et e e seareee e s e sareeessearreeesesnneeas 8

2.1. Installing using Packages

Once you have added the appropriate repositories (more on this below) to your system you
can search for the kiwi packages through the YaST interface or using zypper as shown below.

zypper se kiwi

The list of packages returned by zypper contains the main package, simply named kiwi-, the
-doc package containing the documentation files, and the -desc- packages containing the
boot descriptions for the various image types. Installing this set of packages is sufficient to
build your images.

Adding repositories to your system can be accomplished using the YaST interface or the zyp-
per ar command.

2.1.1. Distribution Provided Packages

The simplest and most straight forward way to install KIWI is to use the packages that are
part of the SUSE distribution you are running. In openSUSE the kiwi packages are part of
the "standard" distribution and in SUSE Linux Enterprise kiwi packages are available in the
SDK channel.

2.1.2. Packages used by SUSE Studio

If you use SUSE Studio to set up your configuration and then export it to build locally on your
machine you want to make sure to use the same version of KIWI that SUSE Studio uses to build
images. This version of KIWI which most often differs from the version released with a given
distribution is available from the openSUSE Build Service. The repository you want to add to
your system is http://download.opensuse.org/repositories/home:/ctso/DISTRO.

Once you have the repository added to your system you can search for the kiwi packages and
install them as described above.

Packages for Devel-
opment Releases

2.1.3. Packages for Development Releases

KIWI is under active development and changes almost on a daily basis. The development code
is generally released once a week on Friday. Sometimes the development releases contain new
bugs that break existing builds. Therefore, this is not necessarily the best release stream to
track if you are looking for critical on time builds of already configured appliances. However,
tracking this stream provides a great opportunity for you to help in detecting such bugs and
by reporting them on the mailing list you can help the developers. Any regression fixes are
generally released as soon as they are completed. Thus, there is no need to wait until the next
scheduled release on a Friday. If you add the http://download.opensuse.org/reposito-
ries/Virtualization:/Appliances/DISTRO repository to your system you can track the
development release.

Once you have the repository added to your system you can search for the kiwi packages and
install them as described above.

2.2. Installing from Source

KIWI is developed and maintained in a git repository on GitHub. You can clone the source
code using the following command.

git clone https://github.com/openSUSE/kiwi.git

Before installing from source you want to verify that all the dependencies are satisfied. The
best way to accomplish this is to install all packages listed as BuildRequires in the . spec file
found in the rpm directory. Once all dependent packages are installed change your working
directory to the kiwi directory and build and install from source.

make
make install

The KIWI self tests are executed using:

make test

If you want to refresh your source with the latest checked in code you can simply pull the
latest sources from the GitHub repository using the command shown below.

git pull

3 Basic Workflow

Table of Contents

3.1, INEFOAUCHION ..uvvviiieeiiieiieeiiiiireeeeeee et e eeesrrreteeeeeeeessssasaraaeeeeeeeessssssnsssssaaaaeeeessssssnssenseeees 9
3.2, BUILA PTOCESS ...uuvvviiieieiiiiiieiiiiiittteeeeeeeesestrtteeeeeeessssssasassaseaeaeesssssssssssssaeaeeesessssssnnnes 11
3.3. B0Ot IMage HOOK-SCIIPLS ...uuuvrvrriiiieeieiiiiiiiiiiiteeeeeeessessiirereeeeeeesesssssssssnreeeeeessssssssssnnnnes 14
3.4. Boot Image CUSLOMIZALIONcceeiiiiiiiiiiiiiiiiiiieeeieereeeerreereeereeesreeeeeeaaaeaaaaaaaaaaaaaaaanssnsssssnsns 17
3.5. Using Pre-built BOOt IMAZES ...cccceveeuuriiiiieieeiiiiiriiiiirrtteeeeeeeessssnerrseeeeeeeesessssnnssssaseeees 18
3.6. BOOTt PATAMIELETScoiieiiiiiniieieeeeeiieeieeeeeeeetenaaieeeeeeeeennnneeseseeeeresnssessseeeerennnsnsssseesrennnnnns 19
3.7. Common and Distribution Specific COdeccccviiiiiiiirriiiiiiiiieeeeeeeeereeeeeeeee e 19

3.1. Introduction

KIWI creates images in a two step process, as mentioned previously. The first step, the pre-
pare operation, generates a so called unpacked image tree (directory) using the information
provided in the config.xml configuration file. The config.xml file is part of the configuration
directory (tree) that describes the image to be created by KIWI. The second step, the create
operation, creates the packed image or image in the specified format based on the unpacked
image, information provided in the config.xml and the boot image description specified in
the config.xml file. Generally the KIWI provided boot image description is sufficient to meet
the needs of the image to be created. KIWI also supports the use of custom boot images.

Introduction

Figure 3.1. Image Creation Architecture

@cﬁge Source

[——

Image Description T Unpacked Image o

Packed Image

Serve it...

® Encapsulated system reachable via chroot
® Encapsulated system reachable via kernel filesystem/extension drivers

Prior to building an image with KIWI it is important to understand the composition of an
image, the general concepts of Linux, including the boot process, and distribution concepts
such as package management.

Installation of a Linux system generally occurs by booting a target system from an installation
source such as an install CD/DVD, a live CD/DVD, or entering the PXE boot environment.
The installation process is often driven by an installer that interacts with the user to collect
collect information about the installation. This information generally includes the software to
be installed, the timezone, system user data, and other information. Once all the information
is collected the installer installs the necessary and specified software onto the target system
using packages from the available software sources (repositories). After the installation is
complete the system generally reboots and enters a configuration procedure upon startup. The
configuration may be fully automatic or it may include user interaction.

10

Build Process

A system image, or image, is a complete installation of a Linux system in a file. The image
represents an operational system and may or may not contain the "final" configuration. The
behavior of the image upon deployment varies depending on image type and image configu-
ration. With KIWTI it is possible to completely customize the initial start up behavior of the im-
age. This may include behavior that allows the image to simply be deployed inside an existing
virtual environment with no required configuration at start up. It is also possible to create
images that automatically configure themselves in a known target environment. Further, the
startup of an interactive configuration procedure can be integrated into the image to allow
the user to configure the image when it is booted for the first time. The image configuration
possibilities are practically unlimited. The image creation process with KIWI is automated and
does not require any user interaction. The required information for the image creation process
is provided in the primary configuration file named config.xml. The image can optionally
be customized using the config.sh and images. sh scripts. Additional customization can be
accomplished with the use of an optional overlay tree (directory) called root. The configura-
tion information is stored in the so called image description or configuration directory (tree).

3.2. Build Process

The creation of an image with KIWI is a two step process, the first step is called the prepare
step and it must complete successfully before the second step, the create step can be executed.
During the prepare step KIWI creates a new root tree or so called unpacked image. The new
root tree is created in a directory specified on the command line with the - - root argument
or the value of the defaultroot element in the config.xml file. This directory will be the
target for any software packages to be installed during the image creation process. For package
installation KIWI relies on the package manager specified with the packagemanager element
in the config.xml file. KIWI supports the smart and zypper package managers. The prepare
step executes the following major stages:

+ Create Target Root Directory.
KIWI will exit with an error if the target root tree already exists to prevent accidental dele-
tion of an existing unpacked image. Using the - - force-new- root command line argument
will force kiwi to delete the existing target directory and create a new unpacked image in
a new directory with the same name.

« Install Packages.

Initially KIWI configures the package manager (zypper by default) to be used for the image
creation to use the repositories specified in the configuration file and/or specified on the
command line. Following the repository setup the packages specified in the bootstrap sec-
tion are installed in a temporary workspace external to the target root tree. This establishes
the initial environment, to support the completion of the process in chroot setting. The es-
sential packages to specify as part of the bootstrap environment are the filesystem and glibc-
locale packages. The dependency chain of these two packages is sufficient to populate the
bootstrap environment with all required software to support the installation of packages
into the new root tree. The installation of software packages through the selected package
manager may install packages that you do not want in your image. Removing undesired
packages can be accomplished by specifying the packages you would like to remove from
the image as children of a packages element where the value of the type attribute of the
packages element is set to delete.

« Apply The Overlay Tree.
After the package installation with the package manager is complete, KIWI will apply all
files and directories present in the overlay directory named root inside the configuration

11

Build Process

directory to the target root tree. This allows you to over write any file that was installed
by one of the packages installed during the installation phase. Files and directories will
appear in the unpacked image tree in the same location as they are found in the directory
named root.

« Apply Archives.
Any archives specified with the archive element in the config.xml file are applied in the
specified order (top to bottom) after the overlay tree copy operation is complete. Archives
are unpacked at the top level of the new root tree and files will be located according to
their path in the archive. As with the overlay tree, it is possible to over write any file in
the target root tree.

« Execute User Defined config.sh Script.
At the end of the preparation stage the optional script named config. sh is executed at the
root level of the target root tree. The primary intended use of this script is to complete system
configuration such as service activation. For detailed description pre-defined configuration
functions consult the kiwi::config.sh(1) man page.

« Manage The New Root Tree.

The unpacked image directory is just a directory, as far as the build system is concerned and
you can manipulate the content of this directory to your liking. Further, as this directory
represents a system installation you can chroot into this directory and run in the chroot
environment to make changes. However, it is strongly discouraged to apply changes directly
to the unpacked root, as any changes you apply will be lost when the prepare step for the
image is repeated. In addition you may introduce errors into the unpacked root tree that
may lead to very difficult to track kiwi build issues during the create step of the image build
process. The best practice is to apply any necessary changes to the configuration directory
followed by a new prepare operation. If you inspect the created unpacked root tree you
will find a directory named image at the top level that you would not find on a system
installed with the distribution installer. This directory contains information KIWI requires
during the create step, including a copy of the config.xm1 file. You can make modifications
to data in this directory to influence the create step, however, as mentioned previously this
is discouraged and changes will be lost once the prepare step is repeated.

Successful completion of the prepare step is a the pre-requisite for the create step of the image
build process. With the successful completion of the image preparation the unpacked root
tree is considered complete and consistent. Creating the packed, or final image requires the
execution of the create step. Multiple images can be created using the same unpacked root
tree, for example it is possible to create a self installing OEM image and a virtual machine
image from one unpacked root tree, under the condition that both image types are specified
in the config.xml when the prepare step is executed. During the create step the following
major operations are performed by kiwi:

« Execute User Defined images.sh Script.

At the beginning of the image creation process the optional images. sh script is executed at
the top level of the unpacked image directory. Unlike the config. sh script, the images.sh
script does not have a target use case. The script is most often used to remove files that are
no needed in the final image. For example if an appliance is being built that is targeted for
specific hardware one can remove all unnecessary kernel drivers from the image using this
script. Consult the kiwi::images.sh(1) man page for a detailed description of pre-defined
functions available in the images. sh script.

« Create Requested Image Type.

12

Build Process

The image types that can be created from a prepared image tree depend on the types spec-
ified in the image description config.xml file. The configuration file must contain contain
at least one type element. The figure below shows the currently image types:

Figure 3.2. Image Types

Live Image o

config.xmi = Disk Image e

ff OEM Image 9

PXE Image o

Live Image on CD, DVD or USB stick

Virtual system than can be used in VMware, Xen, Amazon Cloud, KVM, etc. virtual
environments. Depending on the format a guest configuration file is created.

Preload system for install media CD/DVD or USB stick

Network boot image. KIWI also provides the bootp environment via the package ki-
wi-pxeboot

©o® o6

Detailed information, including step by step instructions about using the kiwi command and
building specific images, as well as the configuration of the supported image types is provided
later.

Most Linux systems use a special boot image to control the system boot process after the
system firmware, BIOS or UEFI, hands control of the hardware to the operating system. This
boot image is called the initrd. The Linux kernel loads the initrd, a compressed cpio initial
ramdisk, into RAM and executes init or, if present, linuxrc. KIWI creates the boot image as
part of the create step in the image build process. Each image type has a specialized image
description that describes the boot image. Common functionality is shared between the boot
images through a set of functions. The boot image descriptions follow the same principles
as the system image descriptions and are provided by KIWI. The boot image descriptions
provided by KIWI cover almost all use cases and it should not be necessary for the majority
of KIWTI users to implement their own boot descriptions.

13

Boot Image Hook-Scripts

Figure 3.3. Image Descriptions

Boot Image
(initrd / kernel)

System Image 9

® Boot image descriptions are provided by KIWI, use is recommended but not required
® The system image description is created by the KIWI user, or a KIWI provided template
may be used

The boot image descriptions are stored in the /usr/share/kiwi/image/*boot directories.
KIWTI selects the boot image to build based on the value of the boot attribute of the type
element. The attribute value is expected in the general form of boottype/distribution
. For example to select the OEM boot image for openSUSE version 12.1 the value of the
boot attribute should be oemboot/suse-12.1. The boot image description only represent the
initrd and as such serves a limited purpose. The system image description created by the
person building the image is ultimately the image that runs on the target system. Boot image
descriptions are complete and consistent descriptions that allow you to build the boot image
outside of the system image build process. The resulting boot image can be stored and re-used
as described in the Section 3.5, “Using Pre-built Boot Images” section.

3.3. Boot Image Hook-Scripts

All KIWI created boot images contain kiwi boot code that gets executed when the image is
booted for the first time. This boot code is different for the various image types and provides
hooks to execute user defined custom shell scripts. The shell scripts provided by the user may
extend the first boot process and are expected to exist inside the boot image in a specific

14

Boot Image Hook-Scripts

location with specific names. The naming and timing of the execution of the hook scripts is
image type dependent and described later. The instructions below explain the concepts of
hook scripts, which is common to all image types, and how to include the scripts in the initrd.

All hook scripts must be located in the kiwi-hooks directory at the top level of the initrd.
The best approach to including the hook scripts in the initrd is to create an archive of a
kiwi-hooks directory that contains the custom boot scripts.

mkdir kiwi-hooks
--> place all scripts inside kiwi-hooks
tar -cf kiwi-hooks.tgz kiwi-hooks/

The tarball must be located at the top level of the image description directory, this is the
same level that contains the config.xml file.

Hook scripts are executed using a predetermined name that is hard coded into the kiwi
boot code. This name is extended using the .sh extension and differs by boot image type.
Therefore, the boot script naming in the archive must be exact. Boot scripts are sourced
in the kiwi boot code. This provides the hook script access to all variables set in the boot
environment. This also implies that no separate shell process is started and the boot scripts
do not have to have the executable bit set. Encoding the interpreter location with the #!
comment is superfluous.

Hook scripts are only executed from within kiwi's boot code and must therefore be part of
the KIWI created boot image. Including the content of a tarball in the initrd is accomplished
by setting the value of the bootinclude attribute of the archive element to true in the
config.xml file as shown below:

<packages type="image">
<archive name="kiwi-hooks.tgz" bootinclude="true"/>
</packages>

The concept of including an archive in the boot image follows the same concepts described
for the system image previously. The setting in the system image description will have
no effect if a pre-built boot image is being used. In order to use an archive in a pre-built
boot image the archive must be part of the boot image description in which case it is not
necessary to set the bootinclude attribute.

The following list provides information about the hook names, timing of the execution, and
the applicable boot image.

handleSplash. This hook is called prior to any dialog/exception message or progress
dialog. The hook can be used to customize the behavior of the splash screen. kiwi automat-
ically hides a plymouth or kernel based splash screen if there is only one active console

init. This hook is called before udev is started. The hook exists only for the pxe image
type.

preconfig|postconfig. The hooks are called before and after the client configuration
files (CONF contents) are setup, respectively. The hooks exist only for the pxe image type.

predownload |postdownload. The hooks are called before and after the client image
receives the root filesystem, respectively. The hooks exist only for the pxe image type.

prelmageDump |postimageDump. The hooks are called before and after the install im-
age is dumped on the target disk, respectively. The hooks exist only for the oem image type.

15

Boot Image Hook-Scripts

preLoadConfiguration|postLoadConfiguration. = The hooks are called before and after
the client configuration file config. MAC is loaded, respectively. The hooks exist only for
the pxe image type.

premount|postmount. The hooks are called before and after the client root filesystem
is mounted, respectively. The hooks exist only for the pxe image type.

prenetwork|postnetwork. The hooks are called before and after the client network is
setup, respectively. The hooks exist only for the pxe image type.

prepartition |postpartition. The hooks are called before and after the client creates the
partition table on the target disk, respectively. The hooks exist only for the pxe image type.

preprobe|postprobe. The hooks are called before and after the loading of modules not
handled by udev, respectively. The hooks exist only for the pxe image type.

preswap|postswap. The hooks are called before and after the creation of the swap space,
respectively. The hooks exist only for the pxe image type.

preactivate. This hook is called before the root filesystem is moved to / The hook exists
only for the pxe image type.

preCalllnit. This hook is called in before the initialization process, init or systemd, is
started. At call time the root filesystem has already been moved to /. The hook exists only
for the oem and vmx image types.

preException. This hook is called before a system error is handled, the actual error
message is passed as parameter. This hook can be used for all image types.

preHWdetect|postHWdetect. The hooks are called before and after the install image
boot code detects the possible target storage device(s). The hook exists only for the oem
image type.

preNetworkRelease. This hook is called before the network connection is released. The
hook exists only for the pxe image type.

The execution of hooks can be globaly deactivated by passing the following variable to the
kernel commandline:

KIWI_FORBID_ HOOKS=1

In addition to the hook script itself it's also possible to run a post command after the hook script
was called. This allows to run commands tied to a hook script without changing the initrd
and thus provides a certain flexibility when writing the hook. The post command execution is
based on variables one can pass to the kernel commandline to extend an existing hook script.
There are the following rules for the processing of these information

The hook must activate the command post processing. Post hook commands are only
processed if the corresponding hook script activates this. The variable the hook script has to
set follows the naming schema: KIWI_ ALLOW_HOOK_CMD_|HOOKNAME| =1 For example:

KIWI ALLOW HOOK CMD preHWdetect=1

If this is set as part of the preHWdetect.sh hook script code the post command execution
is activated

KIWI_HOOK_CMD_|HOOKNAME|. The variable containing the command to become
executed must match the following naming schema. For example:

16

Boot Image Customization

KIWI HOOK CMD preHWdetect="1ls -1"

This would cause the preHWdetect hook to call 1s -1 at the end of the hook script code

« KIWI_FORBID HOOK_CMDS. If this variable is set to something non empty the post
hook command execution is deactivated however the basic hook script invocation is still
active unless KIWI FORBID HOOKS is also set

3.4. Boot Image Customization

The KIWI provided boot image descriptions should satisfy the requirements for a majority
of image builds and the environments in which these images are deployed. For the circum-
stances that require customized boot images KIWI provides mechanisms in the system image
config.xml file to influence the boot image content. Using these mechanisms allows the user
to still base the boot image on the KIWI provided descriptions rather than defining a complete-
ly new and custom boot image description. Creating a custom boot image that is not based
on the KIWI provided descriptions is also possible. The following question and answer section
provides solutions to the most common customization needs fro the initrd created by kiwi.

+ Why is the boot image so big and can I reduce it's size ? KIWI includes all required
tools and libraries to boot the image in all circumstances in the target environment for the
image type. If target environment is well defined it is possible to remove data from that is
known not to be needed. This will decrease the size of the initrd to and decrease boot time.
Removing files in the boot image is accomplished by adding a strip section to the system
image config.xml file, with the type attribute set to delete, as shown below.

<strip type="delete"/>
<file name="..."/>
</strip>

Removing files that are needed my result in an image that cannot be booted.

+ Can drivers be added to the boot image? KIWI uses a subset of the kernel. Should you
encounter problems due to a missing driver that is part of the "standard" kernel but has not
bee included by the kiwi build process you can add the driver by adding a drivers section
to the system image config.xml file, as shown below.

<drivers>
<file name="drivers/..."/>
</drivers>

If the driver is provided by a package, the package itself needs to be specified as part of the
image package section and it must be marked for boot image inclusion by setting the value
of the bootinclude attribute of the package element to true, as shown below.

<packages type="image"/>
<package name="..." bootinclude="true"/>
</packages>

+ How to add missing tools/libraries? = Additional software can be added to the boot
image with the use of the bootinclude attribute of the package element or the archive
element. At the end of the boot image creation process kiwi attempts to reduce the size of
the boot image by removing files that are not part of a known list of required files, any
detectable dependencies of the files listed are preserved as well. The list of known required
files is hard coded in the /usr/share/kiwi/modules/KIWIConfig.txt file. If you added
files to the boot image that are needed in your specific use case you need to instruct kiwi

17

Using Pre-built Boot Images

to not strip the files you have added to the boot image. This is accomplished by adding a
strip section to the system image config.xml file, with the type attribute set to tools,
as shown below.

<strip type="tools"/>
<file name="..."/>
</strip>

the removal/preservation of files is name base and the path is immaterial. Therefore, you
only have to specify the file name that is to be preserved.

+ Isit possible to add boot code? Yes, as described in the Section 3.3, “Boot Image Hook-
Scripts” section above, KIWI supports the execution of boot code at various times for various
image types using hook scripts.

+ Isit possible to include completely custom boot code? No. In cases where the provid-
ed hooks are insufficient and the KIWI provided boot code needs to be replaced completed
it is necessary to create a custom boot image description. In this case, all parts of the boot
image description must be created by the user. It is best to use one of the KIWI provided
boot descriptions as a template.

3.5. Using Pre-built Boot Images

During the create step of the KIWI image building process kiwi, creates the so called boot im-
age, as described previously, based on the specified boot image description in the config.xml
configuration file. This creation process takes time and can be short circuited by using pre-
built boot images.

As described earlier, the KIWI provided boot images can be found in the /usr/share/ki-
wi/image/*boot directories. Located within the *boot directories are boot image description
trees named for the applicable distribution. For example the oemboot/suse-SLES11 directory
is the boot image description for an OEM image for SUSE Linux Enterprise Server 11. The
boot image configuration trees are complete image descriptions, very similar in nature to the
system image descriptions created most commonly for image building, that kiwi uses to create
the boot image during the system image creation process. Therefore, it is possible to build
these boot images outside of the system image build process. The result of a build of one of
the boot image descriptions is a pre-built boot image that can be used in many image builds
for the same distribution and type. The following commands show the creation of a pre-built
boot image for openSUSE 12.1 for the OEM image type.

kiwi --prepare /usr/share/kiwi/image/oemboot/suse-12.1 --root /tmp/oeml21 initunpacked

kiwi --create /tmp/oeml21 initunpacked -d /mystore/kiwiprebuiltboot

The commands above result in the creation of the OEM boot image for openSUSE 12.1 in the
directory /mystore/kiwiprebuiltboot. This boot image can readily be used by any kiwi
build for an openSUSE 12.1 OEM image. Using the pre-built image requires that the value
of the checkprebuilt attribute of the type element be set to true and that the location of
the boot image is provided with the --prebuiltbootimage command line argument, or the
defaultprebuilt element in the config.xml file.

Using pre-built boot images has the advantage that the boot image does not have to be re-
created every time a specific image type for a given distribution is rebuilt. Additionally, this
process provides a convenient way to maintain customized boot images. One disadvantage
to the use of pre-built images is that it is not possible to integrate the latest updates of tools

18

Boot Parameters

that are part of the initrd in the image as the pre-built boot image will contain only the latest
versions available in the specified repositories on the build date. However, in most cases this
does not represent a concern/issue as the initrd in the image generally gets replaced once the
image is deployed.

3.6. Boot Parameters

A KIWI created initrd based on one of the KIWI provided boot image descriptions recognizes
kernel parameters that are useful for debugging purposes, should the image not boot. These
parameters may not work if the image contains a custom boot image where the kiwi boot code
has been replaced, and the parameters are not recognized after the initial KIWI created initrd
has been replaced by the "regular" distribution created initrd after the initial boot of the image.

- kiwidebug=1. If the boot process encounters a fatal error, the default behavior is to re-
boot the system 120 seconds. The “exception” behavior is changed by setting the kiwidebug
parameter. With the value of the parameter set to 1 the system will enter a limited shell
environment should a fatal error occur during boot. The shell contains the standard basic
commands. The /var/log/kiwi.boot boot log file may be consulted to develop a better
understanding of the boot failure. In addition to the spawned shell process kiwi also starts
the dropbear ssh server if the environment is suitable. Support for ssh into the boot image
is possible in the netboot and oemboot (in PXE boot mode) boot images. For isoboot and
vmxboot boot images there is no remote login support because they don't setup a network.
In order to have dropbear installed as part of the boot image the following needs to be
added to the system image configuration:

<packages type="image"/>
<package name="dropbear" bootinclude="true"/>
</packages>

It's required that the repo setup provides dropbear. Once dropbear is there the kiwi boot
code will start the service. In order to access the boot image via ssh it's required to provide a
public key on the pxe server in the directory: server-root/KIWI/debug ssh.pub. kiwi on-
ly searches for that filename so it's required to name it “debug_ssh.pub”. Adding more than
one public key to this file is possible exactly like the common SSH file “authorized_keys”.
The path “server-root” depends on what server type was configured to download the im-
age. By default this is done via tftp. In that case the complete path to put the public key
to is /srv/tftpboot/KIWI/debug ssh.pub. on the pxe server. If ftp or http is used the
server-root path is different. If a public key was found you can login as follows:

ssh root@<ip>

It might be useful to have a copy tool like scp or rsync as part of the boot image as well.
Adding rsync as bootincluded package does not increase the size of the initrd much and
would allow to extract e.g the kiwi boot log as follows:

RSYNC RSH='ssh -1 root'
rsync -avz <ip>:/var/log/boot.kiwi .

3.7. Common and Distribution Specific
Code

KIWI is designed to be in principal distribution independent and the majority of the kiwi
implementation follows this design principal. However, Linux distributions differ from each

19

Common and Distri-
bution Specific Code

other, primarily in the package management area as well as the creation and composition of
the boot image.

Within the KIWI code base major areas of Linux distribution differences are isolated into spe-
cific regions of the code. The remainder of the code is common and distribution independent.

KIWI provided functions that are distribution specific contain the distribution name as a prefix,
such as suseStripKernel. Scripts that are part of the boot code and are distribution specific
are identified by a prefix of the distribution name followed by a “-”, suse-linuxrc for example.
When kiwi creates a boot image for a SUSE distribution the suse-linuxre file from the boot
discription is used as the linuxrc file that the Linux kernel calls.

With this design and implementation t is possible to maintain distribution specific code in the
same project while also providing explicit hints to the user when distribution specific code is
being used. The implemented SUSE specific code can be used as a guideline to support other
distributions.

20

4 Image Caches

Table of Contents

008 R s U o e L1 Ut Lo s N 21
4.2, EXAIMNPLE ittt ettt ettt et e e et e e s e bt e e e e e st e e e e e nr e e e e e e nraeeeeas 23

4.1. Introduction

The process of creating an appliance could take quite some time and often the same software
is installed over and over again. In order to speed up that process kiwi is able to create and
re-use so called image caches. An image cache in kiwi is a partial root tree created from a
cache image description.

21

Introduction

Figure 4.1. Image Caching Architecture

kiwi —init—cache /cachefimage/path [—cache /var/cache/kiwi/image |

Create a stack of caches

Image Build

Cache pool

fvar/cache/kiwi/image

Overlay mount pathes

[kiwi—root] + [Selected cache

Result tree / image

Before one can use a cache it needs to be created. A cache can be created from any standard
kiwi image description. That means you can simply use one of the template descriptions and
create a cache from it. But it might be more clever to create image descriptions for the purpose
of caching. Such descriptions could represent a set of patterns for example. The less special
a cache is the more often it can be re-used

22

Example

Once there are caches in the system kiwi selects the best match and mounts the cache in a way
that all write actions (copy-on-write cache) are redirected to the new root system. That way
the cache itself is never changed and can be re-used simultaniosly for other build processes. As
result the build process doesn't start with an empty tree but with a tree almost complete. Only
the missing parts are now installed and according to how much the cache already covered
this process can speedup the build

4.2. Example

Let's say we know that we want to build some images of type 'vmx' and based on the openSUSE
12.2 JeOS image description. In order to create image caches for the system and the boot
image the following steps needs to be done:

1. Copy the base image descriptions used in the build:

cp -a /usr/share/kiwi/image/vmxboot/suse-12.2 /tmp/boot-cache
cp -a /usr/share/kiwi/image/suse-12.2-Je0S /tmp/image-cache

2. Modify boot-cache and image-cache to contain the package manager. This is required for
the later use of the caches.

<package name="zypper"/>

3. Build the caches:

kiwi --init-cache /tmp/image-cache
kiwi --init-cache /tmp/boot-cache

By default those caches will be created in /var/cache/kiwi/image. To run a build which
makes use of the cache the following command is used:

kiwi --build suse-12.2-Je0S -d /tmp/myimage --type vmx \
--cache /var/cache/kiwi/image

This call is about 50% faster compared to the creation without a cache. It's important to
understand that a cache based build will create a root tree which contains only the differences
compared to the used cache. Thus at any time you want to create an image out of it you have
to make sure that the cache exists and is accessible on the system.

23

24

5 KIWI Image Description

Table of Contents

5.1. The config.Xml Fileccceeiiiiiiiiiiiiiiiieeeieieeeeeeite et e et e e e sre e e e s sare e e e s s sanaeeeens 26

In order to be able to create an image with KIWI, a so called image description must be
created. The image description is represented by a directory which has to contain at least one
file named config.xml or *.kiwi. A good start for such a description can be found in the
examples provided in /usr/share/doc/packages/kiwi/examples.

Figure 5.1. Image Description Directory

config.xmi |
optional

images.sh

config.sh

root/

config—yast-firstboot.xml

config-yast-autoyast.xml

config—cdroot.tgz

config—cdroot.sh

config/

The following additional information is optional for the process of building an image, but
most often mandatory for the functionality of the created operating system:

images.sh
Optional configuration script while creating the packed image. This script is called at
the beginning of the image creation process. It is designed to clean-up the image system.
Affected are all the programs and files only needed while the unpacked image exists.

config.sh
Optional configuration script while creating the unpacked image. This script is called at the
end of the installation, but before the package scripts have run. It is designed to configure
the image system, such as the activation or deactivation of certain services (insserv). The
call is not made until after the switch to the image has been made with chroot.

25

The config.xml File

root
Subdirectory that contains special files, directories, and scripts for adapting the image
environment after the installation of all the image packages. The entire directory is copied
into the root of the image tree using cp -a.

config-yast-firstboot.xml
Configuration file for the control of the YaST firstboot service. Similar to the AutoYaST
approach, YaST also provides a boot time service called firstboot. Unfortunately there
is no GUI available to setup the firstboot, but good documentation in /usr/share/doc/
packages/yast2-firstboot. Once you have created such a firstboot file in your image
description directory, KIWI will process the file and setup your image as follows:

1. KIWI enables the firstboot service.
2. While booting the image, YaST is started in firstboot mode.

3. The firstboot service handles the instructions listed in the fileconfig-yast-
firstboot.xml.

4. If the process finished successfully, the environment is cleaned and firstboot will not
be called at next reboot.

config-yast-autoyast.xml
Configuration file which has been created by AutoYaST. To be able to create such an
AutoYaST profile, run:

yast2 autoyast

Once you have saved the information from the AutoYaST UI as config-yast-
autoyast.xml file in your image description directory KIWI will process on the file and
setup your image as follows:

1. While booting the image YaST is started in AutoYaST mode automatically

2. The AutoYaST description is parsed and the instructions are handled by YaST. In other
words the system configuration is performed

3. If the process finished successfully the environment is cleaned and AutoYaST won’t be
called at next reboot.

config-cdroot.tgz
Archive which is used for ISO images only. The data in the archive is uncompressed and
stored in the CD/DVD root directory. This archive can be used, for example, to integrate
a license file or information directly readable from the CD or DVD.

config-cdroot.sh
Along with the config-cdroot.tgz one can provide a script which allows to manipulate
the extracted data.

config/
Optional subdirectory that contains Bash scripts that are called after the installation of
all the image packages, primarily in order to remove the parts of a package that are not
needed for the operating system. The name of the Bash script must resemble the package
name listed in the config.xml.

5.1. The config.xml File

26

image Element

The mandatory image definition file is divided into different sections which describes infor-
mation like the image name and type as well as the packages and patterns the image should
consist of.

The following information explains the basic structure of the XML document. When KIWI is
executed, the XML structure is validated by the KIWI RELAX NG based schema. For details
on attributes and values please refer to the schema documentation file at /usr/share/doc/
packages/kiwi/kiwi.rng.html.

5.1.1. image Element

<image schemaversion="5.2" name="iname"
displayname="text"
kiwirevision="number"
id="10 digit number">
<l-- ... -->

</image>

The image definition starts with an image tag and requires the schema format at version 2.0.
The attribute name specifies the name of the image which is also used for the filenames created
by KIWI. Because we don’t want spaces in filenames the name attribute must not have any
spaces in its name.

The following optional attributes can be inserted in the image tag:

displayname
Allows setup of the boot menu title for the selected bootloader. So you can have suse-
SLED-foo as the image name but a different name as the boot display name. Spaces are not
allowed in the display name because it causes problems for some bootloaders and kiwi
did not take the effort to separate the ones which can display them correctly from the
ones which can't

kiwirevision
specifies a KIWI git revision number which is known to build a working image from this
description. If the KIWI git revision doesn't match the specified value, the process will exit.
The currently used git revision can be queried by calling kiwi - -version.

id
sets an identification number which appears as file /etc/ImageID within the image.

Inside the image section the following mandatory and optional subelements exists. The sim-
plest image description must define the elements description, preferences, repository
and packages (at least one of type="bootstrap").

5.1.2. description Element

<description type="system">
<author>an author</author>
<contact>mail</contact>
<specification>short info</specification>
</description>

The mandatory description section contains information about the creator of this image
description. The attribute type could be either of the value system which indicates this is a
system image description or at value boot for boot image descriptions.

27

profiles Element

5.1.3. profiles Element

<profiles>
<profile name="name" description="text"/>
<l-- ... -->

</profiles>

The optional profiles section lets you maintain one image description while allowing for
variation of the sections packages and drivers that are included. A separate profile element
must be specified for each variation. The profile child element, which has name and de-
scription attributes, specifies an alias name used to mark sections as belonging to a profile,
and a short description explaining what this profile does.

To mark a set of packages/drivers as belonging to a profile, simply annotate them with the
profiles attribute. It is also possible to mark sections as belonging to multiple profiles by
separating the names in the profiles attribute with a comma. If a packages or drivers tag
does not have a profiles attribute, it is assumed to be present for all profiles.

5.1.4. preferences Element

<preferences profiles="name">
<version>1.1.2</version>
<packagemanager>zypper</packagemanager>

<type image="name" ...>
<ec2config|systemdisk|oemconfig|pxedeploy|size|split|machine>
</type>
</preferences>

The mandatory preferences section contains information about the supported image type(s),
the used package manager, the version of this image, and optional attributes. The image ver-
sion must be a three-part version number of the format: Major.Minor.Release. In case of
changes to the image description the following rules should apply:

« For smaller image modifications that do not add or remove any new packages, only the
release number is incremented. The config.xml file remains unchanged.

« For image changes that involve the addition or removal of packages the minor number is
incremented and the release number is reset.

« For image changes that change the size of the image file the major number is incremented.

By default, KIWI uses the zypper package manager but it is also possible to use the non SUSE
native package manager called smart.

In general the specification of one preferences section is sufficient. However, it’s possible to
specify multiple preferences sections and distinguish between the sections via the profiles
attribute. Data may also be shared between different profiles. Using profiles it is possible to,
for example, configure specific preferences for OEM image generation. Activation of a given
preferences during image generation is triggered by the use of the - -add-profile command
line argument.

For each preferences block at least one type element must be defined. It is possible to specify
multiple type elements in any preferences block. To set a given type description as the
default image use the boolean attribute primary and set its value to true. The image type to
be created is determined by the value of the image attribute. The following list describes the
supported types and possible values of the image attribute:

28

preferences Element

image="1xc"
Use the Ixc image type to build a linux container image For additional information refer
to the Chapter 12, Linux Containers and Docker chapter.

image="[filesystem]"
Use one of the following image types to build a plain filesystem image. This will create
a file containing the data in the specified filesystem and you can loop mount the image
to view the contents e.g image ="ext3":

* ext2

+ ext3

+ ext4

* btrfs

+ squashfs
« xfs

* reiserfs

image="tbz"
Use the tbz image type to just pack the unpacked image tree into a tarball.

image="cpio"
Use the cpio image type to specify the generation of a boot image (initrd). When generating
a boot image, it is possible to specify a specific boot profile and boot kernel using the
optional bootprofile="default" and bootkernel="std" attributes.

A boot image should group the various supported kernels into profiles. If the user chooses
not to use the profiles supplied by KIWI, it is required that one profile named std be
created. This profile will be used if no other bootkernel is specified. Further it is required
to create a profile named default. This profile is used when no bootprofile is specified.

It is recommended that special configurations that omit drivers, use special drivers and/
or special packages be specified as profiles.

The bootprofile and bootkernel attribute are respected within the definition of a system
image. Us the attribute and value type ="system" of the description element to specify
the creation of a system image. The values of the bootprofile and bootkernel attributes are
used by KIWI when generating the boot image.

image="is0"
Specify the key-value pair image ="is0" to generate a live system suitable for deployment
on optical media (CD or DVD). Use the boot="isoboot/suse-*" attribute when gener-
ating this image type to select the appropriate boot image for optical media. In addition
the optional flags attribute may be set to the following values with the effects described
below:

clic
Creates a fuse based compressed read-only filesystem which allows write operations
into a cow file. If the iso is bigger than 4G you can use the clic_udf flag instead

seed
Creates a btrfs based compressed read-only filesystem which allows write operations
into a btrfs seed device.

29

preferences Element

overlay
Creates a squashfs based compressed read-only filesystem which is combined with a
write space via the overlayfs filesystem. overlayfs is part of the kernel since version 3.7

compressed
Creates a split ext3 plus squashfs filesystem and combines them via a symlink system
to a complete system it is recommended to specify a split section as a child of this
type element.

If the flags attribute is not used the filesystem will be squashfs compressed for /bin /boot /
lib /1ib64 /opt /sbin and /usr. The rest of the filesystem is packed into a tmpfs and linked
via symbolic links

image="oem"

Use this type to create a virtual disk system suitable in a preload setting. In addition
specify the attributes filesystem, and boot ="oemboot/suse-*"to control the filesystem
used for the virtual and to specify the proper boot image. Using the optional format
attribute and setting, the value to iso or usb will create self installing images suitable for
optical media or a USB stick, respectively. Booting from the media will deploy the OEM
preload image onto the selected storage device of the system. It is also possible to configure
the system to use logical volumes. Use the optional lvm attribute and specify the logical
volume configuration with the systemdisk child element. The default volume group name
is kiwiVG. Further configuration of the image is performed using the appropriate *config
child block.

image ="pxe"

Creating a network boot image is supported by KIWI with the image ="pxe" type. When
specifying the creation of a network boot image use the filesystem and boot ="netboot/
suse-*" attributes to specify the filesystem of the image and the proper boot image. To
compress the image file set the compressed boolean attribute to true. This setting will
compress the image file and has no influence on the filesystem used within the image. The
compression is often use to support better transfer times when the pxe image is pushed to
the boot server over a network connection. The pxe image layout is controlled by using
the pxedeploy child element.

image="split"

The split image support allows the creation of an image as split files. Using this technique
one can assign different filesystems and different read-write properties to the different
sections of the image. The oem, pxe, usb, and vmx types can be created as a split system
image. Use the boot ="oem|netboot|usb|vmx/suse-*" attribute to select the underlying
type of the split image. The attributes fsreadwrite, fsreadonly are used to control the
read-write properties of the filesystem specified as the attributes value. Use the appropriate
*config child block to specify the properties of the underlying image. For example when
building a OEM based split image use the oemconfig child section.

image="vmx"

Creation of a virtual disk system is enabled with the vmx value of the image attribute.
Set the filesystem of the virtual disk with the filesystem attribute and select the appro-
priate boot image by setting boot ="vmxboot/suse-*" The optional format attribute is
used to specify one of the virtualization formats supported by QEMU, such as vindk (al-
so the VMware format) or qcow2. For the virtual disk image the optional vga attribute
may be used to configure the kernel framebuffer device. Acceptable values can be found
in the Linux kernel documentation for the framebuffer device (see Documentation/fb/
vesafb.txt). KIWI also supports the selection of the bootloader for the virtual disk ac-

30

preferences Element

cording to the rules indicated for the USB system. Last but not least the virtual disk system
may also be created with a LVM based layout by using the lvm attribute. The previously
indicated rules apply. Use the machine child element to specify appropriate configuration
of the virtual disk system.

All of the mentioned types can specify the boot attribute which tells KIWI to call itself to build
the requested boot image (initrd). It is possible to tell KIWI to check for an already built boot
image which is a so called prebuilt boot image. To activate searching for an appropriate pre-
built boot image the type section also provides the attribute checkprebuilt="true|false".
If specified KIWI will search for a prebuilt boot image in a directory named /usr/share/ki-
wi/image/*boot/*-prebuilt. Example: If the boot attribute was set to isoboot/suse-10.3
and checkprebuilt is set to true KIWI will search the prebuilt boot image in /usr/share/
kiwi/image/isoboot/suse-10.3-prebuilt. The directory KIWI searches for the prebuilt
boot images can also be specified at the commandline with the - -prebuiltbootimage para-
meter.

Within the type section, there could be other optional attributes which are either universally
valid or can be used for different image types in the same way. The following list explains
these attributes:

kernelcmdline
Specifies additional kernel parameters. The following example disables kernel messages:
kernelcmdline="quiet"

mdraid
For disk based image types, aka oem and vmx, mdraid activates the creation of a software
raid image. The raid inside the image is created in degraded mode because at creation
time we only know about one disk. It's in the hand of the user to add devices to the raid
after the image runs on the target machine. The value for mdraid can be either mirroring
or striping, which means the raid level is set to RAID1 (mirroring) or RAIDO (striping).

Within the preferences section, there are the following optional elements:

showlicense
Specifies the base name of a license file which is displayed in oem images before the
installation happens. It's possible to add more showlicense sections to display more licenses
one after the other. If no such element is specified the default 'license' and 'EULA' files
are searched. The search algorithm will append the .txt or .locale.txt suffix to the license
name to form the license file name. You should make sure that you license files contains
this suffix.

rpm-check-signatures
Specifies whether RPM should check the package signature or not

rpm-excludedocs
Specifies whether RPM should skip installing package documentation

rpm-force
Specifies whether RPM should be called with - -force

keytable
Specifies the name of the console keymap to use. The value corresponds to a map file in
/usr/share/kbd/keymaps. The KEYTABLE variable in /etc/sysconfig/keyboard file is
set according to the keyboard mapping.

31

preferences Element

timezone

Specifies the time zone. Available time zones are located in the /usr/share/zonein-
fo directory. Specify the attribute value relative to /usr/share/zoneinfo. For example,
specify Europe/Berlin for /usr/share/zoneinfo/Europe/Berlin. KIWI uses this value
to configure the timezone in /etc/localtime for the image.

locale

Specifies the name of the UTF-8 locale to use, which defines the contents of the RC_LANG
system environment variable in /etc/sysconfig/language. Please note only UTF-8 lo-
cales are supported here which also means that the encoding must not be part of the
locale information. The KIWI schema validates the locale string according to the follow-
ing pattern:[a-z]1{2} [A-Z1{2}(,[a-z1{2} [A-Z]{2})*. This means you have to spec-
ify the locale like the following example: en_US or en_US,de_DE

bootsplash-theme

Specifies the name of the bootsplash theme to use

bootloader-theme

Specifies the name of the gfxboot theme to use

defaultdestination

Used if the - -destdir option is not specified when calling KIWI

defaultroot

Used if the option - - root is not specified when calling KIWI

The type element may contain child elements to provide specific configuration information
for the given type. The following lists the supported child elements:

ec2config

The optional ec2config block is used to specify information relevant only to AWS EC2
images. The following information can be provided:

<ec2config>
<ec2accountnr> Your AWS account number </ec2accountnr>
<ec2certfile> Path to the AWS cert-*.pem file </ec2certfile>
<ec2privatekeyfile> Path to the AWS pk-*.pem file </ec2privatekeyfile>
</ec2config>

systemdisk

Using the optional systemdisk section it is possible to create a LVM (Logical Volume Man-
agement) based storage layout. By default, the volume group is named kiwiVG. It is pos-
sible to change the name of the group by setting the name attribute to the desired name.
Individual volumes within the volume group are specified using the volume element.

The following example shows the creation of a volume named usr and a volume named
var inside the volume group systemVG.

<systemdisk name="systemVG">

<volume name="usr" freespace="100M"/>

<volume name="var" size="200M"/>
</systemdisk>

The optional attribute freespace controls the amount of unused space available after
software has been installed in the given volume. By default the available space of a created
volume is between 10% and 20%. Using the optional size attribute the absolute size of
the given volume is specified. The size attribute takes precedence over the freespace
attribute. If the specified size is insufficient, based on the estimated software install size for

32

preferences Element

the given volume, the specified value will be ignored and a volume with default settings
will be created. This implies that the volume will be 80% to 90% full.

oemconfig
By default, the oemboot process will create or modify a swap, and / partition. It is pos-
sible to influence the behavior by the oem-* elements explained below. KIWI uses this
information to create the file /config.oempartition as part of the automatically created
oemboot boot image. The format of the file is a simple key=value format and created by
the KIWIConfig.sh function named baseSetupOEMPartition.

<oemconfig>
<oem-systemsize>2000</oem-systemsize>
<oem-... >

</oemconfig>

<oem-boot-title>text</oem-boot-title>
By default, the string OEM will be used as the boot manager menu entry when KIWI
creates the GRUB configuration during deployment. The oem-boot-title element
allows you to set a custom name for the grub menu entry. This value is represented
by the OEM BOOT TITLE variable in config.oempartition.

<oem-bootwait>true|false</oem-bootwait>
Specify if the system should wait for user interaction priot to continuing the boot
process after the oem image has been dumped to the designated storage device
(default value is false). This value is represented by the OEM BOOTWAIT variable in
config.oempartition.

<oem-inplace-recovery>true|false</oem-inplace- recovery>
Specify if the recovery archive is stored as part of the image or if the archive
is to be created at the time the image is deployed to the target storage device.
OEM_RECOVERY_ INPLACE variable in config.oempartition.

<oem-Kiwi-initrd>true|false</oem-kiwi-initrd>
If this element is set to true (default value is false) the oemboot boot image (initrd)
will not be replaced by the system (mkinitrd) created initrd. This option is useful when
the system is installed on removable storage such as a USB stick or a portable external
drive. For movable devices it is potentially necessary to detect the storage location
during every boot. This detection process is part of the oemboot boot image. This value
is represented by the OEM _KIWI INITRD variable in config.oempartition.

<oem-partition-install>true|false</oem-partition-install>
Specify if the image is to be installed into a free partition on the target storage device.
By default the value is false and Kiwi installs images to a target device which causes
data loss on the device. With oem-partition-install set to true any other settings
that have influence on the partition table, such as oem-swap are ignored. This value is
represented by the OEM PARTITION INSTALL variable in config.oempartition.

<oem- reboot>true|false</oem- reboot>
Specify if the system is to be rebooted after the oem image has been deployed to the
designated storage device (default value is false). This value is represented by the
OEM REBOOT variable in config.oempartition.

<oem-reboot-interactive>true|false</oem-reboot-interactive>
Specify if the system is to be rebooted after the oem image has been deployed to the
designated storage device (default value is false). Prior to reboot a message is posted

33

preferences Element

and must be acknowledged by the user in order for the system to reboot. This value is
represented by the OEM REBOOT INTERACTIVE variable in config.oempartition.

<oem- recovery>true|false</oem- recovery>

If this element is set to true (default value is false), KIWI will create a recovery archive
from the prepared root tree. The archive will appear as /recovery.tar.bz2 in the
image file. During first boot of the image a single recovery partition will be created
and the recovery archive will be moved to the recovery partition. An additional boot
menu entry is created that when selected restores the original root tree on the system.
The user information on the /home partition or in the /home directory is not affected
by the recovery process. This value is represented by the OEM_RECOVERY variable
in config.oempartition.

<oem- recoveryID>partition-id</oem- recoveryID>
Specify the partition type for the recovery partition. The default is to create a Linux
partition (id = 83). This value is represented by the OEM RECOVERY ID variable in
config.oempartition.

<oem-silent-boot>true|false</oem-silent-boot>
Specify if the system should boot in silent mode after the oem image has been deployed
to the designated storage device (default value is false). This value is represented by
the OEM_SILENTBOOT variable in config.oempartition.

<oem-shutdown>true|false</oem-shutdown>
Specify if the system is to be powered down after the oem image has been deployed
to the designated storage device (default value is false). This value is represented by
the OEM SHUTDOWN variable in config.oempartition.

<oem-shutdown-interactive>true|false</oem-shutdown-interactive>
Specify if the system is to be powered down after the oem image has been deployed
to the designated storage device (default value is false). Prior to shutdown a mes-
sage is posted and must be acknowledged by the user in order for the system to
power off. This value is represented by the OEM SHUTDOWN INTERACTIVE variable in
config.oempartition.

<oem- swap>true|false</oem- swap>
Specify if a swap partition should be created. The creation of a swap partition is
the default behavior. This value is represented by the 0EM WITHOUTSWAP variable in
config.oempartition.

<oem-swapsize>number in MB</oem-swapsize>
Set the size of the swap partition. If a swap partition is to be created and the size of the
swap partition is not specified with this optional element, KIWI will calculate the size
of the swap partition and create a swap partition equal to two times the RAM installed
on the system at initial boot time. This value is represented by the 0EM SWAPSIZE
variable in config.oempartition.

<oem-systemsize>number in MB</oem-systemsize>
Set the size the operating system is allowed to consume on the target disk. The size
limit does not include any consideration for swap space or a recovery partition. In a
setup without a systemdisk element this value specifies the size of the root partition.
In a setup including a systemdisk element this value specifies the size of the LVM
partition which contains all specified volumes. Thus, the sum of all specified volume
sizes plus the sum of the specified freespace for each volume must be smaller or equal to

34

preferences Element

the size specified with the oem-systemsize. This value is represented by the variable
OEM _SYSTEMSIZE in config.oempartition.

<oem-unattended>true|false</oem-unattended>
The installation of the image to the target system occurs automatically without re-
quiering user interaction. If multiple possible target devices are discovered the image
is deployed to the first device. OEM_UNATTENDED in config.oempartition.

pxedeploy

Information contained in the optional pxedeploy section is only considered if the image
attribute of the type element is set to pxe. In order to use a PXE image it is necessary
to create a network boot infrastructure. Creation of the network boot infrastructure is
simplified by the KIWI provided package kiwi-pxeboot. This package configures the basic
PXE boot environment as expected by KIWI pxe images. The kiwi-pxeboot package creates
a directory structure in /srv/tftpboot. Files created by the KIWI create step need to be
copied to the /srv/tftpboot directory structure. For additional details about the PXE
image please refer to the PXE Image chapter later in this document.

In addition to the image files it is necessary that information be provided about the client
setup. This information, such as the image to be used or the partitioning, is contained in
a file with the name config.MAC in the directory /srv/tftpboot/KIWI. The content of
this file is created automatically by KIWI if the pxedeploy section is provided in the image
description. A pxedeploy section is outlined below:

<pxedeploy server="IP" blocksize="4096">
<timeout>seconds</timeout>
<kernel>kernel-file</kernel>
<initrd>initrd-file</initrd>
<partitions device="/dev/sda">
<partition type="swap" number="1" size="MB"/>
<partition type="L" number="2" size="MB"
mountpoint="/" target="true"/>
<partition type="fd" number="3"/>

</partitions>
<union ro="dev" rw="dev" type="clicfs"/>
<configuration source="/KIWI/../file" dest="/../file" arch="..."/>
<configuration .../>
</pxedeploy>

« The server attribute is used to specify the IP address of the PXE server. The blocksize
attributes specifies the blocksize for the image download. Other protocols are supported
by KIWI but require the kiwiserver and kiwiservertype kernel parameters to be set
when the client boots.

« The value of the optional timeout element specifies the grub timeout in seconds to be
used when the KIWI initrd configures and installs the grub boot loader on the client
machine after the first deployment to allow standalone boot.

+ Passing kernel parameters is possible with the use of the optional kernelcmdline at-
tribute in the type section. The value of this attribute is a string specifying the settings
to be passed to the kernel by the GRUB bootloader. The KIWT initrd includes these kernel
options when installing grub for standalone boot

« The optional kernel and initrd elements are used to specify the file names for the
kernel and initrd on the boot server respectively. When using a special boot method not
supported by the distribution’s standard mkinitrd, it is imperative that the KIWI initrd
remains on the PXE server and also be used for local boot. If the configured image uses

35

preferences Element

the split type or the pxedeploy section includes any union information the kernel and
initrd elements must be used.

« The partitions section is required if the system image is to be installed on a disk
or other permanent storage device. Each partition is specified with one partition child
element. The mandatory type attribute specifies the partition type id.

The required number attribute provides the number of the partition to be created. The
size of the partition may be specified with the optional size attribute. The optional
mountpoint attribute provides the value for the mount point of the partition. The op-
tional boolean target attribute identifies the partition as the system image target parti-
tion. KIWI always generates the swap partition as the first partition of the netboot boot
image. By default, the second partition is used for the system image. Use the boolean
target attribute to change this behavior. Providing the value image for the size at-
tribute triggers KIWI into calculating the required size for this partition. The calculated
size is sufficient for the created image.

+ If the system image is based on a read-only filesystem such as squashfs and should be
mounted in read-write mode use the optional union element. The type attribute is used
to specify one of the supported overlay filesystem clicfs Use the ro attribute to point
to the read only device and the rw attribute to point to the read-write device.

« The optional configuration element is used to integrate a network client’s configu-
ration files that are stored on the server. The source attribute specifies the path on
the server for the file to be downloaded. The dest attribute specifies destination of the
downloaded file on the network client starting at the root (/) of the filesystem. Multiple
configuration elements may be specified such that multiple files can be transferred to
the network client. In addition configuration files can be bound to a specific client ar-
chitecture by setting the optional arch attribute. To specify multiple architectures use
a comma separated string.

size

Use the size element to specify the image size in Megabytes or Gigabytes. The unit at-
tribute specifies whether the given value will be interpreted as Megabytes (unit="M") or
Gigabytes (unit="G"). The optional boolean attribute additive specifies whether or not
the given size should be added to the size of the generated image or not.

In the event of a size specification that is too small for the generated image, KIWI will
expand the size automatically unless the image size exceeds the specified size by 100 MB
or more. In this case KIWI will generate an error and exit.

Should the given size exceed the necessary size for the image KIWI will not alter the image
size as the free space might be required for proper execution of components within the
image.

If the size element is not used, KIWI will create an image containing approximately 30 %
free space.

<size unit="M">1000</size>

split

For images of type split or iso the information provided in the optional split section
is considered if the compressed attribute is set to true. With the configuration in this
block it is possible to determine which files are writable and whether these files should
be persistently writable or temporarily. Note that for ISO images only temporary write
access is possible.

36

preferences Element

When processing the provided configuration KIWI distinguishes between directories and
files. For example, providing /etc as the value of the name attribute indicates that the /
etc directory should be writable. However, this does not include any of the files or sub-
directories within /etc. The content of /etc is populated as symbolic links to the read-
only files. The advantage of setting only a directory to read-write access is that any newly
created files will be stored on the disk instead of in tmpfs. Creating read-write access to
a directory and it’s files requires two specifications as shown below.

<split>
<temporary>
<!-- read/write access to -->

<file name="/var"/>
<file name="/var/*"/>

<!-- but not on this file: -->
<except name="/etc/shadow"/>
</temporary>
<persistent>
<!-- persistent read/write access to: -->

<file name="/etc"/>
<file name="/etc/*"/>

<!-- but not on this file: -->
<except name="/etc/passwd"/>
</persistent>
</split>

Use the except element to specify exceptions to previously configured rules.

machine
The optional machine section serves to specify information about a VM guest machine.
Using the data provided in this section, KIWI will create a guest configuration file required
to run the image on the target machine.

If the target is a VMware virtual machine indicated by the format attribute set to vidk,
KIWI creates a VMware configuration file. If the target is a Xen virtual machine indicated
by the domain attribute in the machine section KIWI will create a Xen guest config file.

The sample block below shows the general outline of the information that can be specified
to generate the configuration file

<machine arch="arch" memory="MB"
HWversion="number" guest0S="suse|sles"
domain="dom@|domU" />
<vmconfig-entry>Entry for VM config file<\vmconfig-entry>
<vmconfig-entry .../>
<vmnic driver="name" interface="number" mode="mode"/>
<vmnic ...>
<vmdisk controller="ide|scsi" id="number"/>
<vmdvd controller="ide|scsi" id="number"/>

</machine>

arch
The virtualized architecture. Supported values are ix86 or x86 64. The default value
is 1x86.

memory
The mandatory memory attribute specifies how much memory in MB should be allo-
cated for the virtual machine

HWversion
The VMware hardware version number, the default value is 3.

37

preferences Element

guest0S
The guest OS identifier. For the ix86 architecture the default value is suse and for
the x86_64 architecture suse-64 is the default. At this point only the SUSE and SLES
guestOS types are supported.

domain
The Xen domain setup. This could be either a domO which is the host machine hosting
the guests and therefore doesn’t require a configuration file, or it could be set to domU
which indicates this is a guest and also requires a guest configuration which is created
by KIWI.

Use the vmconfig-entry element to create entries in the virtual machine's configuration
file; .vmx for VMware images and .xenconfig for Xen images. You may specify as many
configuration options as desired. The value of the vmconfig-entry element is expected to
be specified in the syntax required by the VM configuration file to be written. The value
is free format text and is not validated by Kiwi in any way. The entry is written to the
VM configuration file verbatime.

Use the vmdisk element to setup the virtual main storage device.

controller
Supported values for the mandatory controller attribute are ide and scsi.

id
The mandatory id attribute specifies the disk id. If only one disk is set the id value
should be set to 0.

device
The device attribute specifies the disk that should appear in the para virtual instance.
Therefore only relevant for Xen

Use the vmdvd element to setup a virtual optical drive (CD/DVD) connection

controller
Supported values for the mandatory controller attribute are ide and scsi.

id
The mandatory id attribute specifies the disk id. If only one disk is set the id value
should be set to 0.

Use the vmnic element to setup the virtual network interface. Multiple vmnic child ele-
ments may be specified to setup multiple virtual network interfaces.

driver
The mandatory driver attribute specifies the driver to be used for the virtual network
card. The supported values are €100, vlance, and vmxnet. If the vmxnet driver is
specified the vmware tools must be installed in the image.

interface
The mandatory interface attribute specifies the interface number. If only one inter-
face is set the value should be set to 0.

mode
The network mode used to communicate outside the VM. In many cases the bridged
mode is used.

38

users Element

5.1.5. users Element

<users group="group_name" id="number">
<user home="dir" id="number" name="user" password="..."
pwdformat="encrypted|plain" realname="string" shell="path"/>
<l-- ... -->

</users>

The optional users element lists the users belonging to the group specified with the group
attribute. At least one user child element must be specified as part of the users element.
Multiple users elements may be specified.

The attributes home, id, name, pwd, realname, and shell specify the created users home
directory, the user name, the user’s password, the user’s real name, and the user’s login shell,
respectively. By default, the value of the password attribute is expected to be an encrypted
string. An encrypted password can be created using kiwi - - createpassword. It is also possible
to specify the password as a non encrypted string by using the pwdformat attribute and setting
it’s value to “plain”. KIWI will then encrypt the password prior to the user being added to
the system.

All specified users and groups will be created if they do not already exist. By default, the
defined users will be part of the group specified with the group attribute of the users element
and the default group called “users”. If it is desired to have the specified users to only be
part of the given group it is necessary to specify the id attribute. It is recommended to use
a group id greater than 100.

5.1.6. drivers Element

<drivers profiles="name">
<file name="filename"/>
<l-- ... -->

</drivers>

The optional drivers element is only useful for boot images (initrd). As a boot image doesn’t
need to contain the complete kernel one can save a lot of space if only the required drivers
are part of the image. Therefore the drivers section exists. If present only the drivers which
matches the file names or glob patterns will be included into the boot image. Each file is
specified relative to the /lib/modules/Version/kernel directory.

According to the driver element the specified files are searched in the corresponding direc-
tory. The information about the driver names is provided as environment variable named like
the value of the type attribute and is processed by the function suseStripKernel. According
to this along with a boot image description a script called images.sh must exist which calls
this function in order to allow the driver information to have any effect.

5.1.7. repository Element

<repository type="type" alias="name" imageinclude="true|false"
password="password" priority="number" status="replaceable"
username="user-name"> <source path="URL"/>

</repository>

The mandatory repository element specifies the location and type of a repository to be
used by the package manager as a package installation source. The mandatory type attribute
specifies the repository type. A specified repository can only be accessed by the chosen package

39

repository Element

manager if the given type is supported by the specified package manager. KIWI supports smart
or zypper as package managers, specified with the packagemanager element. The default
package manager is zypper. The following table shows the possible supported repository types
for each package manager:

Table 5.1. Supported Types for zypper and smart

Type smart Support zypper Support
apt-deb yes no
apt-rpm yes no
deb-dir yes no
mirrors yes no
red-carpet yes yes
rpm-dir yes yes
rpm-md yes yes
slack-site yes no
up2date-mirrors yes no
urpmi yes no
yast2 yes yes

The repository element has the following optional attributes:

alias="name"
Specifies an alternative name for the configured repository. If the attribute is not specified
KIWI will generate an alias name by replacing any “/” in the given repository location with
an “_”. It is helpful to set an alias name if the repository path is insufficient in expressing
the purpose of the contained packages.

imageinclude="true|false"

Specifies whether the given repository should be configured as a repository in the image
or not. The default behavior is that repositories used to build an image are not configured
as a repository inside the image. This feature allows you to change the behavior by setting
the value to true. The repository is configured in the image according to the source path
as specified with the path attribute of the source element. Therefore, if the path is not a
fully qualified URL, you may need to adjust the repository file in the image to accomodate
the expected location. It is recommended that you use the alias attribute in combination
with the imageinclude attribute to avoid having unpredictable random names assigned
to the repository you wish to include in the image. This also facilitates modification of the
"baseurl" entry in the .repo file from the config.sh script if you need to make adjustments
to the path.

password="string"
Specifies a password for the given repository. The password attribute must be used in
combination with the username attribute. Dependent on the repository location this
information may not be used.

prefer-license="true|false"
The repository providing this attribute will be used primarly to install the license tarball
if found on that repository. If no repository with a prefered license attribute exists, the

40

repository Element

search happens over all repositories. It's not guaranteed in that case that the search order
follows the repository order like they are written into the XML description.

priority="number"

Specifies the repository priority for this given repository. Priority values are treated differ-
ently by different package managers. Repository priorities allow the package management
system to disambiguate packages that may be contained in more than one of the config-
ured repositories. The smart package manager treats packages from repositories with the
highest priority number as preferable to packages from a repository with a lower priori-
ty number. The value 0 means “no priority is set”. The zypper package manager prefers
packages from a repository with a lower priority over packages from a repository with
higher priority values. The value 99 means “no priority is set”.

status="replaceable"
This attribute should only be applied in the context of a boot image description. Setting
the status to replaceable indicates that the specified repository my be replaced by
the repositories specified in the image description. This is important as the KIWI generated
boot image, if required, should be created based on packages from the same repositories
used to build the system image.

username ="name"
Specifies a user name for the given repository. The username attribute must be used in
combination with the password attribute. Dependent on the repository location this
information may not be used.

When specifying an https location for a repository it is generally necessary to include the
“openssl-certs” and “cracklib-dict-full” packages in the bootstrap section of the image con-
figuration.

The location of a repository is specified by the path attribute of the mandatory source child
element. The location specification may include the %arch macro which will expand to the
architecture of the image building host. The value for the path attribute may begin with any
of the following location indicators:

dir:///local/path
An absolute path to a directory accessible through the local file system. The “dir://” prefix
may be omitted.

ftp://URL
A ftp protocol based network location.

http://URL
A http protocol based network location.

https://URL
A https protocol based network location. See the comment above about the handling of
certificates and additional package requirements in the bootstrap section of the image
configuration.

iso://path/to/isofile
An absolute path to an .iso file accessible via the local file system. KIWI will loop mount
the the .iso file to a KIWI created directory with a generated name. The generated path is
provided to the specified package manager as a repository location.

Using multiple .iso files from the same SLE product, requires that all .iso files are locat-
ed in the same directory. Only the first .iso file is to be specified as a repository in the

41

packages Element

config.xml. The first .iso file contains all information necessary for the package manager
to locate packages that are contained in other .iso files of the same product. Attempting
to use multiple .iso files in a series as standalone repositories will result in an error.

obs://%$dirl/$dir2
A special network location used with the http protocol. The values of $dirl and $dir2
represent the project location in the openSUSE build service. The location is evaluated as
this://repos/$dirl/$dir2.

The “obs://” prefix is also valid as part of the value for the boot attribute of the type. If
used with the boot attribute it is evaluated as this://images/$dirl/$dir2.

opensuse://PROJECTNAME
A special network location used with the http protocol. The given PROJECTNAME specifies
a project in the openSUSE buildservice. The repository is a repository of type rpm-md. For
example: path= "opensuse://openSUSE:10.3/standard" .

plain://URI
A plain resource string. Everything following 'plain://' will be forwarded to the package
manager without further modification. This type of location specification is useful when
KIWI does not support a specific URI but the specified package manager does.

smb://Samba share pathname

A path to a samba share using the cifs protocol. KIWI creates a mount point and mounts
the share including username and password, if specified. Access to the smb share from
within the new root tree is provided via a cifs mount. Therefore, the package providing
the cifs tools must be included in the package list for the bootstrap section of the image
configuration. At the time of this writing the package providing the cifs tools is called
cifs-utils. If any packages provided by the Samba share are used as part of the boot image
the cifs tools must also be included in the boot image. This is accomplished with the
bootinclude attribute of the package element. This is shown in the example below:

<packages type="bootstrap">

<package name="cifs-utils" bootinclude="true"/>
</packages>

this://PATH
PATH is the relative location to the image description directory for the curent image.

5.1.8. packages Element

<packages type="type" profiles="name" patternType="type"
<package name="name" arch="arch"/>
<package name="name" replaces="name"/>
<package name="name" bootinclude="true" bootdelete="true"/>
<archive name="name" bootinclude="true"/>

<package .../>
<namedCollection name="name" />
<namedCollection .../>
<opensuseProduct name="name"/>
<opensuseProduct .../>

<ignore name="name"/>

<ignore .../>

</packages>

42

packages Element

The mandatory packages element specifies the list of packages (element package) and pat-
terns (element namedCollection) to be used with the image. The value of the type attribute
specifies how the packages and patterns listed are handled, supported values are as follows:

bootstrap
Bootstrap packages, list of packages for the new operating system root tree. The packages
list the required components to support a chroot environment in the new system root tree,
such as glibc.

delete
Delete packages, list of packages to be deleted from the image being created.

When using the delete type only package elements are considered, all other specifications
such as namedCollection are ignored. The given package names are stored in the $delete
environment variable of the /.profile file created by KIWI. The list of package names
is returned by the baseGetPackagesForDeletion function. This list can then be used to
delete the packages ignoring requirements or dependencies. This can be accomplished in
the config.sh or images.sh script with the following code snippet:

rpm -e --nodeps --noscripts \
$(rpm -q ‘baseGetPackagesForDeletion‘ | grep -v "is not installed")

Note, that the delete value is indiscriminate of the image type being built.

image
Image packages, list of packages to be installed in the image.

iso
Image packages, a list of additional packages to be installed when building an ISO image.

oem
Image packages, a list of additional packages to be installed when building an OEM image.

pxe
Image packages, a list of additional packages to be installed when building an PXE image.

usb
Image packages, a list of additional packages to be installed when building a USB image.

VX
Image packages, a list of additional packages to be installed when building a vmx virtual
image of any format.

5.1.8.1. Using Patterns

Using a pattern name allows you to considerably shorten the list of specified packages in the
config.xml file. A named pattern, specified with the namedCollection element is a repre-
sentation of a predefined list of packages. Specifying a pattern will install all packages listed
in the named pattern to be installed in the image. Support for patterns is SUSE-specific, and
available with openSUSE 10.1 or later. The optional patternType attribute on the packages
element allows you to control the installation of dependent packages in the image. You may
assigne one of the following values to the patternType attribute:

onlyRequired
Incorporates only patterns and packages that the specifeid patterns and packages require.
This is a "hard dependency" only resolution.

43

packages Element

plusRecommended
Incorporates patterns and packages that are required and recommended by the specified
patterns and packages in config.xml.

By default, only required patterns and packages are installed. KIWI depends on the package
manager to resolve the specified list of patterns and packages against the specified repositories
and complete the installation. Note that not all supported package managers support the use
of named patterns, thus the value of the packageManager element determines whether you
are able to use named patterns or not. Should the list of specified packages result in a conflict
the image creation process will stop and the information provided by the package manager
will be captured in the build log and will be displayed in the terminal window where KIWI
was started. The ignore element may be of use in resolving such conflicts. However, the
ignore element is limited to effect packages named explicitely. Packages installed in the
image through a named pattern are not effected by the ignore element setting. THerefore,
package conflicts created by packages within named patterns cannot be resolved using the
ignore mechanism. Further, if a package is specified to be ignored, but is required by another
package, then the required package is installed in the image via the automatic dependency
resolution by the package manager in use.

5.1.8.2. Architecture Restrictions

To restrict a package to a specific architecture, use the arch attribute to specify a comma
separated list of allowed architectures. Such a package is only installed if the build systems
architecture (uname -m) matches one of the specified values of the arch attribute.

5.1.8.3. Image Type Specific Packages

If a package is only required for a specific type of image and replaces another package you
can use the replaces attribute to tell KIWI to install the package by replacing another one. For
example you can specify the kernel package in the type="image" section as

<package name="kernel-default" replaces="kernel-xen"/>

and in the type ="xen" section as

<package name="kernel-xen" replaces="kernel-default"/>

The result is the xen kernel if you request a xen image and the default kernel in any other case.

5.1.8.4. Packages to Become Included Into the Boot Image

The optional attributes bootinclude and bootdelete can be used to mark a package inside
the system image description to become part of the corresponding boot image (initrd). This
feature is most often used to specify bootsplash and/or graphics boot related packages inside
the system image description but they are required to be part of the boot image as the data
is used at boot time of the image.

Packages included into the boot image with the bootinclude are still included into the system
image as well. If packages should only be included into the boot image, but not the system
image, they need to be added to the packages section of type=delete.

If the bootdelete attribute is specified along with the bootinclude attribute this means that
the selected package will be marked as a “to become deleted” package and is removed by the
contents of the images.sh script of the corresponding boot image description.

44

packages Element

5.1.8.5. Data not Available as Packages to Become Included

With the optional archive element it’s possible to include any kind of data into the image. The
archive elements expects the name of a tarball which must exist as part of the system image
description. KIWI then picks up the tarball and installs it into the image. If the bootinclude

attribute is set along with the archive element the data will also become installed into the
boot image.

45

46

6 Creating Appliances with KIWI

Table of Contents

6.1, OVEIVIEW ..eeiiiiiieiieieieeiee ettt e e e e et e e e e e e et e e e e et e et et et ettt e et e e ettt ettt ettt e e st e e s e eessenssssssssnssnnnsnnnnnn 47
6.2. The KIWI MOQELcuuuiiiiiiiiieeiiiieecciiirteeee e e e e eseeeareeeeeeeee e e e s s assasaaaaeeesssssssnnsssssnaeeeens 48
6.3. Cross Platform Appliance Buildcccooeeoiiiiiiiiiiiiiicciireeeeee e e e e e 49

6.1. Overview

Traditionally, computing functions such as word processing or e-mail handling are delivered
as software applications. These applications are targeted to run on a computer with an in-
stalled general purpose operating system. Applications often have a specialized installer that
must be run by the consumer (whether home computer user or an administrator in an IT de-
partment of a company) to install the application on the computer in question. For installation
of an application on multiple computers the installation program must often be run on each
computer where the application is to be installed. In most cases a given application uses only
a small part of the capabilities provided by the general purpose operating system running on
a computer. Additionally if an application needs special settings to be applied to the general
purpose operating system, these often have to be set by the consumer after the installation is
complete. These settings are often documented in an installation guide that consumers may
or may not read. Last but not least, running a general purpose operating system to support
an application that only requires a small part of the functionality provided by the general
purpose OS is a waste of computing resources.

An appliance is the combination of the parts of a general purpose OS needed by a given
application and the application itself, bundled and delivered as one unit. This unit may be
delivered in a variety of formats, for example a ready to run virtual machine or a self installing
system on optical media or a USB stick.

Compared to the traditional model of application delivery the appliance model has a number
of advantages. The consumer no longer has to install a general purpose OS and the application
in separate steps. The application is part of the appliance and the appliance provider, as the
application expert, takes care of the application "installation". Further, the appliance provider
takes care of any OS tuning that may benefit the application. Last but not least, the reduced size
of the OS does not only consume fewer resources than a full blow "regular" install of a general
purpose OS, but it also provides a reduced footprint for potential security exposure. From the
application providers point of view there may be an opportunity to drop the implementation
and maintenance of a specialized installer as the application installation no longer has to be
"consumer friendly".

The traditional software delivery model certainly has it's place. However, for many purposes
appliances present a more convenient mechanism for consumers.

47

The KIWI Model

6.2. The KIWI Model

With KIWI we started to use a different model. Instead of installing firewall software on top of
a general purpose computer/operating system, the designers/engineers built images that are
designed specifically for the task. These are so called appliances. When building appliances
with KIWI the following proceeding has proven to work reliably. Nevertheless the following
is just a recommendation and can be adapted to special needs and environments.

1.

Choose an appropriate image description template from the provided KIWI examples.
Add or adapt repositories, package names or both, according to the distribution you want
to build an image for.

Allow the image to create an in-place git repository to allow tracking of non-binary
changes. This is done by adding the following line into your config.sh script:

baseSetupPlainTextGITRepository
Prepare the preliminary version of your new appliance by calling kiwi - -prepare

Decide for a testing environment. In my opinion a real hardware based test machine
which allows to boot from USB is a good and fast approach.

<type image="iso" boot="isoboot/suse-..." flags="clic" hybrid="true"/>

Create the preliminary live stick image of your new appliance by calling kiwi - -create...
After successful creation of the image files find an USB stick which is able to store your
appliance and plug it into a free USB port on your image build machine. The deployment
can be performed from any OS including Windows as long as a tool to dump data onto
a disk device exists and is used.

Plug in the stick on your test machine and boot it.

After your test system has successfully booted from stick login into your appliance and
start to tweak the system according to your needs. This includes all actions required to
make the appliance work as you wish. Before you start take care for the following:

 Create an initial package list. This can be done by calling:

rpm -qa | sort > /tmp/deployPackages

+ Check the output of the command git status and include everything which is unknown
to git and surely will not be changed by you and will not become part of the image
description overlay files to the /.gitignore files

After the initial package list exists and the git repository is clean you can start to configure
the system. You never should install additional software just by installing an unmanaged
archive or build and install from source. It’s very hard to find out what binary files had
been installed and it’s also not architecture safe. If there is really no other way for the
software to become part of the image you should address this issue directly in your image
description and the config.sh script but not after the initial deployment has happened.

As soon as your system works as expected your new appliance is ready to enter the final
stage. At this point you have done several changes to the system but they are all tracked
and should now become part of your image description. To include the changes into your
image description the following process should be used:

48

Cross Platform
Appliance Build

* Check the differences between the currently installed packages and the initial deploy-
ment list. This can be done by calling:

rpm -qa | sort > /tmp/appliancePackages
diff -u /tmp/deployPackages /tmp/appliancePackages

Add those packages which are labeled with (+) to the <packages type="image">
section of your config.xml file and remove those packages which has been removed
(—) appropriately. If there are packages which has been removed against the will of
the package manager make sure you address the uninstallation of these packages in
your config.sh script. If you have installed packages from repositories which are not
part of your config.xml file you should also add these repositories in order to allow
KIWI to install the packages

+ Check the differences made in the configuration files. This can be easily done by calling:

git diff >/tmp/appliancePatch

The created patch should become part of your image description and you should make
sure the patch is applied when preparing the image. According to this the command:

patch -p0 < appliancePatch
needs to be added as part of your config.sh script.

+ Check for new non binary files added. This can be done by calling:

git status

All files not under version control so far will be listed by the command above. Check
the contents of this list make sure to add all files which are not created automatically
to become part of your image description. To do this simply clone (copy) these files
with respect to the filesystem structure as overlay files in your image description root/
directory.

9. All your valuable work is now stored in one image description and can be re-used in all
KIWI supported image types.

Congratulation! To make sure the appliance works as expected prepare a new image tree
and create an image from the new tree. If you like you can deactivate the creation of the git
repository which will save you some space on the filesystem. If this appliance is a server I
recommend to leave the repository because it allows you to keep track of changes during the
live time of this appliance.

6.3. Cross Platform Appliance Build

Building appliances for one processor architecture on another processor architecture is in gen-
eral not possible with KIWI. The exception is that it is possible to build 32 bit (ix86) appliances
on a 64 bit system running on the x86-64 architecture. This cross-platform limitation is based
on the requirement that KIWI be able to execute installed software inside the unpacked image
tree. If the software installed inside the unpacked image tree does not run on the architecture
of the build platform then KIWI cannot build the appliance.

49

Cross Platform
Appliance Build

While KIWT has the - -target-arch command line argument to instruct the package manager
zypper to install packages for the specified architecture, this option is not intended to support
cross-platform appliance builds.

50

Part II. Usecases

Table of Contents

7. Maintenance of Operating System IMagesccceeerurreeerriiireeennnireeeennneeeeeeesinneees 55
8. System Analysis/MiGIrationccccccooiiiiiiiiiiiiiiiiiiiieiietee et e e e e e 59
8.1. Create a Clean Repository Set FirStccccoeeevuiiiiiiiiiiieeiiiitieneeeeee e 59
8.2. Watch the CuStOm FileScciivveeiiiiiiiiiieiiiiieieirtteeeee et e e e e e s e e aaeraeeeees 60
8.3, CRECKIISE .uuueeiiiiiiieeeeieeeeeciireee e e e ettt e e e e e s e s s sarraeeeeeeeeessssssssssnaeaeeeeesssssnnnnns 60
8.4. Turn Into an IMAaE... cccovveiiiiiiiiiiiiiiiiii e 60
9. INStallation SOUICEcocooiiiiiiiiiiiiiteee et e e s aee e 61
9.1. Adapt the Example’s config.Xmlccoeevvmmiiiiiiiiiiiiiiiiiiieeeeeeeeeeerereeeeee e 61
9.2. Create a Local Installation SOUICEccceeereeviumiireeeeereieiiiieeeeeeeeeeeeeeeeeeeeeeens 61
10. ISO IMage—LivVe SYSLEIMNScccceeiriiiiiiiiiiiiiieeieerteeeeeieeeeseerreeeseesrreeeseenreeessesnnnees 63
10.1. Building the suse-live-iSO EXampleccccccveeeriiiiieeeiniiiieenieieeeeeeieeee e 63
10.2. USINg the IMAGEeeeriiiiiiiiiiiiiieeieieee ettt e et ee e e s aree e e s e saneeeeas 63
10.3. FIAVOUTIS ..uuuueiiiriiieeeeeeiirsiiiiieeeeeeeeeeeesssasreseeeeeeessssssssssssasaeeessssssssssssssseeeesssssssssnnns 63
10.4. USB StiCk iMAZES ..cerreirrieiiiiiiiieiieiitee ettt e et e e eerre e e e e enree e e s e snaneeeeeas 64
11. VMX Image—Virtual DisSKSccceoviiiiiiiiiiieiiiiieencnirtee e e eereee s s sreee e e ssnneees 67
11.1. Building the suse-vm-guest EXamplecccoeeviviiirieiiiiiiiniiiiieeeceeeeeeeeeeeieeeee 67
11.2. USING the IMAZE ..ceeeeeeiiiieieeeeieieeeeietereeeeeeeeeeeeserrrereeeeeeeessesaannreeeeeeesesssssnnnnes 67
11,3, FIAVOULS .euuuiiiiiriieeeeeeeeeeiiiieeeteeeeeeeeesesinneseeeeeeessessssnnnsssaeaeeessessssssnnnsseeeeessessssssnnns 67
12. Linux Containers and DOCKETccccovuuiiiiieeiiiiiiniiiiiieteeeeeeeeesssserereeeeeseesssssssnnns 71
12.1. Building the suse-lxc-guest EXampleccccovuvieeieeiieiiiieiiiiiieeeeeeeeeesssevneeeeeeeens 72
12.2. USING the IMAZE ..eeeeeeiiiiiiiiieeeiiiieieeiiirteeeeeeeeesssssnrrraeeeeeeessssssssssssseeaeessssssssssnnes 72
12.3. Image Configuration Detailscccceeeeviiuriiiieieiiiiiinriiieeeeeeeeeeessineeeeeeeeeeeee 72
13. PXE Image—Thin CLIENtSccccceeiiriiiiiiiiiiiiiiieeeniiieeeeerireeeeeireeeeesnreeesssnneeesssnnns 73
13.1. Setting Up the Required SerViCescccccrrirrreriveereeeeeeerenreriireeeeeeeeeeeeesssnnenee 73
13.2. Building the suse-pxe-client EXampleccccoviireeviiiiiiieeeeeeninnieiiieeeeeeeeeeeeeennne 74
13.3. USING the IMAZE ..cceeeeeiiiieiieieiieeeeeitteteeeeeeeeeeeeerrreeeeeeeesesseannsnreeeeeesesssssnnnnns 74
13,4, FLAVOULS ..uuuueiiiiiieeeeeeeeeeeiieeeeeeeeeeeeasessiuseeeeeeeessassssssnsssaaaeeessesssssssssseeeeesesssssssnnns 75
13.5. HardwWare GIOUPINEueeerereeeeeeeereeriiureeeeeeeeeeasssssssneseeeeessssssssssssseeeeeessssssssssnnes 84
14. OEM Image—Preload SyStemsccccccervuiiiiiiiiiiiiiiiiiiiiiiccrcceccee e 91
14.1. Building the suse-oem-preload Exampleccccoooviiiiiiiiiiiiiiiiiiieennieeeeeeeee, 91
14.2. USING the IMAGEeeeiiiiiiiiiiiiiiiieeieietee ettt e et e e e e sre e e e s e areeeesssnneeeeas 91
14.3. FLAVOULS ...evviiiiiiiiiiieieiieee ettt ettt ettt e e s sa e e s ne e sennee s 92
15. Xen Image—Paravirtual SYStEMScccccvieirriiiieiiniiiiieeeeriireeeereireeeessereeeessreeeeens 95
15.1. Building the suse-xen-guest EXamplecccccvvuueieeiieiiiiniiiiiiieeeeeeeeeeeeecneeeeeeee. 95
15.2. USING the IMAZE ..cceeeeeiiiiieeieeeiieeeerieiteeeeeeeeeeeessarrreeeeeeeesessssnnssnneeeeeesesssssssnnnes 95
15.3. FIAVOULS ..uuuuiiiiriiieeeeeeeeeeiiiieeeeeeeeeeeeeeesanereeeeeeesssssssnnnsssaaeeeessesssssssssseeseessessssssnnnns 96
16. EC2 Image — Amazon Elastic Compute Cloudccceeeeimiiiiniiiiiieeniniieeeeenneeen. 97
16.1. Building the suse-ec2-guest EXampleccccceeerieriiieeiiinieeerneniieeeneeeeeeseeenees 98
16.2. Using EC2 and the created imagec.cccceeeereiuiiereniiiieenerieeeeeeseeeeeeeeeeeeenen 99
17. KIWI RAID SUPPOTT ...ttt e e ettt e s e e eetenaneee s s eeetemanneaeseeeeees 107
18. KIWI Custom Partitionscccoeciiiiiiiiiiiiiiiiieinicececcnre et 109

53

18.1. Custom Partitioning via LVIVMcceuuemmummmmmmmii e
18.2. Custom Partitioning via BrfSccccceeeriiiiiiiiiiiiieeeeeeeeeecceeeeeeeee e

19. KIWI Encryption Support

54

7 Maintenance of Operating System
Images

Creating an image often results in an appliance solution for a customer and gives you the
freedom of a working solution at that time. But software develops and you don’t want your
solution to become outdated. Because of this together with an image people always should
think of image-maintenance. The following paragraph just reflects ideas how to maintain im-
ages created by KIWTI:

55

e M —-l}

.-'-- '\"'\-__
- -'-'"_""\-]I
(1 C Package Source /

2 g‘x-

Image Description

kiwi ——prepare ...

ftmp/my0OS Image

. ¥
e Kiwi --~upgrade \
~-add-repo ... -—add-repotype

|

@O «kiwi ——prepare ...

Y
kiwi ——create ...

Image Descripti
Software package source changes

Faster, because already prepared, cannot handle image description changes, requires free
space to store /tmp/my0SImage

Image Description changes

Covers all possible changes, does not require storage for prepared trees, slower, because
KIWI prepare runs again

ubversion, etc. to track changes

@0 ©O©0e

The picture in Figure 7.1 shows two possible scenarios which requires an image to become
updated. The first reason for updating an image are changes to the software, for example a
new kernel should be used. If this change doesn’t require additional software or changes in the
configuration the update can be done by KIWI itself using its - -upgrade option. In combina-
tion with - -upgrade KIWI allows to add an additional repository which may be needed if the
updated software is not part of the original repository. An important thing to know is that this
additional repository is not stored into the original config.xml file of the image description.

Another reason for updating an image beside software updates are configuration changes or
enhancements, for example an image should have replaced its browser with another better
browser or a new service like apache should be enabled. In principle it’s possible to do all
those changes manually within the physical extend but concerning maintenance this would
be a nightmare. Why, because it will leave the system in an unversioned condition. Nobody
knows what has changed since the very first preparation of this image. So in short:

Don’t modify physical extends manually!

Changes to the image configuration should be done within the image description. The image
description itself should be part of a versioning system like subversion. All changes can be
tracked down then and maybe more important can be assigned to product tags and branches.
As a consequence an image must be prepared from scratch and the old physical extend could
be removed.

57

58

8 System Analysis/Migration

Table of Contents

8.1. Create a Clean RepoSitOry Set FirStccccccceeeeeeeriiirreriiiiirieeeeeereeeeesnereeeeeeeeeesssssnnnnnes 59
8.2. Watch the CuStom Filescccoooiiiiiiiiiiiiiiiiittee et 60
8.3, CHECKLISE ..eeeiiiiiiiiietteee ettt ettt e s e e s 60
8.4. Turn INto an IMAGe... ..ottt s e e et 60

KIWI provides a module which allows you to analyse the running system and create a report
and an image description representing the current state of the machine. Among others this
allows you to clone your currently running system into an image. The process has the following
limitations at the moment:

« Works for SUSE systems only (with zypper on board)

« The process works semi automatically which means depending on the complexity of the
system some manual postprocessing might be necessary

When calling KIWI’s analysis mode it will try to find the base version of your operating sys-
tem and uses the currently active repositories specified in the zypper database to match the
software which exists in terms of packages and patterns. The result is a list of packages and
patterns which represents your system so far. Of course there are normally some data which
doesn’t belong to any package. These are for example configurations or user data. KIWI col-
lects all this information and provides it as custom data. In addition kiwi offers different data
visualisations e.g unmanaged binary data. Along with the software analysis kiwi also checks
for enabled systemd services, augeas configuration inventory and more. The process will not
go beyond the scope of local filesystems.

8.1. Create a Clean Repository Set First

When starting with the analysis it is useful to let kiwi know about all the repositories from
which packages has been installed to the system. In a first step call:

kiwi --describe workstation

This will create an HTML report where you can check which packages and patterns could
be assigned to the given base repository. In almost all cases there will be information about
packages which couldn’t be assigned. You should go to that list and think of the repository
which contains that packages (Packman, etc). If something is missing add it either to the
zypper list on your system or use the KIWI options - -add-repo ... --add-repotype.

59

Watch the Custom Files

Continue calling the following command only if your list is clean and no skipped packages
are used except you know that this package can’t be provided or is not worth to become part
of the description.

kiwi --describe workstation --nofiles [--skip package ... 1]

8.2. Watch the Custom Files

Several reasons could lead to unmanaged data. In most cases these are user data like pictures,
movies but also database files and external party software not installed as a package belongs
to it. It's up to the user to decide if these data needs to be part of the description or not. Along
with this important custom data there are unfortunately also a bunch of other custom data due
to packaging inconsistencies or left over data as result of an upgrade process. These data taints
your system and you are doing good in removing it. The quality of the description depends
on how well the custom data tree is handled and how clean the system was when the analysis
was started. Those data which should become part of the image description needs to be moved
from the /tmp/worksation/custom directory to the /tmp/worksation/root directory

8.3. Checklist

After that you should walk through the following check list

+ Change author and contact in config.xml

+ Set appropriate name for your image in config.xml.

+ Add/modify default type (oem) set in config.xml if needed

+ If you want to access any remote filesystem it’s a good idea to let AutoYaST add them on
first boot of the system

+ Check your network setup in /etc/sysconfig/network. Is this setup still possible in the
cloned environment? Make sure you check for the MAC address of the card first.

8.4. Turn Into an Image...

After the process has finished you should check the size of the image description. The descrip-
tion itself shouldn’t be that big. The size of a migrated image description mainly depends on
how many overlay files exists in the root/ directory. You should make sure to maintain only
required overlay files. Now let’s try to create a clone image from the description. By default
an OEM image which is a virtual disk which is able to run on real hardware too is created.
On success you will also find a ISO file which is an installable version of the OEM image. If
you burn the ISO on a DVD you can use that DVD to install your cloned image on another
computer.

kiwi --build /tmp/workstation -d /tmp/myResult

If everything worked well you can test the created OEM image in any full virtual operating
system environment like Qemu or VMware™. Once created the image description can serve
for all image types KIWI supports.

60

O Installation Source

Table of Contents

9.1. Adapt the Example’s config.Xmlcccooevviiiiiniiiiiiiiniiiieeenieeeeeeeee e srree e e 61
9.2. Create a Local INStAllation SOUTCEcceuueevieernieeireneeeeeeeeeeeennereeeeneseeesneseereseseeesnssserens 61

Before you start to use any of the examples provided in the following chapters your build
system has to have a valid installation source for the distribution you are about to create an
image for. By default, all examples will connect to the network to find the installation source.
It depends on your network bandwidth how fast an image creation process is and in almost
all cases it is better to prepare a local installation source first.

9.1. Adapt the Example’s config.xml

If you can make sure you have a local installation source it’s important to change the path
attribute inside of the repository element of the appropriate example to point to your local
source directory. A typically default repository element looks like the following:

<repository type="yast2">
<source path="opensuse://openSUSE:##.#/standard/"/>
</repository>

9.2. Create a Local Installation Source

The following procedure describes how to create a local SUSE installation source which is
stored below the path /images/CDs. If you are using the local path as described in this docu-
ment you only need to flip the given path information inside of the example config.xml file.

1. Find your SUSE standard installation CDs or the DVD and make them available to the
build system. Most Linux systems auto-mount a previously inserted media automatically.
If this is the case you simply can change the directory to the auto mounted path below
/media. If your system doesn’t mount the device automatically you can do this with the
following command:

mount -o loop /dev/drive-device-name /mnt

2. If you do not have a DVD but a CD set, copy the contents of all CDs into one directory.
It’s absolutely important that you first start with the last CD and copy the first CD at last.
In case of CDs you should have a bundle of 4 CDs. Copy them in the order 4 3 2 1.

3. Copy the contents of the CDs/DVD to your hard drive once you have access to the me-
dia. You need at least 4GB free space available. The following is intended to create an
openSUSE installation source:

61

Create a Local In-
stallation Source

mkdir -p /image/CDs/full-##.#-1386/
cp -a /mnt/* /image/CDs/full-##.#-1386/

Remember if you have a CD set start with number 4 first and after that, eject the CD and
insert the next one to repeat the copy command until all CDs are copied into to /image

62

10 ISO Image—Live Systems

Table of Contents

10.1. Building the suse-live-iS0O EXamPIeccooeriiiiiiiriiiiiiiiiieeeeeieeeeeeeeeeeeeesereee e 63
10.2. USING the IMAGEeviiiieiiiiiiieiiieeeeeiiteeseeirtee e ettt e e s essaeeesssarteeesesanreeesssnsseessssnnsens 63
10.3. FLAVOULS ..euvtiiiiiieiiieeeeiiee ettt ettt st e st e s bee s e aee e s emae e s mreesemnneesanneens 63
10.4. USB StiCK IMAZES ..eeeeeruuriirieeiiiieieiiiteeeeriitee e ettt e e e ettt e e e ssareeeeessaseeeeessnseeessssnneeessnns 64

A live system image is an operating System on CD or DVD. In principle one can treat the CD/
DVD as the hard disk of the system with the restriction that you can’t write data on it. So as
soon as the media is plugged into the computer, the machine is able to boot from that media.
After some time one can login to the system and work with it like on any other system. All
write actions takes place in RAM space and therefore all changes will be lost as soon as the
computer shuts down.

10.1. Building the suse-live-iso Example

This example is based on openSUSE and includes the KDE desktop.
cd /usr/share/doc/packages/kiwi/examples
==> select the example directory for the desired distribution change into it

cd suse-...
kiwi --build ./suse-live-iso -d /tmp/myiso-result --type iso

10.2. Using the Image

There are two ways to use the generated ISO image:

« Burn the .iso file on a CD or DVD with your preferred burn program. Plug in the CD or
DVD into a test computer and (re)boot the machine. Make sure the computer boot from the
CD drive as first boot device.

+ Use a virtualization system to test the image directly. Testing an iso can be done with any
full virtual system for example:

cd /tmp/myiso-result
gemu -cdrom ./suse-*-live-iso.*.iso

10.3. Flavours

KIWI supports different filesystems and boot methods along with the ISO image type. The
provided example by default uses a clicfs compressed root filesystem. clicfs is a fuse user

63

Split mode

space filesystem which reads in data from a compressed image and writes data into a cow file
which can exist in RAM or in persistent area on a disk. The result is a full writable live-system.
The flags attribute in config.xml exists to be able to have the following alternative solutions:

flags="compressed"
Does filesystem compression with squashfs, but don’t use an overlay filesystem for write
support. A symbolic link list is used instead and thus a split element is required in
config.xml. See the split mode section below for details.

flags="clic|clic udf"
Creates a FUSE based clicfs image and allows write operations into a cow file. In case
of an ISO the write happens into a ramdisk. If clic_udf is specified the the iso is created
with an udf filesystem and thus this allows to create live systems bigger than 4G

Flags Not Set
If no flags attribute is set no compressed filesystem, no overlay filesystem will be used.
The root tree will be directly part of the ISO filesystem and the paths: /bin, /boot, /lib,
/1ib64, /opt, /sbin, and /usr will be read-only.

10.3.1. Split mode

If no overlay filesystem is in use but the image filesystem is based on a compressed filesystem
KIWTI allows to setup which files and directories should be writable in a so called split section.
In order to allow to login into the system, at least the /var directory should be writable. This
is because the PAM authentication requires to be able to report any login attempt to /var/
log/messages which therefore needs to be writable. The following split section can be used
if the flag compressed is used:

<split>
<persistent>
<file name="/var"/>
<file name="/var/*"/>
<file name="/boot"/>
<file name="/boot/*"/>
<file name="/etc"/>
<file name="/etc/*"/>
<file name="/home" />
<file name="/home/*"/>
<file name="/tmp"/>
<file name="/tmp/*"/>
</persistent>
</split>

10.3.2. Hybrid mode

A hybrid image is a iso image including a partition table and can therefore be attached as a
CD/DVD and as a normal disk to the system. This has the advantage that a hybrid iso live
system can be burned to a CD/DVD as well as uploaded to a USB stick. In order to activate
the hybrid feature the hybrid flag must be set to true as indicated below.

<type image="iso" ... hybrid="true"/>

10.4. USB stick images

kiwi supports two types of USB stick images. The first type which are the hybrid ISO images
and basically the same as the live ISO images and the second type which are the OEM virtual

64

ISO Hybrid stick

disk images. The deployment of both types can be performed from any OS including Windows
as long as a tool to dump data onto a disk device exists and is used.

10.4.1. ISO Hybrid stick

As indicated above a hybrid iso image also works as USB stick image. If a hybrid iso is used
like a disk image on a writable medium like a USB stick it's possible to write into a persistent
area on the stick instead of the RAM. kiwi will create an additional ext2 partition to store that
information on the disk if the attribute hybridpersistent is set to true.

<type image="iso" ... hybridpersistent="true"/>

10.4.2. OEM USB stick

In contrast to the hybrid iso image it's also possible to create a oem virtual disk image which
is dumped on the stick. The big advantage with this approach is, that it's possible to create
a stick which contains a live OS but also a data partition for custom data. The data partition
is a fat partition also recognized by the Windows operating system. In order to create such a
Windows friendly stick one has to pass the option - -fat-storage <size-in-MB>.

kiwi --create ... --fat-storage 500

If this option is set kiwi will use the syslinux bootloader for the image as well as the first
partition as fat partition of the specified size. The live OS itself will live in a LVM which allows
easy manipulation of the logical root volume. For further information about the OEM image
type please refer to the OEM chapter Chapter 14, OEM Image—Preload Systems

10.4.2.1. OEM compressed / readonly USB stick

If a compressed filesystem type like clicfs is used for the image root directory it's also possible
to allow persistent writing on the USB stick or alternatively disallow that and let all write
actions perfom in RAM only. kiwi provides the type attribute ramonly for this purpose. So
in order to create a read-only oem stick with compressed root filesystem the following type
section is required:

<type image="oem" filesystem="clicfs" ramonly="true" .../>

65

66

11 VMX Image—YVirtual Disks

Table of Contents

11.1. Building the suse-vim-guest EXampleccccceeerrriiieeiinriieeeinniiieeeeesireeesessneeessssnnnees 67
11.2. USING the IMAGEevveerrriiieeiiiiiiteeeeniitteeeeeireeessssrreeessssraeessssssaeesssssseeessssssseessssssees 67
113, FLAVOULS eeeeieiiiieeeieeeeiee et e et et e st e et e e et e e s e st e s e re e s e see e e smae e e mreesemnneeennneens 67

A VMX image is a virtual disk image for use in full virtualization systems like Qemu or
VMware. The image is a file containing the system represented by the configured packages
in config.xml as well as partition data and bootloader information. The size of this virtual
disk can be specified by using the size element in the config.xml file or by adding the - -
bootvm-disksize command line argument.

11.1. Building the suse-vim-guest Exam-
ple

The vm-guest example provided with KIWI is based on recent openSUSE releases, one example
configuration per release. The example uses base pattern and the virtual disk is formatted
using the distribution default filesystem.

cd /usr/share/doc/packages/kiwi/examples

cd suse-...

kiwi --prepare ./suse-vm-guest --root /tmp/myvm

kiwi --create /tmp/myvm --type vmx -d /tmp/myvm-result

11.2. Using the Image

The generated virtual disk image serves as the hard disk of the selected virtualization sys-
tem (QEMU, VMware, etc.). The virtual hard disk format differs across virtualization envi-
ronments. Some virtualization environments support multiple virtual disk formats. Using the
QEMU virtualization environment test the created image with the following command:

cd /tmp/myvm-result
gemu suse-##.#-vm-guest.i686-1.1.2.raw -m 256

11.3. Flavours

KIWI always generates a file in the . raw format. The .raw file is a disk image with a structure
equivalent to the structure of a physical hard disk. Individual virtualization systems have

67

VMware support

specific formats to facilitate improved I/0 performance to the virtual disk, represented by the
image file, or additional specified virtual hard disk files. KIWI will generate a specific format
when the format attribute of the type element is added.

<type image="vmx"... format="name"/>

The following table lists the supported virtual disk formats:

Table 11.1. Supported Virtual Disk Formats

Name Description

vmdk Disk format for VMware

vhd Disk format for Microsoft HyperV

ovf Open Virtual Format requires VMware's ovftool
qcow?2 QEMU virtual disk format

11.3.1. VMware support

A VMware image is accompanied by a guest configuration file. This file includes information
about the hardware to be represented to the guest image by the VMware virtualization envi-
ronment as well as specification of resources such as memory.

Within the config.xml file it is possible to specify the VMware configuration settings. In
addition it is possible to include selected packages in the created image that are specific to
the VM image generation. The following config.xml snippet provides general guidance on
the elements in config.xml.

<packages type="vmx">

<!-- packages you need in VMware only -->
</packages>
<type...... >

<machine memory="512">
<vmdisk controller="ide" id="0"/>
</machine>
</type>

Given the specification above KIWI will create a VMware guest configuration specifying the
availability of 512 MB of RAM and an IDE disk controller interface for the VM guest. For
additional information about the configuration settings please refer to the machine section.

The guest configuration can be loaded through VMware user interface and may be modified
through the GUIL The configuration file has the . vmx extension as shown in the example below.

/tmp/myvm-result/suse-##.#-vm-quest.i686-1.1.2.vmx

Using the format ="vmdk" attribute of the <type> start tag will create the VMware formatted
disk image (.vmdk file) and the required VMware guest configuration (.vmx) file.

In addition it is possible to create an image for the Xen virtualization framework. By adding
the bootprofile and bootkernel attributes to the <type> start tag with values of xen and
xenboot, respectively. Please refer to the Chapter 15, Xen Image—Paravirtual Systems for ad-
ditional details.

11.3.2. LVM Support

68

LVM Support

KIWTI also provides support for LVM (Logical Volume Management). In this mode the disk
partition table will include one lvm partition and one standard ext2 boot partition. KIWI
creates the kiwiVG volume group and adds logical volumes as they are needed and configured
according to the image type and filesystem. After boot of the system the user has full control
over the volume group and is free to change/resize/increase the group and the volumes inside.
Support for LVM has been added for all image types which are disk based. This includes vmx,
oem and usb. In order to use LVM for the vimx type just add the - - Lvm option as part of the KIWI
create step or add the attribute lvm ="true" as part of the type section in your config.xml file.

kiwi --create /tmp/myvm --type vmx -d /tmp/myvm-result --lvm

With the optional systemdisk section you can set one or more top level directories into a
separate volume. See Chapter 5, KIWI Image Description for a detailed explanation.

69

70

12 Linux Containers and Docker

Table of Contents

12.1. Building the suse-1xc-guest EXamplecccccceeiieriiiieiiiiiiieeninieeeeeeieeeseeieeeee s 72
12.2. USING the IMAGEeeeiiiiiiiiiiiiiieeieettee ettt e s eeiree e s e erte e e s e srreeeseearaeeesssnnnees 72
12.3. Image Configuration Detailsccccereeiiiiiiiiiiiiieiiiieeeeieee et 72

Linux Containers (LXC) [http://1xc.sourceforge.net/] provide operating system-level vir-
tualization, utilizing Control Groups (cgroups) [https://www.kernel.org/doc/Documenta-
tion/cgroups/cgroups.txt]. The virtualization is similar to technologies in OpenVZ, Lin-
ux-VServer, FreeBSD jails, AIX Workload Partitions, and Solaris Containers. The network and
process space of the container is separated from the host resources using namespaces. Kernel
space information is mounted into the container root filesystem using the fstab file in the
configuration directory. The container root filesystem provides the new user space on top of
the running kernel of the host. A Linux container has two components: the container root file
system stored in /var/lib/1xc/CONTAINER NAME and the container configuration stored in
/etc/xc/CONTAINER NAME. The kiwi created container image is packaged in a tarball con-
taining the root filesystem and the configuration. The tarball is expected to be inflated at the
root level (/) of the target system that functions as host.

Docker is a shipping container system for code that can run virtually everywhere. Basically
is an extension of LXC’s capabilities. As Docker is based on LXC, a Docker container does not
include a separate operating system. It relies on the functionality provided by the underlying
infrastructure. As such, it can package the application and all its dependencies in a virtual
container which can be run on any Linux server.

On top of LXC, Docker makes it possible to deploy portable containers across machines, shift
focus on application rather than machines, includes versioning capabilities for tracking suc-
cessive versions of a container, allows re-use of containers as a base for other specialized
components, and much more. Find more information about Docker on its homepage at http://
www.docker.io.

To use Docker with KIWI, take into account the following issues:

« Change the image type in the type element of the image attribute from 1xc to docker:

<type image="docker">...</type>

« NEVER unpack the Docker tarball! If you unpack the tarball it will overwrite data on the
host system. Use the docker command instead.

71

http://lxc.sourceforge.net/
http://lxc.sourceforge.net/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.docker.io
http://www.docker.io

Building the suse-
Ixc-guest Example

12.1. Building the suse-lxc-guest Exam-
ple

The Ixc-guest example provided with KIWI is based on recent openSUSE releases, one example
configuration per release. The example provides a very minimal system.

cd /usr/share/doc/packages/kiwi/examples
cd suse-...
kiwi --prepare ./suse-lxc-guest --root /tmp/mylxc

kiwi --create /tmp/mylxc --type lxc -d /tmp/mylxc-result

12.2. Using the Image

The created container is packaged in a tarball in the destination directory, mylxc-result in
the example above. Move this tarball to the root level (/) of the host machine and unpack it.
The following commands assume that the image build machine is also the host machine.

cp /tmp/mylxc-result/suse-##.#-1xc-quest-1xc.*-1.0.0.tbz /
cd /

tar -xjf suse-##.#-1xc-guest-1xc.*-1.0.0.tbz

Ixc-start -n os### -f /etc/lxc/os###/config

12.3. Image Configuration Details

The configuration for a container does not need to contain a kernel package. The container
represents the user space that runs on top of the kernel of the container host system.

The container itself must contain the Linux user space container tools and thus the Ixc package
must be included in the container image.

Configure the network configuration for the container using the vmnic element. The mode
attribute indicates the network mode, veth by default. While it is possible to configure multiple
network interfaces in the config. xml file, the written conteiner configuration will only reflect
the information configured for the first vmnic element found in the config.xml file. The
configuration for the container expects that the host has a configured network bridge with the
name br0. For complex network setup implementations it is necessary to edit the config file.

The generated configuration file restricts the device access of the container according to a
generally accepted best practice security model. The device access permissions may be mod-
ified by editing the config file for the container.

72

13 PXE Image—Thin Clients

Table of Contents

13.1. Setting Up the Required ServiCescccceeeeiiiieriiiiiiieieiiiieeeeerteeeeeieee e sieeeee e 73
13.2. Building the suse-pxe-client EXamplecccccocoeiiiiiiiiieiiiiiiieeiiieeeeeeeeeeeeeeeeeeaes 74
13.3. USINg the IMAGEeeeiiiiiiiiiiiiiiiieiieitee ettt eeiree e s erte e s s e ssre e e s e earaeeesesannees 74
1304, FIAVOULS ..ettiiiuiiieeieiiitieeeeiitteeeeeittte e e ettt e e eeistte e e s sntteeeeensateeeesnnsteesessnseteesennnsneesannnns 75
13.5. HardWare GIOUPINGccccevureeeeiriurieeieiiitteeeeeieteeeeesierteeeesssteessssnssteessssnseeessssssseeesssnnes 84

PXE is a boot protocol implemented in most BIOS implementations which makes it so inter-
esting. The protocol sends DHCP requests to assign an IP address and after that it uses tftp to
download kernel and boot instructions.

A PXE image consists of a boot image and a system image like all other image types too. But
with a PXE image the image files are available separately and needs to be copied at specific
locations of a network boot server.

13.1. Setting Up the Required Services

Before you start to build PXE images with KIWI, setup the boot server. The boot server requires
the services atftp and DHCP to run.

13.1.1. Atftp Server

In order to setup the atftp server the following steps are required
1. [Install the packages atftp and kiwi-pxeboot.

2. Edit the file /etc/sysconfig/atftpd. Set or modify the following variables:

o« ATFTPD OPTIONS="--daemon --no-multicast"

o ATFTPD DIRECTORY="/srv/tftpboot"

3. Run atftpd by calling the command:

rcatftpd start

13.1.2. DHCP Server

In contrast to the atftp server setup the following DHCP server setup can only serve as an
example. Depending on your network structure, the IP addresses, ranges and domain settings
needs to be adapted in order to allow the DHCP server to work within your network. If you

73

Building the suse-
pxe-client Example

already have a DHCP server running in your network, make sure that the filename and next-
server information is provided by your server. The following steps describe how to setup a
new DHCP server instance:

1. Install the package dhcp-server.

2. Create the file /etc/dhcpd. conf and include the following statements:

option domain-name "example.org";

option domain-name-servers 192.168.100.2;
option broadcast-address 192.168.100.255;
option routers 192.168.100.2;

option subnet-mask 255.255.255.0;
default-lease-time 600;

max-lease-time 7200;

ddns-update-style none; ddns-updates off;
log-facility local7;

subnet 192.168.100.0 netmask 255.255.255.0 {
filename "pxelinux.0";

next-server 192.168.100.2;
range dynamic-bootp 192.168.100.5 192.168.100.20;

3. Edit the file /etc/sysconfig/dhcpd and setup the network interface the server should
listen on:

DHCPD INTERFACE="eth0"

4. Run the dhcp server by calling:

rcdhcpd start

13.2. Building the suse-pxe-client Exam-
ple

The example provided with KIWI is based on openSUSE and creates an image for a Wyse VX0
terminal with a 128MB flash card and 512MB of RAM. The image makes use of the squashfs
compressed filesystem and its root tree is deployed as clicfs based overlay system.

cd /usr/share/doc/packages/kiwi/examples

==> select the example directory for the desired distribution change into it

cd suse-...
kiwi --build ./suse-pxe-client -d /tmp/mypxe-result --type pxe

13.3. Using the Image

In order to make use of the image all related image parts needs to be copied onto the boot
server. According to the example the following steps needs to be performed:

1. Change working directory:

cd /tmp/mypxe-result

2. Copy of the boot and kernel image:

cp initrd-netboot-suse-*.splash.gz \
/srv/tftpboot/boot/initrd
cp initrd-netboot-suse-*.kernel \

74

Flavours

/srv/tftpboot/boot/linux

3. Copy of the system image and md5 sum:

cp suse-*-pxe-client.* /srv/tftpboot/image

4. Copy of the image boot configuration. Normally the boot configuration applies to one
client which means it is required to obtain the MAC address of this client. If the boot
configuration should be used globally, copy the KIWI generated file as config.default:

cp suse-*-pxe-client.*.config \
/srv/tftpboot/KIWI/config.MAC

5. Check the PXE configuration file. The PXE configuration controls which kernel and
initrd are loaded and which kernel parameters are set. When installing the kiwi-pxe-
boot package, a default configuration is added. To make sure the configuration is valid
according to this example, insert the following information into the file /srv/tftp-
boot/pxelinux.cfg/default:

DEFAULT KIWI-Boot

LABEL KIWI-Boot
kernel boot/linux
append initrd=boot/initrd vga=0x314
IPAPPEND 1

LABEL Local-Boot
localboot 0

6. Connect the client to the network and boot.

13.4. Flavours

All the different PXE boot based deployment methods are controlled by the config.MAC (or
config.default) file. When a new client boots up and there is no client configuration file the
new client is registered by uploading a control file to the TFTP server. The following sections
informs about the control and the configuration file.

13.4.1. The PXE Client Control File

This section describes the netboot client control file:

hwtype.$<$MAC Address$>$

The control file is primarily used to set up new netboot clients. In this case, there is no con-
figuration file corresponding to the client MAC address available. Using the MAC address in-
formation, the control file is created, which is uploaded to the TFTP servers upload directory
/var/lib/tftpboot/upload.

13.4.2. The PXE Client Configuration File

This section describes the netboot client configuration file:

config.$<$MAC Address$>$

The configuration file contains data about image, configuration, synchronization, or partition
parameters. The configuration file is loaded from the TFTP server directory /var/lib/tftp-
boot/KIWI via TFTP for previously installed netboot clients. New netboot clients are immedi-

75

The PXE Client
Configuration File

ately registered and a new configuration file with the corresponding MAC address is created.
The standard case for the deployment of a PXE image is one image file based on a read-write
filesystem which is stored onto a local storage device of the client. Below, find an example
to cover this case.

DISK=/dev/sda
PART='5;S;x,x;L;/"'
IMAGE="'/dev/sda2;suse-##.#-pxe-client.i1686;1.2.8;192.168.100.2;4096"

The following format is used:

IMAGE='device;name;version;srvip;bsize;compressed,...,"'
CONF='src;dest;srvip;bsize; [hash],...,src;dest;srvip;bsize;[hash]"’
PART='size;id;Mount,...,size;id;Mount"'

DISK=device

IMAGE

Specifies which image (name) should be loaded with which version (version) and to which
storage device (device) it should be linked, e. g., /dev/raml or /dev/hda2. The netboot
client partition (device) hda2 defines the root file system / and hdal is used for the swap
partition. The numbering of the hard disk device should not be confused with the RAM
disk device, where /dev/ram0 is used for the initial RAM disk and can not be used as
storage device for the second stage system image. SUSE recommends to use the device /
dev/raml for the RAM disk. If the hard drive is used, a corresponding partitioning must
be performed.

STvip
Specifies the server IP address for the TFTP download. Must always be indicated, ex-
cept in PART.

bsize
Specifies the block size for the TFTP download. Must always be indicated, except in
PART. If the block size is too small according to the maximum number of data packages
(32768), linuxrc will automatically calculate a new blocksize for the download.

compressed

Specifies if the image file on the TFTP server is compressed and handles it accordingly.
To specify a compressed image download only the keyword "compressed" needs to be
added. If compressed is not specified the standard download workflow is used. Note:
The download will fail if you specify "compressed" and the image isn’t compressed. It
will also fail if you don’t specify "compressed" but the image is compressed. The name
of the compressed image has to contain the suffix . gz and needs to be compressed with
the gzip tool. Using a compressed image will automatically deactivate the multicast
download option of atftp.

CONF

Specifies a comma-separated list of source:target configuration files. The source (src) cor-
responds to the path on the TFTP server and is loaded via TFTP. The download is made to
the file on the netboot client indicated by the target (dest). Download only happens when
configuration files are missing on the client or, if md5sum hash is supplied ([hash]), when
different. To achieve this, list of CONF files (and VENDOR_CONF) files is kept on the client
in the /etc/KIWI/InstalledConfigFiles backup file, and is compared to the CONF data
gathered from the config. MAC and also from other configuration files, e.g. config.group,
if supplied. Configuration files selected for comparison are those with same (dest) path.
If destination path (dest) is same for more configuration files, only the last one is used
(and VENDOR_CONF has always precedence to CONF). By comparing configuration file

76

The PXE Client
Configuration File

lists present in the current CONF, VENDOR_CONF variables and stored in the backup file,
following actions can result:

Table 13.1. Configuration files synchronization possibilities

cfg file in|cfg file in InstalledConfig-|action

CONF,VENDOR_CONF Files backup

hash_a hash_a nothing, keep

hash_a hash_b download from server

none hash download from server

hash none download from server

none none nothing, keep

present not present download from server (re-
gardless hash)

not present present delete on client (regardles
hash)

Note that actual configuration files (or their md5sum hashes) on the client machine are
not tested, only data from the backup file are used. This means that actual configuration
files can be altered or even deleted without triggering any action, or, on the other hand,
an action can be triggered without modifying the configuration files, only by modifying
or removing of the backup file.

PART
Specifies the partitioning data. The comma-separated list must contain the size (size), the
type number (id), and the mount point (Mount). The size is measured in MB by default.
The mount specifies the directory the partition is mounted to.

+ The first element of the list must define the swap partition.
« The second element of the list must define the root partition.

« The swap partition must not contain a mount point. A lowercase letter x must be set
instead.

« If a partition should take all the space left on a disk one can set a lower x letter as size
specification.

RAID
In addtion to the PART line it's also allowed to add a raid array setup. The first parmater of
the RAID line is the raid level. So far only raidl (mirroring) is supported. The second and
third parameter specifies the raid disk devices which makes up the array. If a RAID line
is present all partitions in PART will be created as raid partitions. The first raid is named
mdoO the second one md1 and so on. It's required to specifiy the correct raid partition in the
IMAGE line according to the PART setup. A typical raid image setup could look like this:

DISK=/dev/sda

RAID='1;/dev/sda;/dev/sdb'
IMAGE="'/dev/mdl;LimeJe0S-openSUSE-##.#.1686;1.11.3;192.168.100.2;4096'
PART='5;S;x,2000;83;/"'

DISK
Specifies the hard disk. Used only with PART and defines the device via which the hard
disk can be addressed, e.g., /dev/hda.

77

The PXE Client
Configuration File

REBOOT IMAGE
If set to a non-empty string, this will reboot the system after the initial deployment process
is done. This means before the system init process is activated the system is rebooted. If
the machine's default boot setup is to boot via PXE it will again boot from the network.

FORCE_KEXEC
During the initial deployment process kiwi checks if the running kernel is the same as the
kernel installed via the system image. If there is a mismatch kiwi activates the installed
kernel by calling kexec. This is mostly the same as to perform a reboot but without the
need of the BIOS or any bootloader. If FORCE_KEXEC is set to a non-empty string kiwi
will also perform kexec if the kernel versions matches.

RELOAD IMAGE
If set to a non-empty string, this forces the configured image to be loaded from the server
even if the image on the disk is up-to-date. The primary purpose of this setting is to aid
debugging. The option is sensible only for disk based systems.

RELOAD CONFIG
If set to a non-empty string, this forces all config files to be loaded from the server. The
primary purpose of this setting is to aid debugging. The option is sensible only for disk
based systems.

COMBINED IMAGE
If set to a non-empty string, indicates that the both image specified needs to be combined
into one bootable image, whereas the first image defines the read-write part and the second
image defines the read-only part.

KIWI INITRD
Specifies the KIWTI initrd to be used for local boot of the system. The variables value must
be set to the name of the initrd file which is used via PXE network boot. If the standard
tftp setup suggested with the kiwi-pxeboot package is used all initrd files resides in the
boot/ directory below the tftp server path /var/lib/tftpboot. Because the tftp server
do a chroot into the tftp server path you need to specify the initrd file as the following
example shows:

KIWI INITRD=/boot/name-of-initrd-file

UNIONFS CONFIG
For netboot images there is the possibility to use clicfs as container filesystem in combi-
nation with a compressed system image. The recommended compressed filesystem type
for the system image is clicfs.

UNIONFS CONFIG=/dev/sda2,/dev/sda3,clicfs

In this example the first device /dev/sda2 represents the read/write filesystem and the
second device /dev/sda3 represents the compressed system image filesystem. The con-
tainer filesystem clicfs is then used to cover the read/write layer with the read-only device
to one read/write filesystem. If a file on the read-only device is going to be written the
changes inodes are part of the read/write filesystem. Please note the device specifications
in UNIONFS CONFIG must correspond with the IMAGE and PART information. The follow-
ing example should explain the interconnections:

DISK=/dev/sda
IMAGE="'/dev/sda3;image/myImage;1.1.1;192.168.1.1;4096"'
PART='200;S;x,300;L;/,x;L;x"

UNIONFS CONFIG=/dev/sda2,/dev/sda3,clicfs

78

The PXE Client
Configuration File

As the second element of the PART list must define the root partition it’s absolutely impor-
tant that the first device in UNIONFS CONFIG references this device as read/write device.
The second device of UNIONFS CONFIG has to reference the given IMAGE device name.

KIWI KERNEL OPTIONS
Specifies additional command line options to be passed to the kernel when booting from
disk. For instance, to enable a splash screen, you might use vga=0x317 splash=silent.

KIWI_BOOT TIMEOUT
Specifies the number of seconds to wait at the grub boot screen when doing a local boot.
The default is 10.

NBDROOT

Mount the system image root filesystem remotely via NBD (Network Block Device). This
means there is a server which exports the root directory of the system image via a specified
export name. The kernel provides the block layer, together with a remote port that uses
the nbd-server program. For more information on how to set up the server, see the nbd-
server man pages. The kernel on the remote client can set up a special network block
device named /dev/nb0 using the nbd-client command. After this device exists, the mount
program is used to mount the root filesystem. To allow the KIWI boot image to use that,
the following information must be provided:

NBDROOT=NBD.Server.IP.address;\
NBD-Export-Name;/dev/NBD-Device;\
NBD-Swap-Export-Name; /dev/NBD-Swap-Device;\
NBD-Write-Export-Name;/dev/NBD-Write-Device

The server IP and the export name are mandatory information. Whereas the other para-
meters are optional. The default device names are, NBD-Device = /dev/nbd0, NBD-Swap-
Device = /dev/nbdl and NBD-Write-Device = /dev/raml . The setup of swap and/R/
W over nbd depends on if there are export names given or not. In addition a requested
nbd swap space is only established if the client has less than 48 MB of RAM. The option-
al NBD-Write-Export-Name and NBD-Write-Device specifies a write COW location for the
root filesystem. A separate write device is only used together with a union setup based
on e.g overlayfs

AOEROOT
Mount the system image root filesystem remotely via AoE (ATA over Ethernet). This means
there is a server which exports a block device representing the root directory of the system
image via the AoE subsystem. The block device could be a partition of a real or a virtual
disk. In order to use the AoE subsystem I recommend to install the aoetools and vblade
packages from here first: http://download.opensuse.org/repositories/server:/ltsp. Once
installed the following example shows how to export the local /dev/sdbl partition via
AoE:

vbladed 0 1 eth® /dev/sdbl

Some explanation about this command, each AoE device is identified by a couple Ma-
jor/Minor, with major between 0-65535 and minor between 0-255. AoE is based just over
Ethernet on the OSI models so we need to indicate which ethernet card we’ll use. In this
example we export /dev/sdbl with a major value of 0 and minor of 1 on the ethO inter-
face. We are ready to use our partition on the network! To be able to use the device KIWI
needs the information which AoE device contains the root filesystem. In our example this
is the device /dev/etherd/e0.1. According to this the AOEROOT variable must be set
as follows:

AOERO0T=/dev/etherd/e0.1

79

http://download.opensuse.org/repositories/server:/ltsp

User another than tftp
as Download Protocol

KIWTI is now able to mount and use the specified AoE device as the remote root filesystem.
In case of a compressed read-only image with clicfs, the AOEROOT variable can also
contain a device for the write actions:

AOER00T=/dev/etherd/e0.1, /dev/raml

Writing to RAM is the default but you also can set another device like another aoe location
or a local device for writing the data

NFSROOT
Mount the system image root filesystem remotely via NFS (Network File System). This
means there is a server which exports the root filesystem of the network client in such a
way that the client can mount it read/write. In order to do that, the boot image must know
the server IP address and the path name where the root directory exists on this server. The
information must be provided as in the following example:

NFSROOT=NFS.Server.IP.address;/path/to/root/tree

KIWI INITRD
Specifies the KIWI initrd to be used for a local boot of the system. The value must be set
to the name of the initrd file which is used via PXE network boot. If the standard TFTP
setup suggested with the kiwi-pxeboot package is used, all initrd files reside in the /srv/
tftpboot/boot/ directory. Because the TFTP server does a chroot into the TFTP server
path, you must specify the initrd file as follows:

KIWI INITRD=/boot/name-of-initrd-file

KIWI KERNEL
Specifies the kernel to be used for a local boot of the system The same path rules as
described for KIWI INITRD applies for the kernel setup:

KIWI_KERNEL=/boot/name-of-kernel-file

ERROR_INTERRUPT
Specifies a message which is displayed during first deployment. Along with the message a
shell is provided. This functionality should be used to send the user a message if it’s clear
the boot process will fail because the boot environment or something else influences the
PXE boot process in a bad way.

13.4.3. User another than tftp as Download Pro-
tocol

By default all downloads controlled by the KIWI linuxrc code are performed by an atftp call
and therefore uses the tftp protocol. With PXE the download protocol is fixed and thus you
can’t change the way how the kernel and the boot image (initrd) is downloaded. As soon as
Linux takes over control the following download protocols http, https and ftp are supported
too. KIWI makes use of the curl program to support the additional protocols.

In order to select one of the additional download protocols the following kernel parameters
needs to be setup:

kiwiserver
Name or IP address of the server who implements the protocol

kiwiservertype
Name of the download protocol which could be one of http, https or ftp

80

RAM Only Image

To setup this parameters edit the file /srv/tftpboot/pxelinux.cfg/default on your PXE
boot server and change the append line accordingly. Please note all downloads except for
kernel and initrd are now controlled by the given server and protocol. You need to make
sure that this server provides the same directory and file structure as initially provided by
the kiwi-pxeboot package.

13.4.4. RAM Only Image

If there is no local storage and no remote root mount setup the image can be stored into the
main memory of the client. Please be aware that there should be still enough RAM space
available for the operating system after the image has been deployed into RAM. Below, find
an example:

+ Use a read-write filesystem in config.xml, for example filesystem="ext3"

» Create config.MAC

IMAGE="'/dev/raml;suse-##.#-pxe-client.i686;1.2.8;192.168.100.2;4096"'

13.4.5. Union Image

As used in the suse-pxe-client example it is possible to make use of the clicfs overlay filesystem
to combine two filesystems into one. In case of thin clients there is often the need for a com-
pressed filesystem due to space limitations. Unfortunately all common compressed filesystems
provides only read-only access. Combining a read-only filesystem with a read-write filesystem
is a solution for this problem. In order to use a compressed root filesystem based on clicfs
make sure your config.xml’s filesystem attribute contains clicfs. As an alternative to clicfs
kiwi also supports the fuse based unionfs utility. In contrast to clicfs which writes a block list
on the write device, unionfs points all write operations into another filesystem which allows to
mount and watch this location separately. In order to use a compressed root filesystem based
on unionfs make sure your config.xmU’s filesystem attribute contains squashfs. Below find
examples for the different union modes.

13.4.5.1. Download to Local Storage, Write to Local Storage

DISK=/dev/sda

PART='5;S;x,400;L;/,x;L;x"'
IMAGE='/dev/sda2;suse-##.#-pxe-client.i386;1.2.8;192.168.100.2;4096"
UNIONFS CONFIG=/dev/sda3,/dev/sda2,unionfs

KIWI INITRD=/boot/initrd

13.4.5.2. Download to Local Storage, Write to RAM

DISK=/dev/sda

PART='5;S;x,400;L;/"
IMAGE='/dev/sda2;suse-##.#-pxe-client.i386;1.2.8;192.168.100.2;4096"
UNIONFS CONFIG=tmpfs,/dev/sda2,unionfs

13.4.5.3. Mount from Remote, Write to Local Storage

For all of the following modes I strongly recommend to check on a separate client machine in
the network if it is possible to access the exported read-only and read-write device locations.
If accessing devices works the image should also be able to access them on boot. If the boot
fails it should be clear that the reason is not the exported device.

81

Split Image

NESROOT

PART='5;S;x,x;L;x"
NFSRO0T="192.168.100.2;/srv/kiwi-read-only-path"
UNIONFS CONFIG=/dev/sda2,nfs,unionfs

AOEROOT

PART='5;S;x,x;L;x"'
AOERO0T=/dev/etherd/e0.1,/dev/sda2
UNIONFS CONFIG=/dev/sda2,aoe,unionfs

NBDROOT

PART='5;S;x,x;L;x"'
NBDR0O0T=192.168.100.7; rootl;/dev/nbdo;;;;/dev/sda2
UNIONFS CONFIG=/dev/sda2,nbd,unionfs

13.4.5.4. Mount from Remote, Write to RAM

NESROOT

NFSRO0T="192.168.100.2;/srv/kiwi-read-only-path"
UNIONFS CONFIG=tmpfs,nfs,unionfs

AOEROOT

AOERO0T=/dev/etherd/e0.1
UNIONFS CONFIG=tmpfs,aoe,unionfs

NBDROOT

NBDRO0OT=192.168.100.7;rootl;/dev/nbd0O
UNIONFS CONFIG=tmpfs,nbd,unionfs

13.4.5.5. Mount from Remote, Write to Remote

NESROOT

NFSRO0T="192.168.100.2;/srv/kiwi-read-only-path"
UNIONFS CONFIG=/srv/kiwi-read-write-path,nfs,unionfs

AOEROOT

AOERO0T=/dev/etherd/e0.1,/dev/etherd/el.1
UNIONFS CONFIG=aoe,aoe,unionfs

NBDROOT

NBDR0O0T=192.168.100.7; rootl;/dev/nbd0;swapl;/dev/nbdl;writel;/dev/nbd2
UNIONFS CONFIG=nbd,nbd,unionfs

13.4.6. Split Image

As an alternative to the UNIONFS CONFIG method it is also possible to create a split image
and combine the two portions with the COMBINED IMAGE method. This allows to use different
filesystems without the need for an overlay filesystem to combine them together. Below find
an example:

Add a split type in config.xml, for example

<type fsreadonly="squashfs"

82

Root Tree Over NFS

image="split" fsreadwrite="ext3" boot="netboot/suse-..."/>

« Add a split section inside the type to describe the temporary and persistent parts. For
example:

<split>
<temporary>
<!-- allow RAM read/write access to: -->

<file name="/mnt"/>
<file name="/mnt/*"/>

</temporary>

<persistent>
<!-- allow DISK read/write access to: -->
<file name="/var"/>
<file name="/var/*"/>
<file name="/boot"/>
<file name="/boot/*"/>
<file name="/etc"/>
<file name="/etc/*"/>
<file name="/home"/>
<file name="/home/*" />

</persistent>

</split>

« Sample config.MAC:

IMAGE="'/dev/sda2;suse-##.#-pxe-client.i686;1.2.8;192.168.100.2;4096,\
/dev/sda3;suse-##.#-pxe-client-read-write.i686;1.2.8;192.168.100.2;4096"

PART="'200;S;x,500;L;/,x;L"

DISK=/dev/sda

COMBINED IMAGE=yes

KIWI INITRD=/boot/initrd

13.4.7. Root Tree Over NFS

Instead of installing the image onto a local storage device of the client it is also possible to let
the client mount the root tree via an NFS remote mount. Below find an example:

« Export the KIWI prepared tree via NFS.

« Sample config.MAC:

NFSR00T=192.168.100.7; /tmp/kiwi.nfsroot

13.4.8. Root Tree Over NBD

As an alternative for root over NFS it is also possible to let the client mount the root tree via
a special network block device. Below find an example:

+ Use nbd-server to export the KIWI prepared tree.

« Sample config.MAC

NBDR00T=192.168.100.7; rootl;/dev/nbd0

13.4.9. Root Tree Over AoE

As an alternative for root over NBD it is also possible to let the client mount the root device
via a special ATA over Ethernet network block device. Below find an example:

83

Hardware Grouping

» Use the vbladed command to bind a block device to an ethernet interface. The block device
can be a disk partition or a loop device (losetup) but not a directory like with NBD.

« Sample config.MAC:
AOEROOT=/dev/etherd/e0.1

This would require the following command to be called first:

vbladed 0 1 ethO blockdevice

13.5. Hardware Grouping

While the PXE standard takes care of the ability to create hardware groups via hardware or
IP address groups, it does not take into account groups for non-contiguous hardware or IP
addresses. The PXE standard makes the assumption that each hardware group will be clearly
delineated by a range of IP addresses, or the hardware is from the same vendor. While an
ideal scenario, this may not be the case in an established, slightly dated installation where the
hardware itself has out-lived the vendors that made them.

KIWT has the ability to create groups for non-contiguous configurations where different hard-
ware types may be involved due to newer equipment being rotated into production or older
hardware failing and replacements are from different vendors. In addition, an organization
might decide to organize their equipment by function, rather than by vendor, and may not be
able to use the same hardware from one end to the other.

13.5.1. The Group Configuration File

To make use of the grouping functionality, some new configuration files will be required.
These configuration files currently have to be manually managed rather than provided, how-
ever future versions of KIWI may provide a means of managing groups more effectively once
this feature stabilizes. The number of configuration files required will depend on the number
of hardware groups that will be created, rather than one configuration file for each MAC ad-
dress that will reside on the network.

There will be one configuration file that will always be required if using groups, called:

/srv/tftpboot/KIWI/config.group

This file has a new static element that must exist, and one or more dynamic elements depend-
ing on the number of groups that will be created. For example, the config.group file defined
below lists 3 distinct groups:

KIWI GROUP="testl, test2, test3"
testl KIWI MAC LIST="11:11:11:11:11:11, 00:11:00:11:22:CA"
test2 KIWI MAC LIST="00:22:00:44:00:4D, 99:3F:21:A2:F4:32"

test3 KIWI MAC LIST="00:54:33:FA:44:33, 84:3D:45:2F:5F:33"

Note: The above hardware addresses contain random entries, and may not reflect actual hard-
ware.

As we can see in the above example the file contains 1 static element, KIWI_GROUP, and 3
dynamic elements "testl_KIWI_MAC_LIST, test2 KIWI_MAC_LIST and test3_KIWI_MAC_LIST".
The definitions of these elements are as follows:

84

The Group Details File

+ KIWI_GROUP

This element is the only static definition that needs to exist when using groups. While
there is no implicit limit to the number of groups that can be configured, it should be kept
to a minimum for reasonable management or it could quickly become un-manageable. It
will need to contain one or more group names separated by comma's (,) and spacing (for
readability). In the above example, our group names were:

* testl
e test2
e test3

Valid group names are made up of upper and lower case letters, and can use numeric, and
underscore characters. The same rules used to define bash/sh variable names should apply
here, as these names will have to be used as fully defined bash/sh variables when linking
hardware addresses to an assigned group. The following is an example that contains valid
names:

KIWI GROUP="testl, test my name, LIST HARDWARE, Multple Case Group 1"
+ <GROUP_NAME > _KIWI_MAC_LIST

The name of this element is dynamic and depends entirely on the list of group names that
were previously defined. Each group name that was used in the KIWI_GROUP variable, must
contain a matching dynamic element, and have KIWI_MAC_LIST appended to the name. To
continue with our previous example, to create hardware lists for the groups already defined,
we need 3 dynamic elements called:

» testl KIWI_ MAC_LIST
» test2_KIWI_MAC_LIST
» test3_KIWI_MAC_LIST

These variables will contain a comma delimited list of the hardware addresses for all of the
machines being assigned to the appropriate group, but there are some caveats that need to
be kept in mind. The first caveat is for hardware addresses that contain the HEX characters
A-F. The PXE standard uses capital letters for these characters, and as a result KIWI does
upper case comparisons, so a MAC address that is defined with lower case letters in this
list will never get matched.

The second caveat is that as the list gets longer, it can be harder to maintain and it has
the potential to slow down the booting process. However, testing has been completed with
1500 + hosts defined, and there was little delay when transferring the file to a single host.
The file size will have a larger impact when trying to download it to 1500+ hosts, so some
consideration will have to take that into account. The comparison itself still occurred in
under half a second while searching through all 1500+ MAC addresses across 3 defined
groups.

13.5.2. The Group Details File

In addition to the config.group file, each defined group will require a config.<GROUP_NAME>
file. This file is exactly like a standard KIWI config. <MAC> file, but is assigned to a group

85

Using Hardware Map-
ping to Provide Overrides

of hosts rather than a single unit. If we continue with the example we used in the previous
section, we would need the following files:

/srv/tftpboot/KIWI/config.testl
/srv/tftpboot/KIWI/config.test2
/srv/tftpboot/KIWI/config.test3

The contents of these files is the same that would normally reside in a config. <MAC> file,
and all definitions that would be supported for a single host, are supported for a group of
hosts. In addition, if a host is matched to a group, yet the config. < GROUP_NAME > file does
not exist, KIWI will error out.

For example, the following configuration file, called config.testl would be used for the
group called "test1":

DISK=/dev/sda

PART='5;S;x,x;L;/"'

IMAGE='/dev/sda2;suse-##.#-pxe-client.i686;1.2.8;192.168.100.2;4096'

CONF="'CONFIGURATIONS/xorg.conf.testl;/etc/X11/xorg.conf;192.168.100.2;4096,\
CONFIGURATIONS/syslog.conf;/etc/sysconfig/syslog.conf;192.168.100.2;4096'

As a result of this configuration file, the image would be configured consistently across all
the hosts assigned to testl. The following file called config.test2, contains a small change
that may be specific to a function:

DISK=/dev/sda

PART='5;S;x,x;L;/"'

IMAGE="'/dev/sda2;suse-##.#-pxe-client.i686;1.2.8;192.168.100.2;4096"'

CONF="'CONFIGURATIONS/xorg.conf.test2;/etc/X11/xorg.conf;192.168.100.2;4096,\
CONFIGURATIONS/syslog.conf;/etc/sysconfig/syslog.conf;192.168.100.2;4096'

As we can see, while group 1 and 2 share the syslog.conf configuration file, they have different
xorg.conf files defined, therefore two distinct groups with one or more hosts assigned to
each group can now be configured by managing a smaller number of files.

13.5.3. Using Hardware Mapping to Provide
Overrides

The only issue with running mixed hardware configurations pertains primarily to hardware
differences. For instance, it may be possible to create a single, xorg. conf file that is able to
work with all of the hardware, but there is a chance it might not be possible to do so. With this
in mind, KIWI provides a mechanism to provide "default" configurations that works with the
most common hardware configuration, while providing hardware specific overrides to allow
for any differences and yet have all hardware linked to the same group.

13.5.3.1. The Hardware Mapping Elements

To make use of the hardware linking mechanism, two additional parameters needs to be added
to the group details file, the one named config.<group name>. These two elements "link"
hardware specific configurations to the appropriate systems. A general example would look
like this:

HARDWARE MAP="vendor name_model"
vendor _name_model HARDWARE MAP="00:00:00:11:11:11"

These parameters are not required, and the same functionality can be applied by using mul-
tiple groups to do the same thing, but that might not be desirable to some administrators.

86

Using Hardware Map-
ping to Provide Overrides

This feature allows for a slightly more complex group to be defined, but the end result is a
single group, that can contain multiple sub-groups ensuring flexibility in using a mixed set
of hardware.

The definitions for the above parameters are as follows:
+ HARDWARE_MAP

This element follows the same rules as defined by the KIWI_GROUP element. However, this
variable will create sub-groups used to ensure multiple types of hardware vendors can be
used within the same group. The name of the group(s) should be clearly defined, and a good
convention to follow would be to use a combination of the vendor name with the model
number or type. This would allow for cases where the same vendor is used, but differences
between alternative models requires different maps to be used.

+ <HARDWARE_MAP_NAME > HARDWARE_MAP

This element behaves exactly like the < GROUP_NAME > _KIWI_MAC_LIST element defined
above, in that it lists all MAC addreses that need to be linked to a hardware map. Any host
defined within the list will receive configuration files that have been specifically defined in
a hardware_config. <hardware_map > file, in addition to any files defined within a CONF
element.

13.5.3.2. The Hardware Mapping Details File

Once the hardware map has been defined, the last step is to ensure configuration spe-
cific elements are linked to the host(s) in question. This is done by creating a new
hardware_config. <hardware_map > file. The contents of the file is quite simple, and contains
only one element called VENDOR_CONF, as the following example shows:

VENDOR CONF='CONFIGURATIONS/xorg.conf.hardware name model;/etc/X11/xorg.conf;192.168.100.2;4096

The format of the VENDOR_CONF values is exactly the same as the CONF variable used in the
standard host and group configurations. In addition, files defined within this list will over-
write any files defined in the group configuration, if and only if, all of the following cases

apply:
« The host is assigned to the current hardware map
« The file is defined within the CONF and VENDOR_CONF elements

NOTE: If a file is not defined in the CONF element, but is defined in the VENDOR_CONF ele-
ment, it is simply downloaded to the host as if it was a CONF file. In this case, no overwritting
will take place as it is considered a new file.

13.5.3.3. A Complete Example

The following is an example of a group that is using hardware from multiple vendors. For
the purposes of this example, lets assume the group will have 10 defined hosts, seven are
imaginative HP thinstations, while the remaining three are older Maxterm thinstations. We
will also assume that the differences we are trying to address are specific to the video card
and X.Org drivers used as a result.

With this in mind, we will need the following KIWI specific files:

87

Using Hardware Map-
ping to Provide Overrides

cd /srv/tftpboot/KIWI
s
config.examplel
config.group
hardware config.maxterm 3500

As we can see, there is a KIWI group file, the group configuration or details file, and a new
file that we have not seen before called hardware_config.maxterm_3500. We will first look at
the contents of the config,group file:

cat config.group

KIWI GROUP="examplel"

examplel KIWI MAC LIST=
"00:00:00:00:00:01 00:00:00:00:00:0
00:00:00:00:00:03 00:00:00:00:00:0
00:00:00:00:00:05 00:00:00:00:00:0
00:00:00:00:00:07 00:00:00:00:00:08
00:00:00:00:00:09 00:00:00:00:00:0A"

2\
4\
6 \

Within the file, there is a group called "examplel", with ten hosts defined, in this case with
imaginary sequential MAC addresses. Next, we look at the config.examplel group details/con-
figuration file:

cat config.examplel

KIWI INITRD=/boot/initrd

KIWI KERNEL=/boot/linux

DISK=/dev/sda

PART='5;S;x,769;L;/,x;L;x"
IMAGE="'/dev/sda2;exmaple-kiosk-opensuse-##.#-pxe-client.1686;0.0.1;192.168.1.2;4096"'
UNIONFS CONFIG=/dev/sda3,/dev/sda2,clicfs
CONF='prefs.js;/home/kioskuser/.mozilla/firefox/07xvllty.default/prefs.js;192.168.1.2;4096,xorg.conf;/
RELOAD IMAGE=yes

RELOAD CONFIG=yes

HARDWARE MAP="'maxterm 3500'

maxterm 3500 HARDWARE MAP='00:00:00:00:00:02 00:00:00:00:00:03 00:00:00:00:00:04"

Here, most of the standard KIWI configuration elements are in place, with a few extras.
There are three areas we want to focus our attention on, the CONF, HARDWARE_MAP and
maxterm_3500_ HARDWARE_MAP variables, as they are the most critical elements to our ex-
ample.

The first parameter to look at is the CONF parameter, which indicates a prefs. js (for Mozilla
Firefox), and a xorg.conf (for X Windows) files will be copied to the host during boot up. These
files should be considered defaults for the group, and all hosts defined in this group will use
these files. As such, when the systems boot, both of these files will be copied over to their
local file systems when the CONF element is processed.

Lastly, we have a hardware mapping group called "maxterm_3500", with three of the groups
hosts defined as part of of a sub-group, or hardware map. The content of this file is as follows:

cat hardware config.maxterm 3500

VENDOR CONF='xorg.conf.maxterm 3500;/etc/X11/xorg.conf;192.168.1.2;4096,
someconfig.cfg;/etc/sysconfig/someconfig.cfg;192.168.1.2;4096"

When the VENDOR_CONF defintition is used, we are telling KIWI that all files defined within
this element, are specific to the hardware map they are linked to. As a result, any files listed
here will be transferred to a host if, and only if, the host has been linked to the hardware
map via the maxterm_3500 HARDWARE_MAP element. In our example the only systems that

88

Using Hardware Map-
ping to Provide Overrides

will receive the xorg.conf.maxterm_3500 file will be the three maxterms we linked to the
hardware map itself.

In our VENDOR_CONF element, we are indicating two files that should be transferred, in addi-
tion to any file transferred during the processing of the CONF element. A "specific" xorg. conf
file, as well as someconfig.cfg. In the case of the xorg.conf.maxterm_3500 file, when it is
transferred to the host, it will overwrite the xorg.conf file that was previously transferred
via the CONF element. However, with the someconfig. cfg file, because it was not previously
defined in the CONF element, it will simply get transferred over, and is a perfect example of
how one could enable functionality that is not otherwise configured.

As a result of this example, we have seven terminals that are using a prefs.js and gener-
ic xorg.conf file for their system configuration, and three terminals that are using prefs.js,
a new version of the xorg.conf file as well as a file called somconfig.cfg. For the purpos-
es of our example, the contents of the prefs.js, xorg.conf, xorg.conf.maxterm_3500 and
someconfig.cfg are arbitrary, and don't need to be explained here.

89

90

14 OEM Image—Preload Systems

Table of Contents

14.1. Building the suse-oem-preload EXamplecccceeveiiiiiiiiiiiiieiniiiieeeeeiiteeeeeieeeeeeans 91
14.2. USING the IMAGEeeeiiieiiiiiiiiiieeeeeittee et et e e s eetreeesssssteeesesnreeesseasaeessssnnses 91
14.3. FLAVOULS ..eetieeiuieiieeeeiitteeeniitteeeeeitteeeeeentteessssusaeeeesssnsteessssnsaeessssnsaeessssnsseessssssseeessssnns 92

An OEM image is a virtual disk image representing all partitions and bootloader information
in the same fashion it exists on a physical disk. The image format matches the format of the
VMX image type. All flavors discussed previously for the VMX image type apply to the OEM
image type.

The basic idea behind an OEM image is to provide the virtual disk data for OEM vendors to
support easy deployment of the system to physical storage media. The deployment can be
performed from any OS including Windows as long as a tool to dump data onto a disk device
exists and is used. The OEM image type may also be used to deploy an image on a USB stick.
A USB stick is simply a removable physical storage device.

14.1. Building the suse-oem-preload Ex-
ample

The OEM example provided with KIWI is based on recent openSUSE releases, one example
configuration per release, and includes the default and x11 patterns. The image type is a split
type utilizing the distributions default filesystem format for the read-write partition and the
squashfs filesystem for the read-only partition. Using the additional installiso attribute
creates an installable ISO image. When booting from the ISO image the OEM disk image will
be deployed to the storage media on the booting machine (after confirmation by the user).

cd /usr/share/doc/packages/kiwi/examples

==> select the example directory for the desired distribution change into it
cd suse-...

kiwi --build ./suse-oem-preload -d /tmp/myoem-result --type split

14.2. Using the Image

The virtual disk image created by KIWI with the commands shown above can be tested using
virtualization software such as QEMU, VMware, or VirtualBox. The virtual disk is represented
by the file with the . raw extension, whereas the file with the .iso extension represents the
installation disk for this oem image. The ISO image is bootable (filename.iso) and can be

91

Flavours

burned to optical media. It is recommended to test the image on a bare test system. The
following command shows how to use QEMU to test the OEM disk image (filename. raw).

cd /tmp/myoem-result
gemu suse-*-oem-preload.*.raw

or using the dd command you can dump the image onto a test hard disk or USB stick and
upon reboot select the appropriate device as the boot device in the BIOS:

cd /tmp/myoem-result
dd if=suse-*-oem-preload.*.raw of=/dev/device bs=32k

Note, when testing an oem image using the virtual disk image, i.e. the . raw file, the geometry
of the disk image is not changed and therefore retains the disk geometry of the host system.
This implies that the re-partitioning performed for a physical disk install during the oem boot
workflow will be skipped.

You can test the installation procedure in a virtual environment using the .iso file. In this
case the re-partitioning code in the boot image will be executed. The following commands
show this procedure using QEMU.

cd /tmp/myoem-result
gemu-img create /tmp/mydisk 20G
gemu -hda /tmp/mydisk -cdrom suse-*-oem-preload.*.iso -boot d

14.3. Flavours

As indicated above the use of the installiso and installstick attributes for the oem
image supports the creation of an installation image. The installation image can be created
in two formats, one suitable for CD/DVD media and a second suitable for a USB stick. The
self installing image deploys the oem image onto the selected storage device. The installa-
tion process is a simple image dump using the dd command. During this process the target
system remains in terminal mode. The following configuration snippets show the use of the
installiso and installstick attributes to create the ISO or USB installation image format
respectively.

. <type image="name" ... installiso="true"/>

Creates a . iso file which can be burned onto a CD or a DVD. This represents an installation
CD/DVD

. <type image="name" ... installstick="true"/>

Creates a .raw.install file which can be dumped (dd) onto a USB stick. This represents
an installation Stick

14.3.1. Specializing the OEM install process

It is possible to specialize the OEM install process by providing shell scripts with the following
names. For more information how to pack the scripts and make them work in the boot code,
see the chapter Section 3.3, “Boot Image Hook-Scripts”.

« preHWdetect. sh This script is executed prior to the hardware scan on the target machine.

« postHwdetect.sh This script is executed after the hardware scan on the target machine.

92

Influencing the
OEM Partitioning

« prelImageDump.sh This script is executed immediately prior to the OEM image dump onto
the target storage device.

« postImageDump.sh This script is executed directly after the OEM image dump onto the
target storage device once the image checksum has been successfully verified.

14.3.2. Influencing the OEM Partitioning

By default the oemboot process will create/modify a swap, /home and / partition. It is possible
to influence the behavior with the oem-* elements. See Chapter 5, KIWI Image Description for
details.

14.3.3. LVM Support

KIWTI also provides support for LVM (Logical Volume Management). In this mode the disk
partition table will include one lvm partition and one standard ext2 boot partition. KIWI
creates the kiwiVG volume group, unless the Lvmgroup attribute has been set, and adds logical
volumes to the group based on the configuration given by the systemdisk block for this type.
The filesystem for the volume group is determined by the filesystem attribute of the type
element.

After booting the system the user has full control over the volume group and is free to change
(resize/increase) the group and the volumes inside. Support for LVM has been added for all
disk based image types. This includes the vmx and oem image types. In order to use LVM the
existence of a systemdisk section is required. The systemdisk specification may be empty.
An empty systemdisk specification triggers the creation of >one LVM root volume with the
default kiwiVG name.

kiwi --create /tmp/myoem --type split -d /tmp/myoem-result --lvm

With the systemdisk section you can specify to have one or more top level directories in a
separate volume. See Chapter 5, KIWI Image Description for a detailed explanation.

14.3.4. Partition Based Installation

The default installation method of an OEM is dumping the entire virtual disk on the selected
target disk and repartition the disk to the real geometry. This works but will also wipe every-
thing which was on the disk before. KIWI also supports the installation into already existing
partitions. This means the user can setup a disk with free partitions for the KIWI OEM instal-
lation process. This way already existing data will not be touched. In order to activate the
partition based install mode the following OEM option has to be set in config.xml:

<oem-partition-install>true</oem-partition-install>
Compared to the disk based install the following differences should be mentioned:

« The bootloader will be setup to boot the installed system. There is no multiboot setup. The
user is expected to implement the setup of a multiboot bootloader.

« The oem options for system, swap and home doesn’t have any effect if the installation
happens in predefined partitions.

+ There is no support for remote (PXE) OEM installation because KIWI has to loop mount the
disk image in order to access the partitions which can’t be done remotely.

93

Network Based Installation

+ The raw disk image is stored uncompressed on the install media. This is because KIWI needs
to loop mount the disk image which it can’t do if the file is only available as compressed
version. This means the install media in this mode will be approximately double the size
of a standard install media.

14.3.5. Network Based Installation

Instead of manually dumping the OEM image on the target device or creating a KIWI install
CD, USB stick, there is a third method of deploying the OEM image on the target device.
It's possible to let the image be downloaded from a PXE boot server over the network. This
requires a PXE network boot server to be setup properly in the first place For details how to
do this refer to the chapter: Chapter 13, PXE Image—Thin Clients. If your pxe server is running
the following steps are required to setup the install process over the network

« Make sure you have created an install PXE tarball along with your oem image:

<type image="oem" ... installpxe="true"/>

« unpack the created <image-name >.tgz file and copy the initrd and kernel images over to
your PXE server

tar -xf <image-name>.tgz
scp initrd-oemboot-*.install.* pxe.server.ip:/srv/tftpboot/boot/initrd
scp initrd-oemboot-*.kernel.* pxe.server.ip:/srv/tftpboot/boot/linux

+ Next copy the system image and md5 sum over to to the PXE boot server

scp <image-file>.xz pxe.server.ip:/srv/tftpboot/image/
scp <image-file>.md5 pxe.server.ip:/srv/tftpboot/image/

+ At last set the kernel commandline parameters to the append line in your PXE configura-
tion (for example: pxelinux.cfg/default). The required parameters are stored in the file
<image-file>.append from the KIWI generated install tarball

Optionally the image can be stored on a FTP,HTTP server specified via the kiwiserver and
kiwiservertype append information. In this case make sure you copied the system image
and md>5 file to the correct location on the ftp, http, etc. server. KIWI searches the image at
one place only which is below the image/ directory on the root path of the specified server.
initrd and linux kernel are loaded by PXE thus they require a tftp server to be present.

94

15 Xen Image—Paravirtual Systems

Table of Contents

15.1. Building the suse-xen-guest EXamplecccooeerviiiiiiieeeeiinriniiiiieeeeeeeeeeeeeeneeeeeeeeens 95
15.2. USING the IMAZE ..cceeeeeiiiiiiiieieeeieieeiiiitteeee e e e e e searrreeeeeeeeessssansnreeaeeeeessssssssssssseseeees 95
15.3. FIAVOULS ..etiiiiiiiieiiiiitiee ettt ettt e ettt e ettt e e e ettt e e e s sba e e s s essnee e s s emnateesemsnaeesennnns 96

Xen is a free software virtual machine monitor. It allows several guest operating systems to
be executed on the same computer hardware at the same time.

A Xen system is structured with the Xen hypervisor as the lowest and most privileged layer.
Above this layer are one or more guest operating systems, which the hypervisor schedules
across the physical CPUs. The first guest operating system, called in Xen terminology “domain
0” (dom0), is booted automatically when the hypervisor boots and given special management
privileges and direct access to the physical hardware. The system administrator logs into
domO in order to start any further guest operating systems, called “domain 0” (domU) in Xen
terminology.

A Xen image is a virtual disk like a vmx but with the xen kernel installed. In order to run it a
Xen domO server needs to run. Xen images in KIWI makes use of the PVGrub method supported
by current Xen versions. Xen extracts the kernel and initrd from the virtual disk as well as the
grub configuration and displays the menu which allows emulation of the Grub console

15.1. Building the suse-xen-guest Exam-
ple

The latest example provided with KIWI is based on openSUSE and includes the base pattern.

cd /usr/share/doc/packages/kiwi/examples cd suse-...
kiwi --prepare ./suse-xen-guest --root /tmp/myxen

kiwi --create /tmp/myxen --type vmx -d /tmp/myxen-result

15.2. Using the Image

In order to run a domain U the Xen tool xm needs to be called in conjunction with the KIWI
generated domainU configuration file

xm create -c /tmp/myxen-result/
the-file-with-suffix.xenconfig

95

Flavours

15.3. Flavours

With KIWI you can provide the information required to create a guest configuration as part of
the config.xml file. Additionally you can group special packages which you may only need
in this para virtual environment with a profile.

<packages type="image" profiles="xenFlavour">
<package name="kernel-xen" replaces="kernel-ec2"/>
</packages>
<type>
<machine memory="512" domain="domU">
<vmdisk ... device="/dev/xvda"/>
</machine>
</type>

If this information is present KIWI will create a Xen domain U configuration with 512 MB of
RAM and expects the disk at /dev/xvda. Additional information to setup the Xen guest ma-
chine properties are explained in the machine section. The KIWI Xen domain U configuration
is stored in the file /tmp/myxen-result/suse-##.#-xen-guest.####-#.#.#.xenconfig.

96

16 EC2Image — Amazon Elastic Com-
pute Cloud

Table of Contents

16.1. Building the suse-ec2-guest EXaAmPIecccoovviiiiiriiiiieeinniiiieeeenieeeeeneeeeeesveeeeens 98
16.2. Using EC2 and the created iMAagecccevevereeeririeieerieriieeenerireeeeerireeeeesareeeesesannees 99

The Amazon Elastic Compute Cloud™ (Amazon EC2) provides an environment known as IaaS
[http://en.wikipedia.org/wiki/IAAS] (Infrastructure as a Service). In this environment you
have the ability to run Virtual Machines (VMs) on hardware managed by Amazon and the
virtualization infrastructure provided by Amazon.

The virtualization infrastructure for EC2 is setup to work with Amazon Machine Images
(AMIs). There are two storage models for AMIs:

1. S3 [http://aws.amazon.com/s3/] (Simple Storage Service) backed AMI
2. EBS [http://aws.amazon.com/ebs/] (Elastic Block Store) backed AMI

The image created with KIWI can be used to create an AMI for both storage models. For an S3
backed AMI a bundle with a manifest XML file is required. The bundle can be created using the
ec2-ami-tools provided by Amazon in a post processing step using the image created by KIWI.

For an EBS backed AMI the procedure to get to a working AMI requires more manual steps
when compared to the S3 backed AMI approach. The KIWI created image needs to be uploaded
to EC2 and then it needs to be dumped to an EBS volume. This implies that you need to have
a running AMI in EC2

The procedures to handle both storage options are outlined below.

You can work with EC2 using the Amazon Web application found at http://aws.amazon.com
or you can use the Amazon provided command line tools. In this example we will exclu-
sively interact with EC2 using the command line tools. The command line tools are divid-
ed into AMI and API tools. The AMI tools are designed to operate on images, while the
API tools are designed to work with the Amazon REST API [http://en.wikipedia.org/wi-
ki/Representational_state_transfer]. In order for KIWI to create the bundle for S3 backed AMIs
the Amazon AMI tools must be installed. It is recommended that you install both, the AMI
and API tools on your build system.

The Amazon tools are not distributed with KIWI and can be installed using packages from
the openSUSE Build Service Cloud:EC2 [http://download.opensuse.org/repositories/Cloud:/
EC2/] repository, or can be downloaded from Amazon at http://aws.amazon.com/developer-
tools/368 and http://aws.amazon.com/cli/.

97

http://en.wikipedia.org/wiki/IAAS
http://en.wikipedia.org/wiki/IAAS
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
http://aws.amazon.com
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://download.opensuse.org/repositories/Cloud:/EC2/
http://download.opensuse.org/repositories/Cloud:/EC2/
http://download.opensuse.org/repositories/Cloud:/EC2/
http://aws.amazon.com/developertools/368
http://aws.amazon.com/developertools/368
http://aws.amazon.com/cli/

Building the suse-
ec2-guest Example

Documentation for Amazon EC2 can be found at http://aws.amazon.com/documen-
tation/ec2/. The documentation for the command line tools may be accessed at
http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference and http://
docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference All commands also
support the customary - -help command line option to display the supported command line
arguments for the given command.

When working with the Amazon AMI tools it is useful to set the EC2_HOME,
EC2_PRIVATE_KEY, and EC2_CERT environment variables. Setting EC2_PRIVATE_KEY, and
EC2_CERT allows you to forego specification of the --private-key and --cert command
line options with every command. The EC2_ HOME environment variable is used by the tools
to find required libraries. This also transfers to ec2-api-tools. Using the aws-cli command line
tools one first needs to run aws configure. Using the aws-cli command line tools has the ad-
vantage that these tool provide a consistent interface across many Amazon services, while the
*-api-tools have separate downloads and installs for each service. The aws-cli tools do not take
the environment variables into consideration and provide a - -profile argument to allow you
to manage multiple accounts. Something that is more challenging with the *-api-tools.

+ EC2_HOME

Location of the bin and lib directories installed by the Amazon tools. A good location for
the tools on your system is /usr/local.

+ EC2_PRIVATE KEY

Path to your private key file (including the filename). For example /home/USERNAME/AWS/
keys/pk-....pem

+ EC2_CERT

Path to your certificate file (including the filename). For example /home/USERNAME/AWS/
keys/cert-....pem

Please note that your account will be billed by Amazon at the published rate for any computing
resources you consume in EC2. This includes but is not limited to, running instances, storing
data (your image) on S3 or EBS, and network traffic.

One final remark before we get started, the default region for any ec2- command that commu-
nicates with the REST API or sends files to EC2 is the US-East region, i.e. us-east-1. Therefore,
if you want to upload any data to other EC2 regions you must specify the desired target region.
Specifying a region is accomplished by setting the EC2_URL environment variable, by using
the - -url command line option, or by using the - - region argument. The - - region argument
is used for the aws-cli tools. The EC2-URL environment variable and the - -url argument ex-
pect a value in the form https://ec2.amazonaws. com (us-east-1). The --region argument
expects the name of a region as returned by the aws ec2 describe-regions command.

16.1. Building the suse-ec2-guest Exam-
ple
The example provided with KIWI uses openSUSE as the base distribution and includes the

base pattern plus the vim editor. Also included is the suse-ami-tools package that provides
tools needed in the EC2 environment.

98

http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/ec2/
http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference
http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference
http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference

Using EC2 and
the created image

Lets assume you copied the example configuration directory to /tmp such that you could add
packages to the config.xml file without modifying the original example provided by KIWI.

kiwi --prepare /tmp/suse-ec2-guest --root /tmp/myec2

kiwi --create /tmp/myec2 -d /tmp/myec2-result -y

16.2. Using EC2 and the created image

The file that serves as the basis for the AMI is the .raw file. This is the disk image and is
used for both S3 and EBS backed AMIs. The file is found in your destination directory, /tmp/
myec2-result, if you followed the commands given above. Prior to describing the specifics
about using the KIWI produced images the following section will address some rudimentary
general EC2 concepts and commands that can be used with existing AMIs and the AMIs you
can register with the KIWI created images.

16.2.1. Using a registered AMI

This section is not a replacement for the EC2 documentation mentioned earlier. We will only
cover the concepts and commands necessary to get you started such that you can launch the
KIWI created image in this example.

Prior to launching any instance in EC2 you need to have a key-pair. If you do not already have
a key-pair in EC2 you can create one using aws ec2 create-key-pair --key-name command.
This creates a public/private key-pair that is used to grant you access to your running instance
via the ssh tools. Generate the key-pair as shown below, the gsgkey name is arbitrary and
used in this example, you can choose any name you like. The use of the key is quite frequent.
Therefore, you probably want to choose a name that is easy to remember and not too terribly
long to type.

aws ec2 create-key-pair --key-name gsgkey

Save the private key returned by the command in a local file. Using your favorite text editor,
paste everything between (and including) the - - - - - BEGIN RSA PRIVATE KEY----- and -----
END RSA PRIVATE KEY----- lines into your editor and save the key to a file. The file can
have any name. However, it makes sense to name the file after the key-pair name you have
chosen earlier. If the file is named differently from the key-pair you will end up launching
instances with - -key-name mykey and then accessing the instance with -i yourkey, which
may be a bit weird. As indicated by the heading, this is your private key, thus make sure you
safe guard it appropriately. On Linux the ssh tools will complain if the key file does not have
the proper permissions. Change the permissions of your private key file to be read-write by
you, the owner, only.

chown 600 gsgkey

The public key of your key-pair is stored in the EC2 infrastructure. EC2 allows you to have
multiple key-pairs, to review your existing key-pairs use the aws ec2 describe-key-pairs
command.

When you launch an instance of an AMI you must specify a key-pair name. This selects the
public key to be injected into the instance. The key injection occurs through the amazon init
script provided by the suse-ami-tools package. This package, as mentioned previously, is
already included in the example's config.xml file. Do not forget to include this package when
you create your own image descriptions for EC2 or you will not be able to log into your

99

Using a registered AMI

running instances. Additionally you need to activate this service by adding suselnsertService
amazon in your config.sh file.

The key injection mechanism needs to access the network. Therefore, you must configure
the network when you build your image. Configuration of the network can be accomplished
through the overlay mechanism or via commands in config.sh. The network interface of a
guest in EC2 is always ethO and it needs to be configured to use DHCP. In the example the
overlay mechanism is used to setup the network configuration.

Note that the naming of network devices changed to a persistent naming scheme based on
location of the device. While this naming scheme provides persistent names on a given system
across reboots, with the underlying assumption that a network device would not be moved
to a different slot on real hardware, this makes it more difficult to configure the network for
machines with unknown topology. Therefore, kiwi examples for effected distributions inject
a udev rule in config.sh.

Another prerequisite to launching an instance in EC2 is knowing the AMI you want to instan-
tiate. The aws ec2 describe-images command will provide information about all publicly
available AMIs, a rather lengthy list. Use the - -filters option or other qualifiers to reduce
the list to a manageable size.

The Amazon EC2 infrastructure uses PVGrub (Para-Virtual Grub) [http://www.linode.com/
wiki/index.php/PV-GRUB] to boot instances of an AMI. This allows instances to run the kernel
that is part of the AMI, rather than some kernel provided by the Amazon infrastructure. How-
ever, an Amazon provided kernel is still required to kick things off and in the startup process
PVGrub eventually picks up the /boot/grub/menu. lst file in your image and then boots the
kernel specified. Note, that during the boot process you do not have access to a console and
thus it makes no sense to have multiple kernel entries in your menu. lst file. Without console
access you do not have an opportunity to choose a kernel. The kernel command line options
are important, please refer to the examples to see the required options for EC2 images. Each
EC2 region has it's own independent copy of this boot mechanism and the boot mechanism is
differentiated between 32 bit and 64 bit. The boot kernels are named with an ID that starts
with the TLA (Three Letter Acronym) aki followed by a dash ("-") and a hex number. The
Amazon Kernel Image IDs table below provides guidelines for the selection of the boot kernel
ID based on Region and image architecture.

Table 16.1. Amazon Kernel Image IDs

Region AKI Arch Name

AP- aki-196bf518x86 ec2-public-images-ap-northeast-1/pv-grub-
Northeast hd00-V1.04-i386.gz.manifest.xml

AP- aki-1f6bf51e/x86-64 ec2-public-images-ap-northeast-1/pv-grub-
Northeast hd00-V1.04-x86 64.gz.manifest.xml

AP- aki-563e7404x86 ec2-public-images-ap-southeast-1/pv-grub-
Southeast hd00-V1.04-1386.gz.manifest.xml

AP- aki-5e3e740¢x86-64 ec2-public-images-ap-southeast-1/pv-grub-
Southeast hd00-V1.04-x86 64.gz.manifest.xml

AP- aki-c162fffb x86 ec2-public-images-ap-southeast-1/pv-grub-
Southeast2 hd00-V1.04-i386.gz.manifest.xml

AP- aki-3b1d800/x86-64 ec2-public-images-ap-southeast-1/pv-grub-
Southeast2 hd00-V1.04-x86 64.gz.manifest.xml

100

http://www.linode.com/wiki/index.php/PV-GRUB
http://www.linode.com/wiki/index.php/PV-GRUB
http://www.linode.com/wiki/index.php/PV-GRUB

Using a bundle for
an S3 backed AMI

Region AKI Arch Name

EU-West aki-5ea34529x86 ec2-public-images-eu/pv-grub-hdo0-V1.04-
1386.gz.manifest.xml

EU-West aki-58a3452fx86-64 ec2-public-images-eu/pv-grub-hd00-V1.04-
x86 64.gz.manifest.xml

SA-East aki-5753f44ax86 ec2-public-images-sa/pv-grub-hd00-vV1.04-
i386.gz.manifest.xml

SA-East aki-5153f44¢x86-64 ec2-public-images-sa/pv-grub-hd00-vV1.04-
x86 64.gz.manifest.xml

US-East aki-659ccb0¢x86 ec2-public-images/pv-grub-hdo0-v1.04-
1386.gz.manifest.xml

US-East aki-499ccb20x86-64 ec2-public-images/pv-grub-hd00-V1.04-
x86 64.gz.manifest.xml

US-West aki-960531dx86 ec2-public-images-us-west-1/pv-grub-hd0oo-
V1.04-x86 64.gz.manifest.xml

US-West aki-920531d/k86-64 ec2-public-images-us-west-1/pv-grub-hdoo-
V1.04-x86 64.gz.manifest.xml

US-West2 |aki- x86 ec2-public-images-us-west-2/pv-grub-hdoo-

e28f11d2 V1.04-x86 64.gz.manifest.xml
US-West2 |aki- x86-64 ec2-public-images-us-west-2/pv-grub-hdoo-
e68f11d6 V1.04-x86 64.gz.manifest.xml

The information in the table above was extracted from the Amazon documentation found
at: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UserProvidedKernels.html. As
of version 1.04 of the akis the distinction between h0 and h0O is no longer relevant, they are
in fact the same aki.

AMIs in EC2 already have the aki ID embedded in their description. Therefore, you only need
to know the aki ID when registering the image or when creating an S3 image bundle. The

aws ec2 run-instances --image-id IMAGE-ID

command is used to start an instance.

Once the instance state for an instance is shown as running you can log into the instance using
ssh as follows:

ssh -i PATH TO PRIVATE KEY root@PUBLIC IP OF YOUR INSTANCE

The PUBLIC IP OF YOUR_INSTANCE is displayed as part of the output of the aws ec2 de-
scribe-instances command. If you are unable to log in, it is most likely that the security set-
ting for the instance is blocking the ssh access, or that you did not enable the ssh daemon
process on startup. Your config.sh script should have a line activating the ssh daemon as
follows, suselnsertService sshd. If you do not have this entry in config.sh you will have to
rebuild your image. Addressing the problem with port blocking is accomplished using the aws
ec2 authorize-security-group-ingress command.

16.2.2. Using a bundle for an S3 backed AMI

The destination directory, /tmp/myec2-result, if you followed the commands given above,
contains the disk image, .raw file that we will use to create the image bundle. The ec2-ami-

101

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UserProvidedKernels.html

Using the disk image
for and EBS backed AMI

tools must be installed to create the image bundle. It is a good practice to keep the image
bundle files and the kiwi results separated. Thus you may want to create a directory for the
bundle. If you target different regions you want to have one directory per region. The following
command will create an image bundle you can upload to an S3 bucket.

ec2-bundle-image -k PRIVATE KEY -c CERT FILE -u ACCOUNTNUMBER -p IMAGE NAME --block-device-maf

The generated bundle needs to be transfered to Amazon using the ec2-upload-bundle com-
mand line tool. This tool is part of the Amazon AMI tools. Upload the AMI as follows, replac-
ing AWS Key ID and AWS secret Key ID with your Amazon key information. Also you may
want to choose a different name for your bucket than myImages. If the bucket does not exist
in S3 it will be created.

ec2-upload-bundle -b myImages -a AWS Key ID -s AWS secret Key ID \
-m PATH TO MANIFEST FROM _PREVIOUS STEP

After the upload process is complete, register your image with the EC2 infrastructure using the
aws ec2 register-image command as shown below. The result of the registration process is an
AMI ID returned on the command line in the form “ami-” followed by a random key sequence.
Use this AMI ID to launch your instance as described in the Using a registered AMI section.

aws ec2 register-image
--image-location myImages/MANIFEST NAME
ARCH

This completes the S3 specific setup. The next section explains the use of the disk image file
created by KIWI to create and EBS backed AMI.

16.2.3. Using the disk image for and EBS backed
AMI

For the EBS backed image we will also use the .raw file. Find this file in the destination
directory, /tmp/myec2-result, if you followed the commands given above. We will use the
raw disk image file to create a tarball to speed up the upload process. After unpacking the
tarball in an instance in EC2 we will dump the image onto a volume with the dd command.
Thus, dd must be available in the image you are running. You may also use the dd_rescue if
itis available to dump the image. The SUSE Linux Enterprise AMIs available in EC2 have the
dd_rescue command available. For the openSUSE AMIs available in EC2 it is easy to install
the dd_rescue command by executing zypper as shown below.

zypper in dd rescue

The first step in creating an EBS backed AMI is to create a tarball of the disk image file. This
will significantly reduce your upload time and generate less network traffic. The following
commands are executed on your build machine.

cd /tmp/myec2-result

tar -cjf myImage.tar.bz *.raw

The tarball needs to be uploaded to EC2 and unpacked. This implies that the running instance
of your chosen AMI needs to have sufficient space to store the tarball and the unpacked tarball.
Therefore, it is recommended to create a storage volume as shown below. Some ami automat-
ically create ephemaral storage that may be sufficiently big to hold the tarbal and image. For
simplicity we will create our own storage volume. The command used will return information

102

Using the disk image
for and EBS backed AMI

about the created volume including the a volume ID that you want to remember. This will be
referred to as STORE VOL ID in this example. Execute this command on your local machine.

aws ec2 create-volume --size X --availability-zone AV ZONE

The X is an integer value representing the size of the volume to be created in GB (Giga Bytes).
The AV_ZONE value is one of the Amazon availability zones. For all commands presented here
the AV ZONE value must be the same. Possible values for AV ZONE are obtained with the aws
ec2 describe-availability-zones

The next step is to launch an instance of your liking in EC2. This instance will be used to create
the EBS volume that will eventually function as the backing store for your AMI, therefore this
instance must have the dd as described earlier. Launching the instance is accomplished with
the aws ec2 run-instances command executed on your local machine.

aws ec2 run-instances --image-id AMI ID --key-name SSH KEY NAME --security-groups SECURI

The SECURITY GROUP NAME is optional, but it is best to have a group setup that allows ssh
access by default to avoid having to open the port all the time as outlined earlier. The
INSTANCE TYPE specified with the - -instance-type depends on the architecture of your im-
age. The aws ec2 run-instances command returns information about the instance, including
the instance ID, and you want to remember this ID. This ID will be referred to as INST ID
in this example.

Wait until the instance is running, check the status with the aws ec2 describe-instance-status
command. Once the instance is indicated as running attach the previously created volume to
your instance, by executing the aws ec2 attach-volume command on your local machine.

aws ec2 attach-volume --volume-id STORE VOL ID --instance-id INST ID --device /dev/sdf

The chosen device specified with the - -device is arbitrary, however, you do obviously not
want to pick a device node that is already in use.

In a different shell login to the running instance as shown in the Using a registered AMI section.

Check that the storage volume is attached using the aws ec2 describe-volumes command on
your local machine. Once the volume is attached the "State" will be shown as in-use.

With the EBS storage volume attached to your instance create a filesystem on the volume.
There is no need to partition the volume. In the EC2 instance that you previously logged into
execute the mkfs command.

mkfs -t ext3 /dev/sdf
Once the filesystem creation is complete mount the volume.

mount dev/sdf /mnt

With the storage volume attched, formated and mounted you now have sufficient space to
transfer the image tarball you created earlier. From the destination directory on your local
machine that contains your tarball you can use sftp of scp to copy the tarball to your instance.

scp -1 PATH TO PRIVATE KEY PATH TO THE TARBALL root@PUBLIC IP OF YOUR INSTANCE:/mnt

While the image is transfering you can create a new EC2 volume. This new volume will become
the backing store for your new AMI and be referred to as VOL ID in this example. Use the
aws ec2 create-volume command on your local machine as shown previously. This time you
want to make sure that the specified size matches the size of your image file.

103

Using the disk image
for and EBS backed AMI

aws ec2 create-volume --size X --availability-zone AV_ZONE

It is good practice to use the size element in your config.xml file when creating EC2 images.
Using the size element ensures that you have additional space on your root volume and that
you can match the volume size exactly to your image size.

As previously, wait for the volume to be created and check the status with the aws ec2 de-
scribe-volumes command. When the volume creation process is complete, attach the new
volume to your running instance by executing the aws ec2 attach-volume command on your
local machine.

aws ec2 attach-volume --volume-id VOL ID --instance-id INST ID --device/dev/sdg

Wait until the status for the volume changes to in-use before proceeding.

By now the upload of your image tarball has probably completed and you can unpack the
image on your storage volume in your EC2 instance. In the shell on your EC2 instance unpack
the tarball as shown below.

cd /mnt
tar -xjf myImage.tar.bz2

After the unpack operation completes you can dump the image to your EBS volume that will
be your backing store for your AMI, this volume is attached to /dev/sdg in this example. In
the shell on your EC2 instance execute te dd command as shown below.

dd if= /mnt/IMAGE FILE NAME of= /dev/sdg bs=32k

You have to wait until the dump process is complete before proceeding to the next step.

With the dump process complete you can now unmount the storage volume from your EC2
instance by executing the following in the shell of your running instance.

umount /mnt

You can also exit the shell in your running EC2 instance as all remaining commands are
executed on your local machine.

You must detach the volume that is intended as your AMI backing store from your running
instance. Detaching and deleting the storage volume as well as terminating the running in-
stance are optional.

aws ec2 detach-volume --volume-id VOL ID
aws ec2 detach-volume --volume-id STORE VOL ID

Prior to shutting down the instance or deleting the storage volume, wait until the detach
operation has completed. This is indicated by the available status in the output of the aws ec2
describe-volumes command.

aws ec2 delete-volume --volume-id STORE VOL ID

aws ec2 terminate-instances --instance-ids INST ID

Your next step is to create a snapshot of the EBS volume that contains your image. The aws
ec2 create-snapshot command returns a snapshot ID that you want to remember and will be
referred to as SNAP_ID in this example.

aws ec2 create-snapshot --descriptionA SHORT DESCRIPTION --volume-id VOL ID

104

Using the disk image
for and EBS backed AMI

The process of creating the snapshot will take a while and depends on the size of your volume.
Check the status of the snapshot creation process using the aws ec2 describe-snapshots- -
owner-ids self command. Ignoring the - -owner-ids will create a long list of all available
snapshots. When the process is complete the "Progress" will change to 100%.

Once the snapshot is complete you can register it as an AMI with the EC2 infrastructure using
the aws ec2 register-image command.

aws ec2 register-image --name A NAME --description A DESCRIPTION --architecture ARCH --k

The aws ec2 register-image command will return the AMI ID that you can then use to launch
your instance.

The process of creating an EBS backed AMI is a bit tedious. If you create EBS backed AMIs
more often it might be well worth your time to script this process using the Amazon REST
API. The aws-cli command line interface is written in Python and you can import the various
modules to incorporate functionality in your script. Another scripting option is to use the
bot interface, another module implemented in Python. Other interfaces in other scripting
languages are available.

105

106

17 KIWI RAID Support

KIWI supports three types of RAID systems:

Real RAID controllers with its own firmware
KIWI only has to make sure the drivers are part of the initrd e.g cciss for the smart array
controllers built into some server boards.

BIOS RAID controllers
Cheap onboard controller devices with the RAID software inside the BIOS (so called fake
RAID). Linux supports some of them with the 'dmraid' utility and the support is a mix of
BIOS calls and some device mapper calls.

The check for these devices can be switched on and off with <oem-ataraid-scan > true|
false < /oem-ataraid-scan >

Linux software RAID
There is no hardware involved. The Linux kernel can control any storage device by adding
RAID capabilities. All the work done by a real hardware controller is done in software.

All this is done using the 'mdadm’ utility. The metadata for the devices are stored in RAID
blocks on the storage device which requires them to be of the correct partition type.

The software RAID is supported in a so called degraded mode. This means the RAID is created
but not all devices to build it are attached. That's because an image consists initially out of
one disk and not more. The user should add devices or change the RAID mode manually after
deployment. This is an easy task if the system comes up prepared for all this. In order to use
linux software raid in kiwi images you only have to set:

<type ... mdraid = "mirroring" >

Currently kiwi supports a degraded mirroring (raid:1) or stripping (raid:0) config but you can
change the mode to any supported raid level after deployment.

107

108

18 KIWI Custom Partitions

Table of Contents

18.1. Custom Partitioning via LVMcccoovmiiiiiiiiiiiiiiiiiiiteteeeeeeeiiereeecee e eneneee 109
18.2. Custom Partitioning via BIfScccccceiiiiiiiiiiiiiiiiiiiieiceneeeeeceeee e 110

KIWI supports custom parttions only via LVM, the logical volume manager for the Linux ker-
nel, or filesystems with volume support like btrfs or zfs.

18.1. Custom Partitioning via LVM

KIWI supports LVM, the logical volume manager for the Linux kernel that manages disk drives
and similar mass-storage devices. KIWI supports custom parttion only via LVM or filesystems
with volume support like btrfs or zfs.

To define a LVM volume, a systemdisk element within the type element in the config.xml
file. The systemdisk element has an optional attribute name, which specifies the volume
group name.

The systemdisk element must contain the child element volume, with four possible attributes:

name
A required attribute. The name of the volume. If mountpoint is not specified the name
specifies a path which has to exist inside the root directory.

size
An optional attribute. Absolute size of the volume. If the size value is too small to store
all data kiwi will exit. The value is used as MB by default but you can add "M" and/or
"G" as postfix.

freespace
An optional attribute. Free space to be added to this volume. The value is used as MB by
default but you can add "M" and/or "G" as postfix.

mountpoint
An optional attribute. The mountpoint specifies a path which has to exist inside the root
directory.

For example, the following example will create a logical volume named LVtmp with minimal
size to just store what is in /tmp of the image at build time. The volume is mounted to /tmp:

109

Custom Partitioning via Btrfs

<systemdisk name="vgroup-name">
<volume name="tmp"/>
</systemdisk>

To do the same but with 200 MB of size, use:

<systemdisk name="vgroup-name">
<volume name="tmp" size="200M"/>
</systemdisk>

To create the logical volume named 'foo' >with 200 MB of free space mounted as /tmp, use:

<systemdisk name="vgroup-name">
<volume name="tmp" freespace="200M" mountpoint="tmp"/>
</systemdisk>

There are always the volumes LVRoot and LVSwap for the rootfs and the swap space. In order
to influence LVRoot one can use "@root" as a name:

<systemdisk name="vgroup-name">
<volume name="@root" size="2M"/>
</systemdisk>

18.2. Custom Partitioning via Btrfs

If Btrfs is used as a filesystem, the subvolume management is configured via the same sys-
temdisk element as in the case of LVM. However, because there is no extra subsystem in-
volved, the attributes name and mountpoint of the volume element are not used.

110

19 KIWI Encryption Support

KIWTI supports LUKS encrypted images. To setup cryptographic volume along with the given
filesystem using the LUKS extension, add the parameter luks in the type element in your
config.xml. The value of the parameter represents the password string used to be able to mount
that filesystem while booting:

<type ... luks="password" >

111

112

Part III. Examples and Best Practices

Table of Contents

20. Start Cookingcccccccuveeerennneen.

20.1. General Preparation for All RECIPESeeeeeeiiiieeeiiiiiiiieeeeeeeeeeccireeeeeeee e e e

20.2. Get ready to start cooking

115

116

20 Start Cooking

Table of Contents

20.1. General Preparation for All RECIPESccccvuurieeeeeiiiiieeiirereeeee e e e eeeceireeeeeeeeeeeeeennes 117
20.2. Get ready tO Start COOKING ...ccccuetrirrriuiieririiiteeieriieeeeerreeeeessnreeesesnraeessessnaeessssnnne 118

Before we start cooking, we need to make sure that we have all required ingredients ready
and set up correctly. In order to use the kiwi tools you must be logged in as root.

20.1. General Preparation for All Recipes

The basic preparation for all recipes.

20.1.1. Install the KIWI toolset

It is strongly recommended that you use the released version of the KIWI tool chain. Adding the
Virtualization:Appliances repository to your system will allow you to install all KIWI related
packages.

The commands below illustrate how to install the KIWI tools from the command line using
zypper. Alternatively you may use the YaST2 GUI to add the repository and accomplish the
installation.

Install kiwi and other needed packages:
zypper in kiwi kiwi-doc kiwi-templates kiwi-desc-vmxboot kiwi-desc-usbboot kiwi-desc-isoboot kil

The following commands will allow you to update all packages from the repository, including
KIWT if it was installed previously. Refresh the repository:

zypper refresh
Update all installed packages with newer versions:
zypper up

For detailed information about the zypper command line options see the zypper man page
(man zypper).

20.1.2. The Directories Where We Cook

Creating images with KIWI requires space in your file system (your hard drive or mounted
external storage). The amount of space required depends on the size of the packages being
used and any additional software to be placed into the image.

117

Get ready to start cooking

The general guideline for storage space is 8 GB plus the size of any additional software. Within
the 8 GB storage space one can install the entire distribution, thus this provides sufficient
space for all the packages you require from the distribution repository. For the examples pro-
vided here we will use directories in /tmp. However, you may choose to locate these working
directories anywhere in your file system.

The directories created in this step will be used later as command line arguments.

Create the temporary build space directory:

mkdir -p /tmp/myiso

Create the final image directory:

mkdir -p /tmp/myiso-result

Please note that the directory used for the temporary build space may only be used once. The
directory will have to be emptied prior to preparing another image in the same directory. The
KIWI tool chain will produce an error such as: Couldn't create root directory: File exists failed.

20.2. Get ready to start cooking

This section provides a quick overview of the basic commands and a short high level descrip-
tion about how KIWI works.

The creation of an image with KIWI is a two step process. The first step is the preparation step
followed by the creation itself. In the preparation step, the so called unpacked image is created
in the temporary build space directory (/tmp/myiso in our examples, as mentioned above).
The unpacked image in the temporary build space contains your new file system based on one
or more software package(s) from the specified repositories (more on the repositories later).

The creation step uses the file system created in the preparation step as the image root tree
to create the output image. This image is placed in the final image directory (for example /
tmp/myiso-result). If the image type ISO was requested, the output image is a file with the
suffix .iso representing a live system on CD or DVD. It is also possible to create ISO images
that can be used as installation source.

In addition to creating the LiveCD ISO image, KIWI is able to create images for full virtual
(VMWare/qemu) and para-virtual (Xen) environments as well as for USB sticks, PXE network
clients and OEM customized Linux systems.

20.2.1. The Basic Commands

Executing the two step prepare and create process is accomplished with the following com-
mands_

kiwi --prepare ImageDescriptionPath --root RootPath

kiwi --create RootPath --destdir DestinationPath

The ImageDescriptionPath is a directory containing a basic description of the ingredients
of the image. The RootPath is the destination directory for the unpacked image, for example
/tmp/myiso. The DestinationPath is the path to the final image directory, for example /
tmp/myiso-result.

118

The Source Repository

The KIWI tool chain supports the combination of the previous two command line invocations
into one. This is accomplished by passing the - -build command line option. With the --build
opting kiwi will still execute 2 distinct steps. However, from a users perspective only one
command needs to be executed, as shown below.

kiwi --build ImageDescriptionPath --destdir DestinationPath

In this case the unpacked image will be created in a sub-directory of the Destination-
Path called image-root, following our example KIWI would create /tmp/myiso-result/im-
age-root for the unpacked image.

20.2.2. The Source Repository

As mentioned previously KIWI creates an unpacked image prior to creating the final image
by installing packages. These packages are extracted from an installation source or so called
repository. A repository is a collection of packages. Specifying the installation source on the
command line is accomplished using the - -set-repo command line option as follows:

kiwi --build ImageDescriptionPath --destdir DestinationPath --set-repo RepositoryPath

20.2.3. Repository Options

KIWI supports local and Internet based repositories.

With help of the --set-repo option we can set what is used as repository or overwrite the
repo URL for the first listed repo from the XML file. The change is temporary and will not
be written to the XML file.

The following examples show how to specify these various repositories on the command line:

Using and Internet based repository, such as the openSUSE 11.3 repository:

kiwi --build ImageDescriptionPath --destdir DestinationPath --set-repo http://download.open

The openSUSE examples provided by KIWI use the openSUSE online repository and it is not
necessary to use the --set-repo command line option. How this is configured will be ex-
plained in later chapter.

If you have the openSUSE 11.3 installation DVD you may use it as repository. Insert the DVD
into your drive and if you are using openSUSE 11.3 it will be mounted as /media/SU1110.001.
If the media is not mounted automatically you may use a regular mount command to mount
the DVD_

mount -t is09660 /dev/cdrom /media

Assuming the DVD got auto mounted the following command demonstrates how we can use
the mounted DVD as the installation source repository.

kiwi --build ImageDescriptionPath --destdir DestinationPath --set-repo /media/SU1110.001

If you have the install DVD ISO image available, you may use it instead of burning it to a DVD.

119

A few words about the speed

In order to use the image you first must loop mount it such that it becomes available as a
block device. Then use the mount point as the repository path.

mount -o loop /path-to-the-iso-file/filename.iso /mnt
kiwi --build ImageDescriptionPath --destdir DestinationPath --set-repo /mnt

20.2.4. A few words about the speed

Before we move on to our first example, a few words about the speed at which the image can
be created. KIWI will access the specified repository to obtain the packages required for the
image to be created. Thus if you are using an online repository the speed of creation will be
dominated by the bandwidth of your Internet connection. Using a mounted DVD the speed
will be dependent on the speed of your DVD drive, and using the mounted ISO image your
hard drive access performance will have a strong influence on the image creation speed.

Generally the image creation will be fastest if you access a local repository, i.e. the installation
DVD, a loop mounted ISO image or even a local mirror of the online repository on you LAN.

20.2.5. Caveats

If you are building a 64 bit image you will need to use gemu-kvm (from the kvm package)
instead of gemu.

The image name for example suse-11.3-1live-is0.1686-2.5.1.1is0 contains the system
architecture, i686 in this case. In all our recipes you will need to substitute the proper names
if you build on a different architecture.

It is possible to build a 32 bit image (x86) on a 64 bit (x86_64) system by prefixing the kiwi
command with linux32 as follows:

linux32 kiwi --build suse-11.3-Je0S --destdir /tmp/myjeos --type iso

120

A KIWI Man Pages

Table of Contents

RIWE ettt ettt e e s et e e e et e e e e bt e e e e e bt e e e e e nnreeeeeas 122
KIWIICONEAZ SN ettt e s s 130
KIWImMAZES. S «eeeeiiiiiiiiieee ettt e e s es 134
KIWIITKIWATC ettt ettt e st e e st e e s e et e e s s e anneeesesnnne 137

The following pages will show you the man page of KIWI and the functions which can be used
within config.sh and index.sh

121

kiwi

kiwi — Creating Operating System Images
Synopsis

kiwi { -1 | --list }

kiwi { -o | --clone } image-path { -d } destination

kiwi { -b | --build } image-path { -d } destination

Basics

KIWI is a complete imaging solution that is based on an image description. Such a description
is represented by a directory which includes at least one config.xml file and may as well
include other files like scripts or configuration data. The kiwi-templates package provides
example descriptions based on a JeOS system. JeOS means Just enough Operating System. KIWI
provides image templates based on that axiom which means a JeOS is a small, text only based
image including a predefined remote source setup to allow installation of missing software
components at a later point in time.

Detailed description of the kiwi image system exists in the system design document in file:///
usr/share/doc/packages/kiwi/kiwi.pdf. KIWI always operates in two steps. The KIWI - -build
option just combines both steps into one to make it easier to start with KIWI. The first step
is the preparation step and if that step was successful, a creation step follows which is able
to create different image output types. If you have started with an example and want to add
you own changes it might be a good idea to clone of from this example. This can be done
by simply copying the entire image description or you can let KIWI do that for you by using
the kiwi - - clone command.

In the preparation step, you prepare a directory including the contents of your new filesystem
based on one or more software package source(s) The creation step is based on the result of
the preparation step and uses the contents of the new image root tree to create the output
image. If the image type ISO was requested, the output image would be a file with the suffix
.1so representing a live system on CD or DVD. Other than that KIWI is able to create images
for virtual and para-virtual (Xen) environments as well as for USB stick, PXE network clients
and OEM customized Linux systems.

General Options

[-h | --help]
Display help.

[--version]
Display the KIWI version.

[--check-config path-to-the-configuration-file]
Checks the XML configuration file.

[--nocolor]
Do not use colored output.

122

Image Preparation and Creation

kiwi { -p | --prepare } image-path
{-r | --root } image-root [--cache directory]

kiwi { -c | --create } image-root
{ -d | --destdir } destination [--type image- type]

Image Upgrade

If the image root tree is stored and not removed, it can be used for upgrading the image
according to the changes made in the repositories used for this image. If a distributor provides
an update channel for package updates and an image config.xml includes this update channel
as repository, it is useful to store the image root tree and upgrade the tree according to changes
on the update channel. Given that the root tree exists it's also possible to add or remove
software and recreate the image of the desired type.

kiwi { -u | --upgrade } image- root [--add-package name] [--add-pattern name]

System Analysis

KIWI provides a module which allows you to analyse the running system and create a report
and an image description representing the current state of the machine. Among others this
allows you to clone your currently running system into an image. The system requires the
zypper backend in order to work properly.

The process will always place it's result into the /tmp/$0ptionValueOf- -describe directory.
The reason for this is because /tmp is always excluded from the analysis and therefore we can
safely place new files there without influencing the process itself. You should have at least
100 MB free space for the cache file and the image description all the rest are just hard links.

As one result a HTML based report file is created which contains important information about
the system. You are free to ignore that information but with the risk that the image from
that description does not represent the same system which is running at the moment. The less
issues left in the report the better is the result. In most cases a manual fine tuning is required.
This includes the repository selection and the unmanaged files along with the configuration
details of your currently running operating system. You should understand the module as a
helper to analyse running linux systems.

kiwi { --describe } name

Image Postprocessing Modes

The KIWI post-processing modes are used for special image deployment tasks, like installing
the image on a USB stick. So to say they are the third step after preparation and creation.
KIWI calls the postprocessing modules automatically according to the specified output image
type and attributes but it's also possible to call them manually.

kiwi --bootvm initrd --bootvm-system systemImage [--bootvm-disksize size]
kiwi --booted initrd

kiwi --bootusb initrd

123

kiwi --installed initrd --installcd-system raw-system-image
kiwi --installstick initrd --installstick-system raw-system-image

kiwi --installpxe initrd --installpxe-system raw-system-image

Image Format Conversion

The KIWI format conversion is useful to perform the creation of another image output format
like vimdk for VMware or ovf the open virtual machine format. Along with the conversion KIWI
also creates the virtual machine configuration according to the format if there is a machine
section specified in the XML description

kiwi --convert systemImage [--format vmdk |ovf|qcow2|vhd]

Helper Tools

The helper tools provide optional functions like creating a crypted password string for the
users section of the config.xml file as well as signing the image description with an md5sum
hash and adding splash data to the boot image used by the bootloader.

kiwi --createpassword
kiwi --createhash image-path

kiwi { -i | --info } ImagePath {--select repo-patterns|patterns|types|sources|size|
profiles|packages|version }

kiwi --setup-splash initrd
The following list describes the helper tools more detailed

[--createpassword]
Create a crypted password hash and prints it on the console. The user can use the string
as value for the pwd attribute in the XML users section

[--createhash image-path]
Sign your image description with a md5sum. The result is written to a file named
.checksum.md and is checked if KIWI creates an image from this description.

[-1 | --info image-path --select selection]

List general information about the image description. So far you can get information about
the available patterns in the configured repositories with repo-patterns, a list of used
patterns for this image with patterns, a list of supported image types with types, a list of
source URLs with sources, an estimation about the install size and the size of the packages
marked as to be deleted with size, alist of profiles with profiles, alist of solved packages
to become installed with packages, and the information about the appliance name and
version with version

[--setup-splash initrd]
Create splash screen from the data inside the initrd and re-create the initrd with the splash
screen attached to the initrd cpio archive. This enables the kernel to load the splash screen
at boot time. If splashy is used only a link to the original initrd will be created

124

Global Options

[--add-profile profile-name]
Use the specified profile. A profile is a part of the XML image description and therefore
can enhance each section with additional information. For example adding packages.

[--set-repo URL]
Set/Overwrite the repo URL for the first repo listed in the configuration file that does not
have a "fixed" status. The change is temporary and will not be written to the XML file.

[--set-repotype type]
Set/Overwrite repo type for the first listed repo. The supported repo types depends on
the packagemanager. Commonly supported are rpm-md, rpm-dir and yast2. The change
is temporary and will not be written to the XML file.

[--set-repoalias name]
Set/Overwrite alias name for the first listed repo. Alias names are optional free form text.
If not set the source attribute value is used and builds the alias name by replacing each “/”
with a “_”. An alias name should be set if the source argument doesn't really explain what
this repository contains. The change is temporary and will not be written to the XML file.

[--set-repoprio number]
Set/Overwrite priority for the first listed repo. Works with the smart packagemanager
only. The Channel priority assigned to all packages available in this channel (0 if not set). If
the exact same package is available in more than one channel, the highest priority is used.

[--add-repo URL, --add-repotype type --add-repoalias name --add-repoprio number
]
Add the given repository and type for this run of an image prepare or upgrade process.
Multiple - -add-repo/--add- repotype options are possible. The change will not be writ-
ten to the config.xml file

[--ignore-repos]
Ignore all repositories specified so far, in XML or elsewhere. This option should be used in
conjunction with subsequent calls to - -add- repo to specify repositories at the comman-
dline that override previous specifications.

[--logfile Filename | terminal]
Write to the log file Filename instead of the terminal.

[--gzip-cmd cmd]
Specify an alternate command to run when compressing boot and system images. Com-
mand must accept gzip options.

[--package-manager smart|zypper]
Set the package manager to use for this image. If set it will temporarily overwrite the
value set in the xml description.

[-A| --target-arch 1586|x86 64|armv5tel|ppc]
Set a special target-architecture. This overrides the used architecture for the image-pack-
ages in zypp.conf. When used with smart this option doesn't have any effect.

[--disk-start-sector number]
The start sector value for virtual disk based images. The default is 2048. For newer disks
including SSD this is a reasonable default. In order to use the old style disk layout the
value can be set to 32.

125

[--disk-sector-size number]
Overwrite the default 512 byte sector size value. This will influence the partition align-
ment.

[--disk-alignment number]
Align the start of each partition to the specified value. By default 4096 bytes are used.

[--debug]
Prints a stack trace in case of internal errors

[--verbose 1|2]|3]
Controls the verbosity level for the instsource module

[-y|--yes]
Answer any interactive questions with yes

[--create-instsource path-to-config.xml]
Using this option, it is possible to create a valid installation repository from blank RPM
file trees. The created tree can be used directly for the image creation process afterwards.

[--bundle-build]
This option bundles the build results to be suitable for publishing it in the buildservice.
It allows adding a build-number in combination with the - -bundle-id option as well as
a SHA key to the results. It also removes intermediate build results not relevant for users
if they don't want to rebuild the image.

[--bundle-id build-number]
The build-number/string in combination with - -bundle-build

Image Preparation Options

[-r| --root RootPath]
Set up the physical extend, chroot system below the given root-path path. If no --root
option is given, KIWI will search for the attribute defaultroot in config.xml. If no root
directory is known, a mktemp directory will be created and used as root directory.

[--force-new-root]
Force creation of new root directory. If the directory already exists, it is deleted.

Image Upgrade/Preparation Options

[--cache directory]
When specifying a cache directory, KIWI will create a cache each for patterns and packages
and re-use them, if possible, for subsequent root tree preparations of this and/or other
images

[--init-cache image description]
Creates a cache from a KIWI image description.

[--recycle-root]
Uses an existing root tree and base the kiwi prepare step on top of it. This is used to speed
things up.

[--force-bootstrap]
In combination with recycle-root this option forces to call the bootstrap phase of kiwi,
which is not considered necessary under normal circumstations.

126

[--add-package package]
Add the given package name to the list of image packages multiple - -add-package options
are possible. The change will not be written to the XML description.

[--add-pattern name]
Add the given pattern name to the list of image packages multiple - -add-pattern options
are possible. The change will not be written to the xml description. Patterns can be handled
by SUSE based repositories only.

[--del-package package]
Removes the given package by adding it the list of packages to become removed. The
change will not be written to the xml description.

Image Creation Options

[-d | --destdir DestinationPath]
Specify destination directory to store the image file(s) If not specified, KIWI will try to find
the attribute defaultdestination which can be specified in the preferences section of
the config.xml file. If it exists its value is used as destination directory. If no destination
information can be found, an error occurs.

[-t]| --type Imagetypel
Specify the output image type to use for this image. Each type is described in a type
section of the preferences section. At least one type has to be specified in the config.xml
description. By default, the types specifying the primary attribute will be used. If there is
no primary attribute set, the first type section of the preferences section is the primary
type. The types are only evaluated when KIWI runs the --create step. With the option
- -type one can distinguish between the types stored in config.xml

[-s| --strip]
Strip shared objects and executables - only makes sense in combination with - -create

[--prebuiltbootimage Directory]
Search in Directory for pre-built boot images.

[--isocheck]
in case of an iso image the checkmedia program generates a md5sum into the ISO header.
If the --isocheck option is specified a new boot menu entry will be generated which
allows to check this media

[--Tvm]
Use the logical volume manager to control the disk. The partition table will include one
lvm partition and one standard ext2 boot partition. Use of this option makes sense for the
create step only and also only for the image types: vmx, oem, and usb

[--fs-blocksize number]
When calling KIWI in creation mode this option will set the block size in bytes. For ISO
images with the old style ramdisk setup a blocksize of 4096 bytes is required

[--fs-journalsize number]
When calling KIWI in creation mode this option will set the journal size in mega bytes for
ext[23] based filesystems and in blocks if the reiser filesystem is used

[--fs-inodesize number]
When calling KIWI in creation mode this option will set the inode size in bytes. This option
has no effect if the reiser filesystem is used

127

[--fs-inoderatio number]
Set the bytes/inode ratio. This option has no effect if the reiser filesystem is used

[--fs-max-mount-count number]
When calling kiwi in creation mode this option will set the number of mounts after which
the filesystem will be checked. Set to O to disable checks. This option applies only to
ext[234] filesystems.

[--fs-check-interval number]
When calling kiwi in creation mode this option will set the maximal time between two
filesystem checks. Set to O to disable time-dependent checks. This option applies only to
ext[234] filesystems.

[--fat-storage size in MB]
if the syslinux bootlaoder is used this option allows to specify the size of the fat partition.
This is useful if the fat space is not only used for booting the system but also for custom
data. Therefore this option makes sense when building a USB stick image (image type:
usb or oem)

[--partitioner parted|fdasd]
Select the tool to create partition tables. Supported are parted and fdasd (s390). By default
parted is used

[--check-kernel]
Activates check for matching kernels between boot and system image. The kernel check
also tries to fix the boot image if no matching kernel was found.

[--mbrid number]
Specifies a custom mbrid. The number value is treated as decimal number which is inter-
nally translated into a 4byte hex value. The allowed range therefore is from 0x0 to max
Oxffffftff. By default kiwi creates a random value

[--edit-bootconfig script]
Specifies the location of a custom script which is called right before the bootloader is in-
stalled. This allows to modify the bootloader configuration file written by kiwi. The scripts
working directory is the one which represents the image structure including the bootloader
configuration files. Please have in mind that according to the image type, architecture and
bootloader type the files/directory structure and also the name of the bootloader config-
uration files might be different.

[--edit-bootinstall script]
Specifies the location of a custom script which is called right after the bootloader is in-
stalled.

[--archive-image]
When calling kiwi - - create this option allows to pack the build result(s) into a tar archive.

[--targetdevice device]
Use an alternative device instead of the loop device.

For More Information

More information about KIWI, its files can be found at:

128

http://en.opensuse.org/Portal:KIWI
KIWI wiki

config.xml
The configuration XML file that contains every aspect for the image creation.

file:///usr/share/doc/packages/kiwi/kiwi.pdf

The system documentation which describes the supported image types in detail.

file:///usr/share/doc/packages/kiwi/schema/kiwi.xsd.html
The KIWI RELAX NG XML Schema documentation.

129

http://en.opensuse.org/Portal:KIWI

kiwi::config.sh
KIWTI::config.sh — Configuration File for KIWI image description

Description

The KIWI image description allows to have an optional config.sh script in place. This script
should be designed to take over control of adding the image operating system configuration.
Configuration in that sense means stuff like activating services, creating configuration files,
prepare an environment for a firstboot workflow, etc. What you shouldn't do in config.sh
is breaking your systems integrity by for example removing packages or pieces of software.
Something like that can be done in images.sh. The config.sh script is called after the user
and groups have been set up. If there are SUSE Linux related YaST XML information, these
are validated before config. sh is called too. If you exit config.sh with an exit code ! = 0 kiwi
will exit with an error too.

Example A.1. Template for config.sh

#:

Functions...

test -f /.kconfig && . /.kconfig
test -f /.profile & . /.profile

#:

Greeting...

echo "Configure image: [$kiwi iname]..."

#:

Mount system filesystems

baseMount

#:

Call configuration code/functions

baseCleanMount

#:

Exit safely

Common functions

The . kconfig file allows to make use of a common set of functions. Functions specific to SUSE
Linux specific begin with the name suse. Functions applicable to all linux systems starts with
the name base. The following list describes the functions available inside the config. sh script.

[baseCleanMount]
Umount the system filesystems /proc, /dev/pts, and /sys.

130

[baseDisableCtrlAltDel]
Disable the Ctrl-Alt-Del key sequence setting in /etc/inittab

[baseGetPackagesForDeletion]
Return the name(s) of packages which will be deleted

[baseGetProfilesUsed]
Return the name(s) of profiles used to build this image

[baseSetRunlevel {value}]
Set the default run level

[baseSetupBoot]
Set up the linuxrc as init

[baseSetupBusyBox {-f}]
activates busybox if installed for all links from the busybox/busybox. links file—you can
choose custom apps to be forced into busybox with the - f option as first parameter, for
example:

baseSetupBusyBox -f /bin/zcat /bin/vi

[baseSetupInPlaceGITRepository]
Create an in place git repository of the root directory. This process may take some time
and you may expect problems with binary data handling

[baseSetupInPlaceSVNRepository {path_list}]
Create an in place subversion repository for the specified directories. A standard call could
look like this baseSetupInPlaceSVNRepository /etc, /srv, and /var/log

[baseSetupPlainTextGITRepository]
Create an in place git repository of the root directory containing all plain/text files.

[baseSetupUserPermissions]
Search all home directories of all users listed in /etc/passwd and change the ownership
of all files to belong to the correct user and group.

[baseStripAndKeep {list of info-files to keep}]
helper function for strip* functions read stdin lines of files to check for removing params:
files which should be keep

[baseStripDocs {list of docu names to keep}]
remove all documentation, except one given as parameter

[baseStripInfos {list of info-files to keep}]
remove all info files, except one given as parameter

[baseStripLocales {list of locales}]
remove all locales, except one given as parameter

[baseStripMans {list of manpages to keep}]
remove all manual pages, except one given as parameter example: baseStripMans more less

[baseStripRPM]
remove rpms defined in config.xml under image = delete section

131

[baseStripTools {list of toolpath} {list of tools}]
helper function for suseStripInitrd function params: toolpath, tools

[baseStripUnusedLibs]
remove libraries which are not directly linked against applications in the bin directories

[baseUpdateSysConfig {filename} {variable} {value}]
update sysconfig variable contents

[Debug {message}]
Helper function to print a message if the variable DEBUG is set to 1

[Echo {echo commandline}]
Helper function to print a message to the controlling terminal

[Rm {list of files}]
Helper function to delete files and announce it to log

[Rpm {rpm commandline}]
Helper function to the RPM function and announce it to log

[suseActivateDefaultServices]
Call all postin scriptlets which among other things activates all required default services
using suselnsertService

[suseActivateServices]
Check all services in /etc/init.d/ and activate them by calling suselnsertService

[suseCloneRunlevel {runlevel}]
Clone the given runlevel to work in the same way as the default runlevel 3.

[suseConfig]
Setup keytable language and timezone if specified in config.xml and call SuSEconfig
afterwards

[suselnsertService {servicename}]
Recursively insert a service. If there is a service required for this service it will be inserted
first. The suse insserv program is used here

[suseRemoveService {servicename}]
Remove a service and its dependent services using the suse insserv program

[suseService {servicename} {on|off}]
Activate/Deactivate a service by using the chkconfig program The function requires the
service name and the value on or off as parameters

[suseServiceDefaultOn]
Activates the following services to be on by default using the chkconfig program:
boot.rootfsck boot.cleanup boot.localfs boot.localnet boot.clock policykitd dbus consolek-
it haldaemon network atd syslog cron kbd

[suseSetupProductInformation]
This function will use zypper to search for the installed product and install all product
specific packages. This function only makes sense if zypper is used as packagemanager

132

[suseStripPackager {-a}]
Remove smart or zypper packages and db files Also remove rpm package and db if -a given

Profile environment variables

The .profile environment file contains a specific set of variables which are listed below. Some
of the functions above makes use of the variables.

[$kiwi_compressed]
The value of the compressed attribute set in the type element in config.xml

[$kiwi_delete]
A list of all packages which are part of the packages section with type="delete" in
config.xml

[$kiwi_drivers]
A comma separated list of the driver entries as listed in the drivers section of the
config.xml.

[$kiwi_iname]
The name of the image as listed in config.xml

[$kiwi_iversion]
The image version string major.minor.release

[$kiwi_keytable]
The contents of the keytable setup as done in config.xml

[$kiwi_language]
The contents of the locale setup as done in config.xml

[$kiwi_profiles]
A list of profiles used to build this image

[$kiwi_size]
The predefined size value for this image. This is not the computed size but only the optional
size value of the preferences section in config.xml

[$kiwi_timezone]
The contents of the timezone setup as done in config.xml

[$kiwi_type]
The basic image type. Can be a simply filesystem image type of ext2, ext3, reiserfs,
squashfs, cpio, or one of the following complex image types: iso, split, usb, vmx, oem,
Xen, or pxe.

133

kiwi::images.sh
KIWTI::images.sh — Configuration File for KIWI image description

Description

The KIWI image description allows to have an optional images . sh script in place. This script
is called at the beginning of the KIWI create step. It is allowed to remove software there to
shrink down the size of the image. Most often images . sh is used for boot images because they
needs to be small. As images.sh is called in the create step you should be aware to design
the script in a way that it can be called multiple times without shooting itself into its knee.
As KIWT allows to create different image types from one previously prepared tree one needs
to take into account that images . sh can be called more than one time. If you exit images. sh
with an exit code ! = 0 KIWI will exit with an error too.

Example A.2. Template for images.sh

4

Functions...

test -f /.kconfig && . /.kconfig
test -f /.profile && . /.profile

4

Greeting...

echo "Configure image: [$kiwi iname]..."

4

Call configuration code/functions

Common functions

The . kconfig file allows to make use of a common set of functions. Functions specific to SUSE
Linux specific begin with the name suse. Functions applicable to all linux systems starts with
the name base. The following list describes the functions available inside the images. sh script.

[baseCleanMount]
Umount the system filesystems /proc, /dev/pts, and /sys.

[baseGetProfilesUsed]
Return the name(s) of profiles used to build this image.

[baseGetPackagesForDeletion]
Return the list of packages setup in the packages type="delete" section of the
config.xml used to build this image.

[baseSetupOEMPartition]
Writes the file /config.oempartition depending on the following config.xml pa-
rameters: oem-reboot, oem-swapsize, oem-systemsize, oem-swap,oem-boot-title,oem-re-

134

covery, oem-kiwi-initrd. kiwi takes the information from config.xml and creates the
config.oempartition file as part of the automatically created boot image (initrd). The in-
formation must be available as part of the boot image because it controls the OEM repar-
tition workflow on first boot of an OEM image. Detailed information about the meaning
of each option can be found in the OEM chapter of the KIWI cookbook.

[suseGFXBoot {theme} {loadertype}]
This function requires the gfxboot and at least one bootsplash-theme-* package to be in-
stalled in order to work correctly. The function creates from this package data a graphics
boot screen for the isolinux and grub boot loaders. Additionally it creates the bootsplash
files for the resolutions 800x600, 1024x768, and 1280x1024

[suseStripKernel]
This function removes all kernel drivers which are not listed in the *drivers sections of
the config.xml file.

[suseStripInitrd]
This function removes a whole bunch of tools binaries and libraries which are not required
in order to boot a suse system with KIWI.

[Rm {list of files}]
Helper function to delete files and announce it to log.

[Rpm {rpm commandline}]
Helper function to the rpm function and announce it to log.

[Echo {echo commandline}]
Helper function to print a message to the controlling terminal.

[Debug {message}]
Helper function to print a message if the variable DEBUG is set to 1.

Profile environment variables

The .profile environment file contains a specific set of variables which are listed below. Some
of the functions above makes use of the variables.

[$kiwi_iname]
The name of the image as listed in config.xml

[$kiwi_iversion]
The image version string major.minor.release

[$kiwi_keytable]
The contents of the keytable setup as done in config.xml

[$kiwi_language]
The contents of the locale setup as done in config.xml

[$kiwi_timezone]
The contents of the timezone setup as done in config.xml

[$kiwi_delete]
A list of all packages which are part of the packages section with type="delete" in
config.xml

135

[$kiwi_profiles]
A list of profiles used to build this image

[$kiwi_drivers]
A comma separated list of the driver entries as listed in the drivers section of the
config.xml.

[$kiwi_size]
The predefined size value for this image. This is not the computed size but only the optional
size value of the preferences section in config.xml

[$kiwi_compressed]
The value of the compressed attribute set in the type element in config.xml

[$kiwi_type]
The basic image type. Can be a simply filesystem image type of ext2, ext3, reiserfs,
squashfs, and cpio or one of the following complex image types: iso split usb vmx oem
Xen pxe

136

kiwi::kiwirc
KIWTI::kiwirc — Resource file for the Kiwi imaging system

Description

The KIWI imaging toolchain supports the use of an optional resource file named .kiwirc
located in the users home directory.

The file is sourced by a Perl process and thus Perl compatible syntax for the supported variable
settings is required.

Example A.3. Template for .kiwi.rc
$BasePath='/usr/share/kiwi';
$Gzip="bzip2"';

$LogServerPort="'4455";
$System="'/usr/share/kiwi/image’;

Supported Resource Settings

KIWI recognizes the BasePath, Gzip, LogServerPort, LuksCipher, and System settings in the
.kiwirc file.

[BasePath]
Path to the location of the KIWI image system components, such as modules, tests, image
descriptions etc.

The default value is /usr/share/kiwi

[Gzip]
Specify the compression utility to be used for various compression tasks during image
generation.

The default value is gzip -9

[LogServerPort]
Specify a port number for log message queuing.

The default value is off

[LuksCipher]
Specify the cipher for the encrypted Luks filesystem.

[System]
Specify the location of the KIWI system image description.

The default value is the value of BasePath concatenated with /image.

137

138

Index

Symbols
** Other systemitems **
root, 5, 6

A

Amazon Elastic Compute Cloud (see EC2 im-
age)
attributes
alias, 40, 40
arch, 37
blocksize, 35
boot, 14, 14, 29, 30, 30, 30, 31, 31, 42, 42
bootinclude, 15, 15, 17, 17, 42, 44
bootkernel, 29, 68
bootloader-theme, 32
bootprofile, 29, 68
bootsplash-theme, 32
bootstrap, 11
checkprebuilt, 18, 31, 31
compressed, 30
controller, 38, 38, 38, 38
defaultdestination, 32
defaultroot, 32
description, 28
device, 38
displayname, 27
domain, 38
driver, 38, 38
filesystem, 30, 30, 93
flags, 29, 64, 64, 64
format, 30, 68
freespace, 32, 32, 109
fsreadonly, 30
fsreadwrite, 30
group, 39
guestOS, 38
home, 39
HWversion, 37
id, 27, 38, 38, 38, 38, 39, 39
image, 28, 29, 29, 29, 29, 29, 29, 30, 30,
30, 30, 35, 71
imageinclude, 40, 40
installiso, 91, 92, 92
installstick, 92, 92
interface, 38, 38
kernelcmdline, 31, 35
keytable, 31
kiwirevision, 27
locale, 32

B

Ivm, 30, 31

lvmgroup, 93

mdraid, 31

memory, 37, 37
mode, 38, 72
mountpoint, 109, 110
name, 27, 27, 28, 32, 39, 109, 109, 110
number, 36
onlyRequired, 43
password, 40, 40, 41
path, 40, 41, 41, 42
patternType, 43, 43
plusRecommended, 44
prefer-license, 40
primary, 28

priority, 41

profiles, 28, 28, 28, 28
pwd, 39

realname, 39
rpm-check-signatures, 31
rpm-excludedocs, 31
rpm-force, 31

server, 35

shell, 39

showlicense, 31

size, 32, 32, 36, 109
status, 41, 41

target, 36

timezone, 32

type, 11, 17, 18, 27, 27, 29, 39, 39, 43, 44,
44,133,134, 135
unit, 36, 36

username, 40, 41, 41

boot parameters, 19
build process, 11

C

checklist, 60
config.xml, 93
Container image

Ixc image, 71

custom files, 60

D

devices

/dev/etherd/e0.1, 79
/dev/hda, 77
/dev/hda2, 76
/dev/nb0, 79
/dev/nbdo0, 79

139

/dev/nbd1l, 79 ext2, 69

/dev/ramo, 76 squashfs, 74, 81, 91
/dev/raml, 76, 76, 79 tmpfs, 37
/dev/sda2, 78

/dev/sda3, 78 H

/dev/sdbl, 79, 79

hook scripts, 14
/dev/xvda, 96

directories I
*boot, 18 :
/ete, 37, 37, 37 1mages
/etc/init.d/, 132 EC2, 97
/etc/lxc/CONTAINER_NAME, 71 ISO, 63
/home, 34, 34 Ixc, 71
/images/CDs, 61 OEM, 91
/lib/modules/Version/kernel, 39 PXE, 73
/media, 61 VMX, 67
/srv/tftpboot/boot/, 80 ' .XEN, 95 o
/tmp, 99, 109, 109, 110, 118, 123 }mttfclllcll_stomlzatlon, 17

installation

/tmp/myec2-result, 99, 101, 102 netorork, 04

/usr/share/kiwi/image/*boot, 14, 18

/usr/share/zoneinfo, 32, 32 installiso, 92

installstick, 92

/var, 64
/var/lib/1xc/CONTAINER_NAME, 71 150 _
/var/lib/tftpboot, 78 ﬁl.e name extension, 91
boot/, 78 ISO images, 63
config/, 26
image, 12 K
kiwi-hooks, 15, 15 KIWI
mylxc-result, 72 architecture restrictions, 44
oemboot/suse-SLES11, 18 boot parameters, 19
root, 26 Btrfs, 109
root/, 49, 60 build process, 11
Caches, 21
E checklist, 60

common code, 19
compressed root, 65
config.xml, 26

EC2 images, 97
environment variables

delete, 43
R%_eLZ’NG, 39 Container image, 7.1
create -- requested image types, 12
F create -- user defined scripts images.sh, 12
cross-platform, 49
file extensions custom files, 60
:‘:‘:-iS_O, _5, S distribution specific code, 19
*kiwi, 25 EC2 image, 97
.82, 76 encryption, 111
.iSO, 631 9]-’ 925 92: 122 hook SCI‘iptS, 14
.raW,.67, 9]-’ 92 hybrld mOde, 64
.raw.install, 92 Hybrid stick, 65
.-vmdk, 68 image description, 25
_.vmx, 68, 68 image preparation, 117
filesystem, 93 imge analysis, 59
filesystems initrd customization, 17
CHCfS’ 36; 63: 647 80; 81 InStallation, 7

140

installation source, 61
Introduction, 5

ISO image, 63

local installation source, 61
luks, 111

LVM, 109

LVM support, 68, 93
maintenance, 55

model, 48

OEM image, 91

OEM stick, 65

overlay filesystem, 64

overview, 47

patterns, 43

physical extends, 57

pre-built boot images, 18
prepare -- apply archives, 12
prepare -- apply overlay tree, 11
prepare -- create target root directory, 11
prepare -- install packages, 11
prepare -- manage target root tree, 12
prepare -- user defined scripts config.sh, 12
PXE image, 73

RAID, 107

RAM only image, 81

release format, 28

split image, 82

split mode, 64

stages, 12

union image, 81

USB, 64

USB sticks, 64

virtual disk formats, 68
VMware, 68

VMX image, 67

Workflow, 9

XEN image, 95

zfs, 109

L
LVM support, 93
lvmgroup, 93

M
macros
%arch, 41
manpages
kiwi, 122
kiwi::config.sh, 130
kiwi::images.sh, 134
kiwi::kiwire, 137

N
network boot, 73
network installation, 94

0
OEM images, 91

P

postHWdetect.sh, 92
postimageDump.sh, 92
pre-built boot images, 18
preHWdetect.sh, 92
prelmageDump.sh, 92
PXE images, 73

R

raw
file name extension, 91

S

server
atftp, 73
dhcp, 74
TFTP, 75,75

services
atftpd, 73
insserv, 25
NFS, 83

systemdisk, 93

U

union image
local-local, 81
local-ram, 81
remote-local, 81
remote-ram, 82

remote-remote, 82
USB stick, 91

\Y%

virtual disk formats, 68
VMware, 68
VMX images, 67

\
Windows, 91

X
XEN image, 95

141

142

	openSUSE-KIWI Image System
	Table of Contents
	Part I. Concepts and Basics
	Chapter 1. Introduction
	1.1. What is KIWI?
	1.2. What does KIWI do?
	1.3. How do I use KIWI?

	Chapter 2. Installation
	2.1. Installing using Packages
	2.1.1. Distribution Provided Packages
	2.1.2. Packages used by SUSE Studio
	2.1.3. Packages for Development Releases

	2.2. Installing from Source

	Chapter 3. Basic Workflow
	3.1. Introduction
	3.2. Build Process
	3.3. Boot Image Hook-Scripts
	3.4. Boot Image Customization
	3.5. Using Pre-built Boot Images
	3.6. Boot Parameters
	3.7. Common and Distribution Specific Code

	Chapter 4. Image Caches
	4.1. Introduction
	4.2. Example

	Chapter 5. KIWI Image Description
	5.1. The config.xml File
	5.1.1. image Element
	5.1.2. description Element
	5.1.3. profiles Element
	5.1.4. preferences Element
	5.1.5. users Element
	5.1.6. drivers Element
	5.1.7. repository Element
	5.1.8. packages Element
	5.1.8.1. Using Patterns
	5.1.8.2. Architecture Restrictions
	5.1.8.3. Image Type Specific Packages
	5.1.8.4. Packages to Become Included Into the Boot Image
	5.1.8.5. Data not Available as Packages to Become Included

	Chapter 6. Creating Appliances with KIWI
	6.1. Overview
	6.2. The KIWI Model
	6.3. Cross Platform Appliance Build

	Part II. Usecases
	Chapter 7. Maintenance of Operating System Images
	Chapter 8. System Analysis/Migration
	8.1. Create a Clean Repository Set First
	8.2. Watch the Custom Files
	8.3. Checklist
	8.4. Turn Into an Image…

	Chapter 9. Installation Source
	9.1. Adapt the Example’s config.xml
	9.2. Create a Local Installation Source

	Chapter 10. ISO Image—Live Systems
	10.1. Building the suse-live-iso Example
	10.2. Using the Image
	10.3. Flavours
	10.3.1. Split mode
	10.3.2. Hybrid mode

	10.4. USB stick images
	10.4.1. ISO Hybrid stick
	10.4.2. OEM USB stick
	10.4.2.1. OEM compressed / readonly USB stick

	Chapter 11. VMX Image—Virtual Disks
	11.1. Building the suse-vm-guest Example
	11.2. Using the Image
	11.3. Flavours
	11.3.1. VMware support
	11.3.2. LVM Support

	Chapter 12. Linux Containers and Docker
	12.1. Building the suse-lxc-guest Example
	12.2. Using the Image
	12.3. Image Configuration Details

	Chapter 13. PXE Image—Thin Clients
	13.1. Setting Up the Required Services
	13.1.1. Atftp Server
	13.1.2. DHCP Server

	13.2. Building the suse-pxe-client Example
	13.3. Using the Image
	13.4. Flavours
	13.4.1. The PXE Client Control File
	13.4.2. The PXE Client Configuration File
	13.4.3. User another than tftp as Download Protocol
	13.4.4. RAM Only Image
	13.4.5. Union Image
	13.4.5.1. Download to Local Storage, Write to Local Storage
	13.4.5.2. Download to Local Storage, Write to RAM
	13.4.5.3. Mount from Remote, Write to Local Storage
	13.4.5.4. Mount from Remote, Write to RAM
	13.4.5.5. Mount from Remote, Write to Remote

	13.4.6. Split Image
	13.4.7. Root Tree Over NFS
	13.4.8. Root Tree Over NBD
	13.4.9. Root Tree Over AoE

	13.5. Hardware Grouping
	13.5.1. The Group Configuration File
	13.5.2. The Group Details File
	13.5.3. Using Hardware Mapping to Provide Overrides
	13.5.3.1. The Hardware Mapping Elements
	13.5.3.2. The Hardware Mapping Details File
	13.5.3.3. A Complete Example

	Chapter 14. OEM Image—Preload Systems
	14.1. Building the suse-oem-preload Example
	14.2. Using the Image
	14.3. Flavours
	14.3.1. Specializing the OEM install process
	14.3.2. Influencing the OEM Partitioning
	14.3.3. LVM Support
	14.3.4. Partition Based Installation
	14.3.5. Network Based Installation

	Chapter 15. Xen Image—Paravirtual Systems
	15.1. Building the suse-xen-guest Example
	15.2. Using the Image
	15.3. Flavours

	Chapter 16. EC2 Image — Amazon Elastic Compute Cloud
	16.1. Building the suse-ec2-guest Example
	16.2. Using EC2 and the created image
	16.2.1. Using a registered AMI
	16.2.2. Using a bundle for an S3 backed AMI
	16.2.3. Using the disk image for and EBS backed AMI

	Chapter 17. KIWI RAID Support
	Chapter 18. KIWI Custom Partitions
	18.1. Custom Partitioning via LVM
	18.2. Custom Partitioning via Btrfs

	Chapter 19. KIWI Encryption Support

	Part III. Examples and Best Practices
	Chapter 20. Start Cooking
	20.1. General Preparation for All Recipes
	20.1.1. Install the KIWI toolset
	20.1.2. The Directories Where We Cook

	20.2. Get ready to start cooking
	20.2.1. The Basic Commands
	20.2.2. The Source Repository
	20.2.3. Repository Options
	20.2.4. A few words about the speed
	20.2.5. Caveats

	Appendix A. KIWI Man Pages
	kiwi
	kiwi::config.sh
	kiwi::images.sh
	kiwi::kiwirc

	Index

